
Do Stack Traces Help Developers Fix Bugs?

Adrian Schröter
University of Victoria

Canada
schadr@uvic.ca

Nicolas Bettenburg
Queens University

Canada
nicbet@cs.queensu.ca

Rahul Premraj

contact author

VU University
The Netherlands

rpremraj@cs.vu.nl

Abstract—A widely shared belief in the software engineering
community is that stack traces are much sought after by
developers to support them in debugging. But limited empirical
evidence is available to confirm the value of stack traces to
developers. In this paper, we seek to provide such evidence
by conducting an empirical study on the usage of stack traces
by developers from the ECLIPSE project. Our results provide
strong evidence to this effect and also throws light on some
of the patterns in bug fixing using stack traces. We expect
the findings of our study to further emphasize the importance
of adding stack traces to bug reports and that in the future,
software vendors will provide more support in their products
to help general users make such information available when
filing bug reports.

Keywords-debugging, stack traces, empirical study, bug
tracking, collaboration

I. INTRODUCTION

Stack traces are a useful programming construct to support
developers in debugging tasks. Software debugging is diffi-
cult and often involves searching through millions of lines
of code to identify the cause of a defect – akin to finding a
needle in a haystack. But stack traces can potentially narrow
down the list of candidate files that are likely to contain the
defect to speed up debugging.

Some evidence exists to suggest that stack traces indeed
help debugging. In a survey, developers from three open
source projects: APACHE, ECLIPSE, and MOZILLA were
asked which information items they prefer in bug reports
to help them resolve bugs [1]. Their responses indicated a
strong preference for stack traces. Also, software vendors
including Microsoft, Apple, and Mozilla are improving in-
built support in their products to send stack traces back to
developers when the software crashes. Furthermore, the on-
line documentation of JAVA has an entire chapter dedicated
to educating developers on how to analyze stack traces [2],
which signifies their importance (Section II).

But to the best of our knowledge, no systematic investiga-
tion has been conducted to check whether software defects
are actually fixed in one or more methods listed in the
stack traces. This paper aims to fill this gap by examining
the development and defect history of the ECLIPSE project
(Section III), to answer key research questions that verify
if indeed stack traces are of much worth, while resolving
bugs. For the purpose of our study we consider that a stack

trace contributed to fixing the bug if changes were made in
one or more methods in the stack trace.

We consider our investigation important so as to encour-
age bug reporters to submit stack traces in their reports.
In the same survey as above [1], bug reporters from the
same projects were asked which information items they
had previously submitted in bug reports. Stack traces were
selected by only a handful of reporters and were rated
as one of the most difficult information items to provide.
Quantitative evidence demonstrating the value of stack traces
may help motivate reporters to go the extra mile and more
frequently provide stack traces in their bug reports. Our
results are also insightful for developers, since we present
our findings on the typical locations of defects in stack traces
that may help focus their search in the future.

In order to provide evidence to show the value of stack
traces, we answer the following four research questions in
this paper (Section IV):

RQ1. Are bugs fixed in methods in stack traces?
RQ2. How far down the stack to trace?
RQ3. Are two (or more) stack traces better than one?
RQ4. Do stack traces help speed up debugging?

After presenting our results for the above questions, we bring
the paper to a close with a discussion on our findings and
presenting our conclusions (Section V).

II. RELATED WORK

Although, to our best knowledge, there is no study directly
investigating the usefulness of stack traces, there are a
number of studies that assume stack traces are useful. For
instance, articles written by John Goerzen [3] suggest how
stack traces can used be used developer to debug programs
but provide no empirical evidence to this end. Assuming
the importance of stack traces, Shah et al. [4] investigated
how developers use exception handling. Noting that most
developers take little care of exception handling, they argued
that better exception handling is important to produce more
meaningful stack traces in the event of a failure.

Also tools (such as compilers) with built-in ability to
create stack traces assume the usefulness of stack traces.
Allwood et al. [5] implemented the feature of creating stack
traces into Haskell, which only pays off if stack traces
are actually helpful in debugging. Further, Microsoft (and

∗

∗

MSR 2010978-1-4244-6803-4/10/$26.00 © 2010 IEEE 118

java.lang.IllegalArgumentException

at org.eclipse.core.internal.runtime.Assert.isLegal(Assert.java:58)

at org.eclipse.core.internal.jobs.ImplicitJobs.end(ImplicitJobs.java:114)

at org.eclipse.core.internal.jobs.JobManager.endRule(JobManager.java:487)

at org.eclipse.core.internal.utils.StringPoolJob.run(StringPoolJob.java:95)

at org.eclipse.core.internal.jobs.Worker.run(Worker.java:76)...

Exception

Frame 5

Frame 1

Frame n

C
all Stack

Figure 1. Sample stack trace extracted from ECLIPSE bug #111106.

other large software vendors) is collecting crash reports from
a large number of computers [6] to help their developers
resolve their crashes. While their efforts in this direction are
considerable, the question whether the stack traces indeed
help remains to be answered.

III. DATA COLLECTION

Our study has been conducted using the development data
from the ECLIPSE project developed in JAVA. The following
summarizes how we extracted the relevant data to perform
the study.

A. Stack Traces
A typical JAVA stack trace consists of an ordered list of
methods or stack frames that were active on the call stack
before an exception or error occurred (Figure 1). Each frame
contains the full-qualified name of the method and the exact
location of the execution inside the source code through
a file name and line number. We consider the first (top-
most) frame in the stack as the method that caused the
crash, because the exception occurred in this method. To
exemplify, in the stack trace presented in Figure 1, the
isLegal() method, which is defined in class Assert in
file Assert.java, crashed when executing the program
at line 58.

The ECLIPSE project uses the BUGZILLA bug tracking
system to organise their maintenance activities. We obtained
a copy of this data containing 161,500 bug reports filed
until October 2006. We then parsed these bug reports and
the associated comments to extract all available stack traces
using the infoZilla tool that uses a set of complex regular
expressions to identify and extract JAVA stack traces [7].
The extracted information from the stack traces includes
the bug id, exception thrown, method frames, and order
of the stack trace (many bug reports contained multiple
stack traces). Note that we extracted stack traces from the
bug reports by only parsing the main description and the
following comments. Stack traces that were perhaps reported
in attachments submitted by reporters were not included in
the study.

B. Location of bug fixes
In order to determine the locations changed in the source
code to fix bugs, we mined the version repository of the
ECLIPSE project. Many developers use the commit feature

of version archives (CVS in this case) to annotate each
change to the source code with a log message that describes
the reason for that change. We scanned these messages for
references to bug reports such as “Fixed 4223” or “bug
#23444”. Every such number is a potential reference to a bug
report, however they have a low trust at first. We increase
the trust level when the message contains keywords such as
“fixed” or “bug” or matched patterns like “# and a number”,
as described in the work by Śliwersky et al. [8].

For each change found to describe a fix for a bug
with sufficiently high confidence, we performed a syntac-
tical analysis to retrieve information about which methods,
classes and packages were changed. Thereafter, information
regarding changed locations collected for bug reports found
to contain stack traces were mapped to the methods listed
in the respective stack traces. In case the bug report was
resolved as a DUPLICATE, its stack traces were mapped to
the fix locations of the original bug report.

IV. RESULTS

Our findings from the investigations into the research ques-
tions are presented in this section.

A. RQ1: Are bugs fixed in methods in stack traces?
Our first research question is to find whether bug reports
that contain stack traces are fixed in any of the constituent
frames. We address this question by presenting a summary
of the data collected in Section III, which reflects on the
usefulness of stack traces and answers our research question.

We identified 12,947 bug reports from the ECLIPSE bug
database in which at least one stack trace was submitted.
These bug reports amount to a little less than 10% of all
bugs in the database. Of these bug reports, 8,580 were fixed
(i.e., their status was FIXED) and 3,940 could be linked
to their fixes in the version control system. Another 4,050
bug reports were identified with links to their changes but
their status was other than FIXED. From the 3,940 linked
and fixed bug reports, 2,321 were observed to be fixed in
one of the stack frames from the traces submitted in the
report. Thus, almost 60% fixed bugs reports with stack traces
and could be linked to their fixes were fixed in one of the
stack frames. Note that this is a conservative estimate in
that we chose to consider only those bug reports that are
fixed and could be linked using the commit logs to their
fixes. It is likely that other bugs that could be linked to their
changes in the repository but did not have a FIXED status
(4,050 bugs) involved changes in one of the stack frames.
Overall, these numbers suggest that developers favour stack
traces in bug reports because they can indeed help identify
candidate locations that must be changed to resolve the bug
and support the same findings from a previous survey [1].

We also identified a total of 25,127 unique stack traces
in the database. Some bug reports contained multiple stack
traces, which were submitted in the reports’ comments or

119

Position of fixed stack frame

Em
pi

ric
al

 d
is

tri
bu

tio
n

(E
C

D
F)

0.0

0.2

0.4

0.6

0.8

1.0

1 6 10 20 30 40 50 60 70

Figure 2. ECDF of the position of the top-most frame in the stack trace
changed to fix the bug.

their duplicates. As many as 7,968 stack traces belonged to
bug reports that were fixed and could be linked to the fixes
and 3,809 of these stack traces contained at least one frame
that was changed in order to fix a bug.

B. RQ2: How far down the stack to trace?
Stack traces can vary substantially in length. In the ECLIPSE
project, we observed stack traces ranging from a single
frame to 1,024 frames (bug #18625) and a median length
of 25 frames. The length of the stack traces raises practical
concern for debugging purposes when there is no certain way
to know which frame contains the defect. At some point in
time, marginal returns kick in and the hope to find the defect
in one of the lower frames begins to rapidly fade.

We study the 2,321 bugs from the ECLIPSE project that
were fixed in one of the stack frames to investigate how
far down the stack trace is it worthwhile to examine and
potentially locate the defect. Figure 2 is the empirical
distribution frequency (ECDF) plot of the position of the
earliest frame in stack trace that was fixed. In the plot, the
x-axis represents the position of the fixed frame and the y-
axis represents the percentage of bugs that were fixed in a
frame at that or an earlier position. Thus, any point (x,y) on
the curve denotes that y% bugs were fixed in a frame by the
xth position.

Figure 2 gives us several insights into where defects were
located and fixed in stack traces. Firstly, 40% of bugs were
fixed in the very first frame, while 80% of bugs are fixed
within the top-6 stack frames. Close to 90% bugs were
fixed within the top-10 stack frames. Thereafter, only a
small percentage of additional bugs were fixed in frames
in between the 10th and 20th position. We can draw from
these results that when a stack trace is reported, defects
typically lie within the top-10 frames. Examining the stack

Order of submitted stack trace with fixed stack frame

Em
pi

ric
al

 d
is

tri
bu

tio
n

(E
C

D
F)

0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25

Figure 3. ECDF of the order of the most important stack trace with a fix
location.
trace further is unlikely to yield results. Having said that,
in an exceptional case in our study, we observed a fix for a
bug in the 69th stack frame (ECLIPSE bug #63898).

C. RQ3: Are two (or more) stack traces better than one?
In many cases, we observed several stack traces submitted to
a single bug report in their comments and together with their
duplicates (e.g., bug #3128 together with its 14 duplicates
contained 52 stack traces). In a previous study, we found
that information in duplicates can often be helpful because
they provide developers with multiple perspectives on the
same bug [7]. Since many reports also contain multiple stack
traces, we investigate if this helps debugging by providing
several locations as starting points for a code inspection.

Among the 12,947 bug reports with stack traces, 4,206
reports (32.5%) contained more than one stack trace. Of
these 4,206 reports, 3,049 bug reports (72%) have been
marked as fixed. This is a significantly higher rate of fixed
reports than the 5,531 fixed bugs among the 8,741 reports
(63%) with one stack trace (p < .00001 using Chi square
test, χ2 = 107.4667).

We believe the above comparison of rates of fixed bugs
paints only half the picture on the value of multiple stack
traces. We carry our investigation further by checking which
of the multiple stack traces are of more value to developers.
For our purpose, we consider a stack trace more important
if the position of fixed stack frame is higher than those in
other stack frames. For each bug report (combined with its
duplicates), we then note the order of the most important
stack trace. The results are plotted as an ECDF in Fig-
ure 3. The x-axis of the bug report denotes the order of
the most important stack trace and the y-axis denotes the
percentage of bugs fixed in one of the stack frames from
the corresponding stack trace. Thus, a position x,y on the

120

 Lifetime of bugs

Bu
gs

 fi
xe

d
in

 a
st

ac
k

fra
m

e
Bu

gs
 n

ot
 fi

xe
d

in
 a

st
ac

k
fra

m
e

●●●●●●●●

● ● ●● ●●●●●●●● ● ● ●●● ● ●●●● ● ●

2
minutes

15
minutes

2.5
hours

1
day

10
days

3
months

3
years

Figure 4. Boxplots comparing lifetimes of bugs reports with stack traces
that were either fixed in a stack frame or not.
curve denotes that y% bugs with multiple stack traces were
fixed in a frame from up to the xth stack trace. The ECDF
shows that 70% of the bugs are fixed in a frame from the first
stack trace already. While close to 95% of the bugs are fixed
using the first three stack traces. Thus, the first stack trace
submitted appears to be most helpful in fixing the bug. In
some sense, this contradicts our result above that bug reports
with multiple stack traces have a higher rate of fixes. We
expect that this may still be the case because multiple stack
traces indeed provide developers with additional information
about the bug and also, we noted in the ECDF that more
than 20% bugs were fixed in the second and third stack
traces. Again, in an exceptional case, we noted a ECLIPSE
bug fixed in the 25th stack trace (ECLIPSE bug #64358).

D. RQ4: Do stack traces help speed up debugging?
In a previous study [1], we noted that bug reports that
contained stack traces had significantly shorter lifetimes than
other bug reports, i.e., they got resolved sooner. This is likely
because stack traces reliably indicate which parts of the code
could contain the defect and this helps speed up debugging.
We take our analysis further by examining whether bug
reports that are fixed in a stack frame have a shorter lifetime
than those, which were not fixed in any stack frame.

For our analysis, we consider all 3,940 identified bug
reports that contained at least one stack trace, had status
FIXED and could be linked to their fixes in the version
repository. We then compared the lifetimes of the 2,321
bug reports fixed in one of the stack frames with the
lifetimes of the remaining bug reports. Figure 4 is a boxplot
visualising and comparing the distribution of lifetimes of the
two groups of bug reports. The median and mean lifetimes
of bugs fixed in a stack frame are 2.73 days and 26.44 days

respectively, while same for bugs that were not fixed in a
stack frame are 4.13 days and 32.88 days respectively. A
statistical test (the non-parametric Wilcoxson rank sum test
with α set to .05) comparing the lifetimes of the bug reports
also confirmed that the differences in the distributions are
statistically significant with p < .00001. The median and
mean lifetimes of all fixed bug reports in the ECLIPSE project
are 6.9 and 48.5 days. The results show strong evidence
to suggest that bug reports with a stack trace have shorter
lifetimes and even more so when the bug is fixed in one of
the stack frames.

V. CONCLUSION AND CONSEQUENCES

Stack traces are generally regarded as helpful to developers
when debugging programs. With this study, we have aimed
to provide empirical evidence in support of the usefulness
of stack traces to ECLIPSE developers by examining key
patterns in the the resolution of bug reports that contained
stack traces. Our study showed that up to 60% FIXED bug
reports that contained stack traces involved changes to one
of the stack frames. Also, the average lifetime of these
bug reports is significantly lower than that of other reports.
Furthermore, we found that a defect is typically to be found
in one of the top-10 stack frames. We expect the findings
emphasize the importance of encouraging bug reporters to
provide this information using tool support or other means.

In the future, we seek to expand our investigation by
studying multiple projects. We have also planned to investi-
gate other aspects which exceptions are commonly submit-
ted, which ones get fixed, and also explore opportunities to
support reporters to add stack traces to their reports.

REFERENCES

[1] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann, “What makes a good bug report?” in Procs
of FSE. ACM, 2008, pp. 308–318.

[2] Java, “Analyzing stack traces,” http://java.sun.com/developer/
onlineTraining/Programming/JDCBook/stack.html, last
accessed 2009-12-21.

[3] J. Goerzen, “Finding stubborn bugs with meaningful debug
info,” Linux J., vol. 2005, no. 129, p. 7, 2005.

[4] H. Shah, C. Görg, and M. J. Harrold, “Why do developers
neglect exception handling?” in Procs. of the Int. Workshop
on Exception Handling. ACM, 2008, pp. 62–68.

[5] T. O. Allwood, S. Peyton Jones, and S. Eisenbach, “Finding
the needle: stack traces for ghc,” in Procs. of the Symposium
on Haskell. ACM, 2009, pp. 129–140.

[6] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt, “Debugging in
the (very) large: ten years of implementation and experience,”
in Procs. of the Symposium on Operating systems principles.
ACM, 2009, pp. 103–116.

[7] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim,
“Duplicate bug reports considered harmful?” in Procs. of
ICSM. Beijing: IEEE, September 2008, pp. 337–345.

[8] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” in Procs. of MSR. ACM, 2005, pp. 1–5.

121

