DE LA RECHERCHE À L'INDUSTRIE

THE NABLA LANGUAGE & THE NABLAB ENVIRONMENT

Jean-Sylvain Camier, Marie-Pierre Oudot, Benoît Lelandais, Benoît Combemale

ECLIPSE SCIENCE WORKING GROUP - 12/11/2017

www.cea.fr

Jean-Sylvain Camier (JSC)

Lawrence Livermore National Laboratory (LLNL)
Nabla project leader and main contributor
HPC expert

Marie-Pierre Oudot (MPO) & Benoît Lelandais (BL)

French Alternative Energies and Atomic Energy Commission (CEA) Software engineering, Eclipse EMF experts

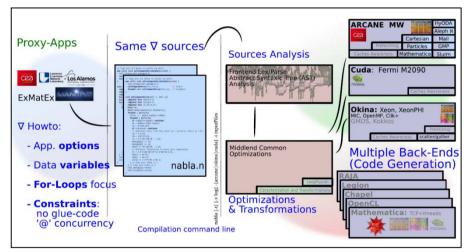
Benoît Combemale (BC)

University of Toulouse
Researcher in the software engineering domain mainly in modeling languages and tools

PROJECT ARCHITECTURE

Nablab Environment

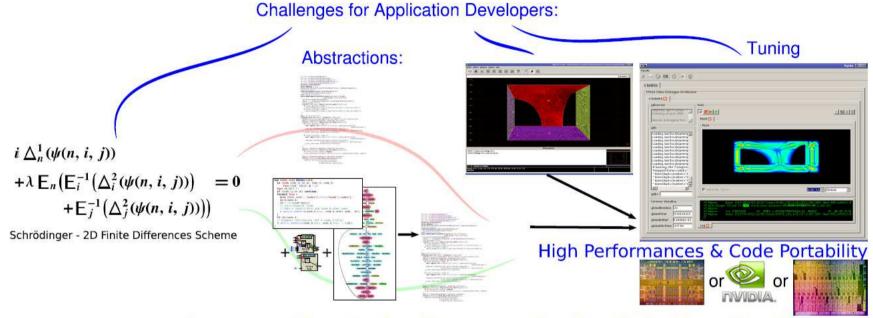

Technologies : Eclipse EMF, Xtext, Sirius


Contributors: MPO, BL, BC

Nabla Language

Technologies : Flex, Bison, C++

Contributors: JSC, BL



THE ∇ LANGUAGE www.nabla-lang.org

CHALLENGES AND OBJECTIVES

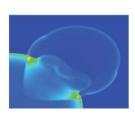
Concurency, Vectorization, Data access, Locality, Cache hierarchies, Resiliency

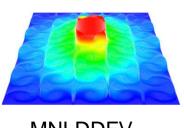
Objectives & Roadmap since 2009

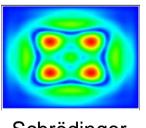
Performances: Instantiate the right programming model for different SW/HW stacks

Portability: Provide portable scientific applications across architectures

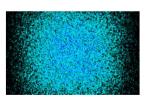

Programmability: Attractive approach for tomorrow's SW engineers


Interoperability: Allow modularity with legacy codes




MAIN PROXY APPLICATIONS PORTED TO ∇


Numerical Methods	Application	# of ∇ lines
Explicite Unstructured	LULESH 1.0 (LLNL)	1030
Explicite Structured	HYDRO (CEA)	757
Implicite	M-NL-DDFV (CEA) Schrödinger (CEA)	2304 375
Monte-Carlo	MCTB (CEA)	828
Dynamique Molecular	CoMD (LANL) MiniMD (SNL)	293 474
SPH	SPH (CEA)	2500



Hydro

MNLDDFV

Schrödinger

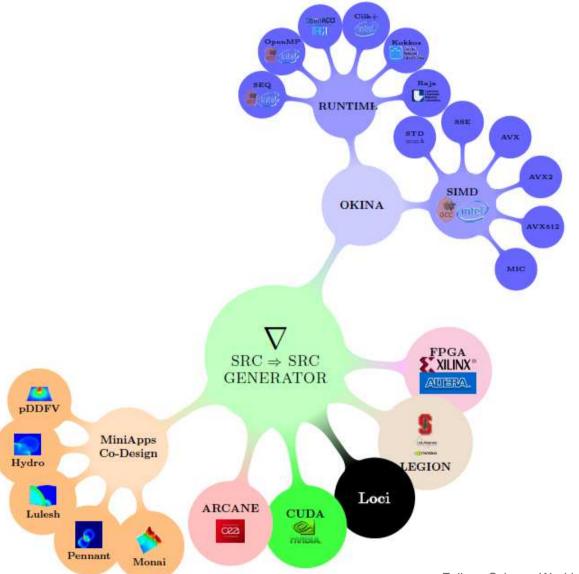
 CoMD

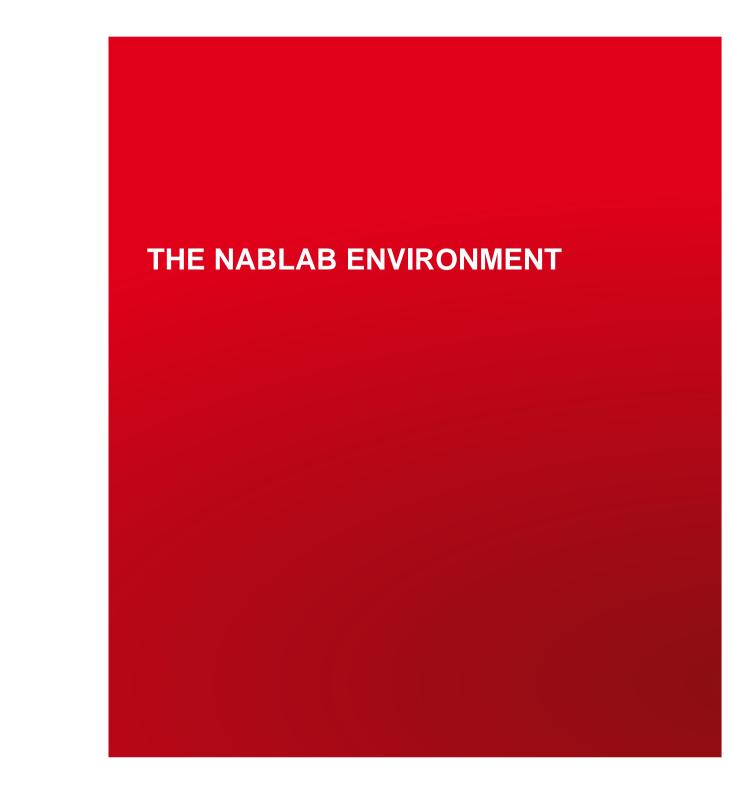
SPH

Options and global variables

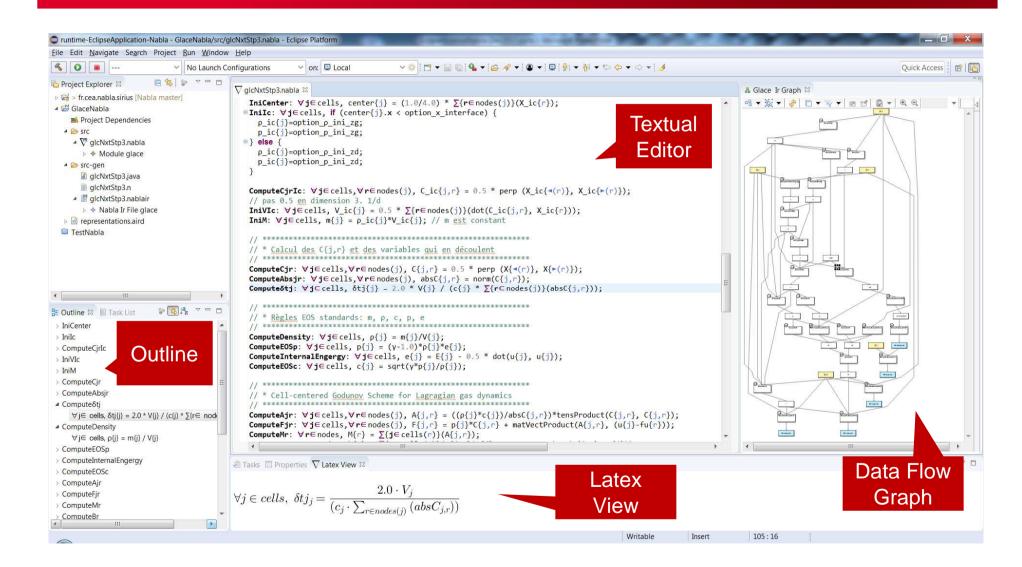
```
options{
\mathbb{R} option \deltat fixed =-1e-7:
 \mathbb{R} option \delta t initial = 1e-7:
 \mathbb{R} option \delta t courant = 1e+20;
\mathbb{R} option \delta t hydro = 1e+20;
};
nodes{
  \mathbb{R}^3 \partial x, \partial \partial x; // Velocity, acceleration
  R³ nForce; // Force
  R nMass: // Mass
};
cells{
  R p,e,q;
             // pressure, energy, viscosity
  R v,calc volume, vdov; // volumes
  R delv, volo; // rel. & ref. volumes
  R arealg; // characteristic length
  \mathbb{R}^3 \varepsilon: // terms of deviatoric strain
  R ql,qq; // artificial viscosity terms
  R³ cForce[nodes];
};
qlobal{

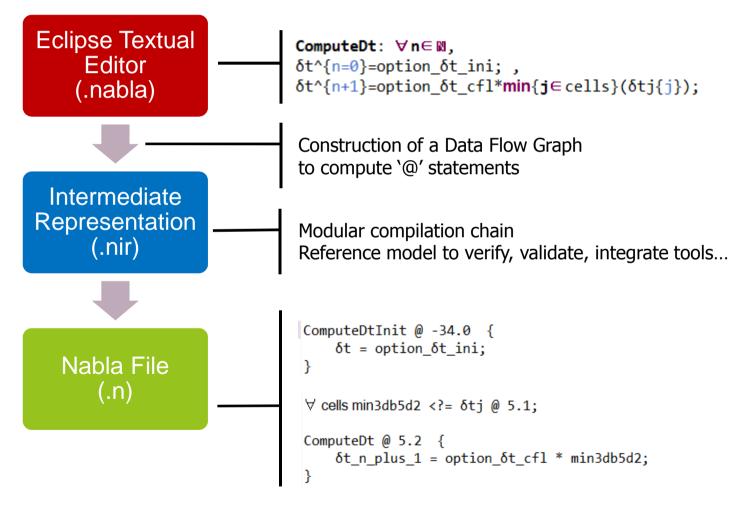
R δt courant; // Courant time constraint


  R δt hydro; // Hydro time constraint
};
```


Jobs

Data-parallelism is implicitly expressed via iobs items **∀** cells hydroConstraintForElems @ 12.2{ R arg max hydro=δt cell hydro = +∞; \mathbb{R} $\delta dv = fabs(vdov[m]);$ \mathbb{R} $\delta dvov = option dvovmax/\delta dve:$ \mathbb{R} δ hdr = min(arg max hydro, δ dvov); δt cell hydro=(vdov!=0.0)?δhdr; ∀ cells δt courant <?= δt cell courant @ 12.11; V cells ot hydro <?= ot cell hydro @ 12.22; Jobs parallelism is explicitly declared via Hierarchical Logical Time (HLT)


MULTIPLE BACKENDS


NABLAB ECLIPSE ENVIRONMENT

NABLAB COMPILATION CHAIN

EMF TRANSFORMATION AND GENERATION

QUESTIONS

- Needs: integrate tools to give support to SW engineers from development to execution:
 - Debugging facilities (variables inspection, step by step execution)
 - ⇒ GEMOC Studio?
 - Visualization (plot display, 3D visualization)
 - ⇒ ICE ?
- Could people be interested in contributing in Nablab development around the IR?
 - Implementing their own DSL above the IR ?
 - Providing their own backend for Nabla Compiler ?
 - Integrating new tools in Nablab?
- Could people be interested in following the Nablab development in order to use it later?
 - To take advantage of Nabla performance ?
 - To raise abstraction level of algorithms?

Commissariat à l'énergie atomique et aux énergies alternatives Centre DAM-Île de France – Bruyères Le Châtel 91297 Arpajon Cedex

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019