
openMDMTM 5 Authentication and Roles
Canoo Engineering AG
(Contact: Sibylle Peter)

Situation

The openMDMTM Working Group recognized the need to provide user
authentication and user authorization as part of the openMDMTM 5
framework.

An initial workshop on user authentication and authorization in the context
of openMDMTM was held in April 2016. Its results are documented at
https://openmdm.atlassian.net/browse/ORGA-98.

Objectives

Objectives – User Authentication

•  Integration with existing enterprise authentication mechanisms and
standards (such as PKI and Kerberos for example).

•  When LDAP or Active Directory are available, use the information provided
by those systems instead of maintaining independent copies of the
information.

•  When single sign-on mechanisms are available (such as Kerberos),
openMDMTM must integrate seamlessly, without forcing the user to present
their credentials once again.

•  When the authenticated entity must be passed form openMDMTM to external
systems then established standards for identity propagation must be used,
such as CSIv2/SAS, SAML, JWT (where appropriate).

•  The identity (trace) of the creator of an openMDMTM object must be stored in
relationship with the object. Such identity must be stored in a form that
allows reconstruction even when the identity has been removed from the
central authentication database (i.e, the employee has left the company).

Objectives – User Authorization

•  Support a base data container (known as “data pool”) on which roles apply
to all openMDMTM objects related to it (such as Measurements, Tests, etc).

•  Access rights must be assignable per data pool. If the data pool is physically
spread dover multiple servers then those rights must be honored by all
servers.

•  Access rights must be primarily handled by roles, allowing the concepts of
user groups. In exceptional cases access rights may be assigned to
individuals.

•  Access rights must be stored along with the data entities to which they
pertain.

•  Access checks must be performed at the data server level. (This is to ensure
that access checks cannot be bypassed by login into the data server
directly).

Design

Design Guidelines

•  Data must be protected at the source, i.e., either directly at the data
store level or within a service layer that completely encapsulates the
data store and cannot be bypassed.

•  Data protection must work application-independent, i.e., must
produce the same results irrespective of the specific application used
to access the data. If access to a particular data item is permitted, it
should be visible in every application designed to work with that data;
if access is not permitted, the data item must not be exposed through
any application.

•  Any action on protected data must be attributable to a specific entity
("principal") that can be held responsible for the action. The principal
can be a human or (in the case of batch processing) a program.

Design Guidelines

•  Data must be protected at the source, i.e., either directly at the data
store level or within a service layer that completely encapsulates the
data store and cannot be bypassed.

•  Data protection must work application-independent, i.e., must
produce the same results irrespective of the specific application used
to access the data. If access to a particular data item is permitted, it
should be visible in every application designed to work with that data;
if access is not permitted, the data item must not be exposed through
any application.

•  Any action on protected data must be attributable to a specific entity
("principal") that can be held responsible for the action. The principal
can be a human or (in the case of batch processing) a program.

Solution

Solution – User Authentication

•  Use existing authentication system already available at
the deploy location (such as LDAP, AD, Kerberos) as
long as the openMDMTM requires network access and
remote data access.

•  In cases where the openMDMTM application is deployed
on a standalone fashion or used in offline mode then the
local authentication mechanism (such as operating
system login) is enough.

Solution – User Authorization

•  In cases where the openMDMTM application is deployed on a
standalone fashion or used in offline mode then the user may have
access rights to every operation the application provides. However
access rights must be checked when the application connects with a
remote server or attempts data transfer.

•  For all other cases authorization may be handled in 3 different
approaches

•  Native
•  Hybrid
•  Delegate

User Authorization - Native

•  Defines an openMDMTM specific Access Rights API and
implementation of that API (i.e., of administration functions and
runtime access checking) within openMDMTM as a library or
infrastructure component.

•  This means that all security checking is carried out at the
openMDMTM level and not in the underlying data server (e.g., the
ODS server).

•  openMDMTM would access the data server with superuser privileges
to bypass all checking within the server itself and would then carry
out its own access checks according to the access rights defined at
the openMDMTM level.

User Authorization - Hybrid

•  Define an openMDMTM specific Access Rights API, but
implementation of that API is delegated to the data server.

•  This means that openMDMTM would provide a common API to view
and administrate access rights, but each server adapter would map
calls to this API into calls to the security API of the underlying data
server.

•  For example, an ODS adapter would map the assignment of a
particular access right to a particular group via the openMDMTM API
into the creation of a corresponding ACL entry in the ODS server.
The actual access checks would then be performed by the data
server.

User Authorization - Delegate

Complete delegation to the data server.

This means that openMDMTM provides neither an API nor an
implementation for access rights management, but simply relies on the
access checks carried out by the data server.

In other words, access rights are administrated and checked at the data
server level exclusively; openMDMTM simply passes the current user
identity along with each server call and relies on the data server to
expose only the data items the current user is entitled to see.

Pros / Cons

User Authorization - Native

•  PROS
•  Clean room design and implementation.
•  Integration with existing authentication mechanism need to be

implemented once at the openMDMTM level, not at every data
backend level.

•  CONS
•  Major undertaking with all stakeholders in order to design the

model (like it happened with ODS for example).
•  Direct access to the data level is forbidden, thus all existing tools

must migrate to openMDMTM as soon as possible.
•  Access rights cannot be used for optimized queries at the data

level.

User Authorization - Hybrid

•  PROS
•  Clean room design.
•  Data protection occurs at the source (data level) thus

openMDMTM and non openMDMTM applications can rely on it.

•  CONS
•  Mapping of security model to every data backend (ODS, PAK

Cloud, etc). This include interfaces with existing enterprise
authentication mechanisms.

•  The API must be designed as the least common denominator
between existing data backends. Backend specific extensions
must be designed and implemented.

User Authorization - Delegate

•  PROS
•  Data protection occurs at the source (data level) thus

openMDMTM and non openMDMTM applications can rely on it.

•  CONS
•  Absence of a coherent openMDMTM security model as each data

backend implements security in its own way.
•  Integration with existing enterprise authentication mechanisms

must be executed by each data backend.

NATIVE HYBRID DELEGATE

Recommendation

Delegate

This is the path of least resistance, as it only requires propagation of
the user identity to the data server on each call.

Starting with Delegate does not exclude the Hybrid approach, as
delegation (via mapping) must happen as well.

Only the Native approach requires a separate design and
implementation. It also requires a major undertaking by all stakeholders
to agree on design.

This time and cost-wise (in the short term) Delegate is the preferred
approach on which Hybrid can be built later. Native makes sense when
all stakeholders and participants can move to openMDMTM together.

Delegate

The openMDMTM API requires two changes for this proposal to work:

•  A login request that can be forwarded to the backend. The result
of this request is either an error or an identity token.

•  All other requests (such as queries, mutators) must include the
identity token as part of its arguments. If the token is sent in the
request header, no API change is needed.

In the case of a search request, the identity token could be used to
reconstruct the real identity attached to an openMDMTM object, allowing
faster and “native” searches at the backend level, instead of a two-pass
search & filter alternative at the openMDMTM API level.

A possible distributed OpenMDM 5 system

Aggregation of components to simplify…

Applica'on	Layer	

MDM	Layer	

Backend	Layer	

1.	Request	login	

2.	Forward	login	request	

3.	Perform	login	

4.	Login	response	

5.	Store	iden'ty	&	roles	

6.	Generate	iden'ty	token	

7.	Propagate	token	

7.	Propagate	token	

Authen'ca'on	Delegate	

User Authentication– Data Flow

1.  Application issues a login request.
2.  The MDM API forwards the login request to the MDM Adapter.
3.  The Data backend (ODS for example) receives the request and

forwards it to the Authorization module (LDAP/AD/etc).
4.  Authorization module either accepts the login credentials and

returns an identity with roles or fails.
5.  If login was successful then identity and roles are stored temporarily

(think of a session).
6.  An authentication token is generated. The token must be used in all

other incoming requests in order to grant access to operations.
7.  The token is forwarded all the way to the application.

Tools such as Matlab skip the MDM layer of course.

Applica'on	Layer	

MDM	Layer	

Backend	Layer	

1.	Opera'on	request	(includes	token)	

2.	Forward	request	

3.	Verify	opera'on	access	

4.	Verifica'on	response	

6.	Propagate	reply	

6.	Propagate	reply	

5.	Execu'on	

Authoriza'on	Delegate	

User Authorization – Data Flow

1.  Application issues an operation request (store data for example).
This request contains the authenticated identity token.

2.  The MDM API forwards the operation request to the MDM Adapter.
3.  The Data backend (ODS for example) validates the identity token

and checks access rights.
4.  Valid token and correct access rights grants green light to the

operation to continue. Failures result in denied access; possible
authentication workflow if no token or expired token.

5.  Execute the requested operation.
6.  Propagate results to the application.

Comparison of Hybrid Approach

Hybrid

•  Can reuse code and components built for the Delegate
solution.

•  Adds a new API on top of the openMDMTM API to cache,
validate, and verify the security token and roles & rights.

Applica'on	Layer	

MDM	Layer	

Backend	Layer	

1.	Request	login	

2.	Forward	login	request	

3.	Perform	login	

4.	Login	response	

5.	Store	iden'ty	&	roles	

6.	Generate	iden'ty	token	

7.	Propagate	token	

7.	Propagate	token	

8.	Cache	roles	

Authen'ca'on	Hybrid	

Applica'on	Layer	

MDM	Layer	

Backend	Layer	

1.	Opera'on	request	(includes	token)	

4.	Forward	request	

5.	Verify	opera'on	access	

6.	Verifica'on	response	

8.	Propagate	reply	

8.	Propagate	reply	

7.	Execu'on	

2.	Verify	token	&	roles	

3.	Verifica'on	response	

Authoriza'on	Hybrid	

Required API Changes (Hybrid Approach)

•  API changes like delegate approach
+
•  openMDMTM API requires new types to handle

Identities and Roles, alongside a Verification
module/service.

à All requests (except login) must be handled by the
Verification module to check access rights before
sending down the stack through the MDM adapter.

