
University of Augsburg
Faculty for Distributed Systems

Business Process Validation

Documentation for the course
"’Distributed Systems Lab 2008"’

Manuel Majewski, Qiao Han, Armin Wurster
January 13, 2009

Abstract

Today creating workflows becomes more and more comfortable being
supported by visual tools and editors. But how can we be sure that a
created workflow is valid? It is quiet easy to recognize a small workflow as
valid or invalid but if we have to handle complex workflows the validation
might be an issue.

In this paper we introduce a algorithm based on the fast heuristics
approach developed by IBM Research 2007 [1] to validate a workflow with
linear effort und explain the theoretical backgroundknowlege the approach
is based on. Further we show how this algorithm can be implemented as
a plugin for the JWT Workflow Editor and discuss the results which were
obtained using this algorithm to validate workflows generated with the
JWT Workflow Editor.

1 Introduction
A correct execution of process models expects them to be modeled accurately. So,
such a model has to be tested on certain qualities before one could start to execute it,
e.g. on a process engine. Basic problems during executing a workflow are deadlocks,
life locks or even circles, that interrupt the expected progress of actions within the
workflow. To recognize and solve these problems, a validation of the workflow is re-
quired. The ambition of this study is to explain and implement a solution for process
validation based on fast heuristics [1], facing the exponential complexity of validating
larger process models.
This paper is structured as follows: In the second section we present the underlying
equipment. The JWT Workflow Editor is explained as tool for simply modeling busi-
ness processes. Furthermore, we describe the Workflow Code Generation Framework
being a flexible implementation using Model Driven Architecture concepts to generate
executable workflow code from an arbitrary process graph definition. It provides the
groundwork for the validation of process models afterwards. The third section will
give an overview how validation of workflows is done in general. Here we explain the
requirements expected for the validation and how correctness of a workflow is verified.
To sum up, we apply the previous theory of validation in the forth section pointing out
its usage according to our concrete project, the validation of JWT workflows. There-
fore, we describe our approach for matching the tools and requirements and extending
the code to set up the validation tool. Finally, the concrete way of implementation is
shown in the fifth section.

2 Tools and Frameworks
The project sets up on two basic tools, the JWT Workflow Editor and the Workflow
Code Generation Framework. This section gives a short summary of their structure
and functionality.

2.1 Workflow Editor
For process modeling, there exist several tools to achieve this purpose. This project is
based on the JWT Workflow Editor, which is part of the Eclipse Java Workflow Tooling
(JWT) Project. Basically, it allows users to create, manage and review workflow
definitions within an appealing grafical user interface. This section is intended to give
a little overview of the Workflow Editor, which is available as Eclipse Plugin, but also
as RCP version (which is called AgilPro).
In order to model business processes in the Workflow Editor, it provides several visual
elements that could be combined and form altogether the directed workflow graph. The
most important ones are actually the Activity Nodes. They describe an activity within
the workflow that could have a connection to each other. A subset of the Activity Nodes
are the Executable Nodes, which could have references to some resources obtained from
packages, the Referencable Elements. They could be one of the following:
• a role, responsible for the action
• an application, that is executed with the action
• some data, that is needed for the action

The Referencable Elements can be connected to the Executable Nodes by a special
connection, the Reference Edges.
Hence, for finite graphs, a start and a end node is required. These can be found under
another subset of the Activity Nodes, the Control Nodes, which also includes some
nodes for obtaining more complex workflows.
The following Control Nodes are available:

1

• Initial Node and Final Node: Nodes that represent the begin and end of the
workflow.

• Fork Node and Join Node: A Fork Node divides the flow requiring all outgoing
paths to be executed, a Join Node recombines multiple paths to one flow.

• Decision Node and Merge Node: A Decision Node splits the flow executing only
one of the outgoing paths, whereas a Merge Node takes exact one of multiple
input paths to continue the flow. For special case, outgoing paths of a Decision
Node can be attached by a Guard, which can carry forward the workflow in a
certain direction.

To get a real activity flow, Activity Edges have to be set to connect between different
Activity Nodes. Therefore, there are special rules for the different nodes, e.g. each
Executable Node must have exactly one input and one output edge, but Control Nodes
may have according their functionality 0..n Activity Edges on incoming or outgoing
side. A combination of some nodes can be seen in Figure 1. Such a workflow model

Figure 1: A sample workflow that shows an Initial Node, a Final Node, a
Decision Node, a Merge Node and three Activity Nodes.

can now be taken for visualizing purposes, e.g. reminding a certain business process
to employees, or even testing a course of business in a process engine. For a simple
tutorial how to create a workflow, please have a look on this paper [9].

2.2 Workflow Generation Framework
The Workflow Generation Framework provides the basic circumstance for the genera-
tion of executable workflow code , for e.g. BPEL generation. It offers two mechanisms
which enable an efficient code generation from any process models. They are the
template mechanism and the adapter mechanism. The adapter mechanism allows the
import of process models which are represented with any kind of process modeling
format. And the template mechanism is responsible for code generations. The most
important effort of this Framework is to separate components that depend on the
domain and the execution environment from components that handle with computa-
tional tasks like control flow analysis and transformation. This improvement makes
it possible, to reuse the components which are already integrated with the adapters,
graph-transformation algorithms and code generation templates.

2

2.2.1 A structural view of the Workflow Generation Framework

From the structural aspect we may divide this Framework into four components. They
are the adapter for DSL process models (I), process transformer and optimizer (II),
the process visitor (III), and the code and model generation templates (IV). The rela-
tionship between these four components may be represented in Fig. 2.

Figure 2: Model and Code Generation Framework

• The process transformer and optimizer (II) and the process visitor (III) are
domain independent. They are in charge of issues during the general graph
transformation and are aimed to transform a graph into every possible process
modeling languages. The Process transformer is the most important component
for code generation, it completes the transformation from the common process
format into the format which can be further handled by the process visitor.
Subsequently, the process visitor traverses the process model and then calls
templates which will generate the workflow code. Another contribution of the
visitor is to allow to generate the workflow code in the same sequence that is
specified by the processes control flow.

• The adapter for DSL process models (I) and the code and model generation
templates (IV) can directly access the workflow model which is modeled with any
process modelling format. Because adapters and generation templates should
always be used together, they must use the same DSL specific process format.

The process transformer and optimizer (II) and the combination of a visitor based
and a template-based code generation contribute to a significant performance of the
code generation. Process transformer and optimizer can furthermore identifiy Single-
Entry-Single-Exit (SESE) fragments from process description. [10, 11 , 12]. The SESE
fragments are generated through decomposition of the source process model and are
usually substantially smaller then the original process. The graph transformations will
be applied to SESE Fragments and that allows to generate block-structured (BPEL)
code [10, 13]. We can also use SESE Fragments to verify the soundness of the process
control flow within reasonable time [10, 14].

3

2.2.2 A functional view of the Workflow Generation Framework

The code generation is completed in four significant steps: input the process model,
transform into common process modeling format, optimize the process model and
output workflow code. Fig.3 shows the whole procedure (a)-(d) in detail.

Figure 3: Code Generation

a) In the first step a process model will be imported and this process is represented
in a format specific to the DSL which is used for modeling the process.

b) In the second step we apply the Adapter on the input process. At first, the
Adapter will access every component of the process and gather DSL specific
information. According to this information the Adapter can create a new repre-
sentation of the input process in the common process modeling format. Further-
more, it also sets a link between every processing step in the common format
and the corresponding step of the input process. That ensures the traceability
between the two process models.

c) The process transformer will now take over this new representation from the
Adapter. During this step the process model will be further transformed and
optimized. For example it may be transformed into a block-structured graph.
Although this new representation may be different from the original one, with
the aid of the links we can at any time reach every step of the both representa-
tions.

d) In the last step the process model will be traversed by the visitor, the code and
model generation templates will be called by using the notification mechanism
of the framework and the workflow code will be then generated.

3 Validation of Workflows
This section explains how the correctness of a workflow can be validated. First we
show a workflow specified as a directed graph. Syntactic correct workflow graphs are
called sound. For the validation of complex graphs the graph is decomposed into sub
graphs called fragments, which are again workflow graphs.

4

3.1 Workflows
A workflow can be described as a directed graph G [A mp]. G is denoted by (N ,E),
where E is the set of edges and N the set of nodes. N consists of the disjoint subsets:
Nstart, Nstop, Nexecutable, Nfork, Njoin, Ndecision, Nmerge so that
Nstart ∪ Nstop ∪ Nexecutable ∪ Nfork ∪ Njoin ∪ Ndecision ∪ Nmerge = N ,
∀n ∈ N : n ∈ (Nstart ∨ Nstop ∨ Nexecutable ∨ Nfork ∨ Njoin ∨ Ndecision ∨ Nmerge)
and
Nstart ∩ Nstop ∩ Nexecutable ∩ Nfork ∩ Njoin ∩ Ndecision ∩ Nmerge = ∅.
Each Node n ∈ N has a set of incoming and outgoing edges Ein(n), Eout(n). Further
a workflow graph has to satisfy following conditions:

• Nstart and Nstop have exactly one element (nstart, nstop), such that (Ein(nstart)
= ∅ ∧ |Eout(nstart)| = 1(called entry edge eentry)) ∧ (Eout(nstop) = ∅ ∧ |Ein(nstop)| =
1(called exit edge eexit)).

• ∀n ∈ (Nfork ∨Ndecision): |Ein(n)| = 1 ∧ |Eout(n)| >= 2, ∀n ∈ (Njoin ∨Nmerge):
|Ein(n)| >= 2 ∧ |Eout(n)| = 1 and ∀n ∈ Nexecutable: |Ein(n)| = 1 ∧ |Eout(n)| = 1

• ∀n ∈ N : ∃ a path p in G, so that n, nstart, nstop ∈ p

The graphical syntax of a is shown in figure 4 which displays a concrete example of a
workflow graph.
A workflow graph G = (N ,E) has a set of states denoted by S. All states s ∈ S of G
are defined by tokens on the edges of G. Every state s of G is a relation s : E → N,
which maps a number k ∈ N to each edge e ∈ E hence s(e) = k means that e carries
k tokens in s.
Let s and s′ ∈ S be two states and n ∈ N a node of G, where n /∈ Nstart, Nstop.
So we define:

• s
n→ s′ if s changes to s′ by executing n.

• n activated in s if ∃ a state s′ such that s
n→ s′.

• s
∗→ s′ (s is reachable from s) if ∃ a finite sequence seq: s0

n1→ s1...sk−1
nk→ sk

(k ∈ N0) such that s0 = s and sk = s′.

The set S of G includes the subsets Sinitial, Sterminal and Sstopping, where Sinitial

contains all initial states, Sterminal contains all terminal states and Sstopping contains
all stopping states. Because of |Nstart| = 1 ∧ |Nstop| = 1→ |Sinitial| = 1 ∧ |Sterminal|
= 1.

3.2 Sound Workflow Graphs
In this section we define the soundness [A mp,14] of a workflow graph G. The soundness
is an extensive term about correctness of a workflow graph hence relevant for the
validation. G is sound if:

• sinitial ∈ Sinitial of G has exactly one token t on eentry and no token elsewhere.

• sterminal ∈ Sterminal of G has exactly one token t on eexit and no token else-
where.

• sstopping ∈ Sstopping of G implies that the set of tokens T derived from eexit has
at least one element.

• G is live and safe, where G is live describes that ∀s ∈ S reachable from sinitial

∃ sstopping ∈ Sstopping reachable from s and G, is safe says that Sstopping \
Sterminal = ∅.

In figure 4 shows a sound workflow graph where the workflow graphs in figure 5 are
both unsound because of structual conflicts (a local deadlock and a lack of synchro-
nization) [A 11].

5

«««< .mine

=======

»»»> .r100

Figure 4: The graphical syntax of a concrete workflow graph. Executable nodes
are shown as named circles, fork and join nodes as thin rectangles decision and
merge nodes as diamonds with question- or explonitionmarks inside, start and
stop nodes as (decorated) circles.

6

Figure 5: The workflow graph in (a) is not live (deadlock) where the workflow
graph in (b) is not safe (lack of synchronization)

A local deadlock (a) is a state s ∈ S if ∃ a state s′ ∈ S, a node n ∈ Njoin, where
s0

n→ s1
∗→ sk (k ∈ N, s0 = s, sk = s′) such that ∃ a incoming edge e(n) ∈ Ein(n)

such that e(n) carries a token in any reachable state s′ of s and ∃ a incoming edge
e(n) ∈ Ein(n) such that e(n) does not carry a token in any reachable state s′ of s.
A lack of synchronization (b) is a state s ∈ S if ∃ a node n ∈ Nmerge such that ∃ more
than one incoming edge e(n) ∈ Ein(n) carries a token.

We define a workflow graph G:
• as locally live if @ a local deadlock such that s0

∗→ sk (k ∈ N, s0 ∈ Sinit, sk=local
deadlock).

• as locally safe if @ a state s such that s0
∗→ sk (k ∈ N, s0 ∈ Sinit, sk = s and ∀

edges e ∈ E : s(e) <= 1.

Theorem 1. A workflow graph G is sound ↔ G is locally safe and locally live.

3.3 Enhanced Control-Flow Analysis
To validate soundness of a complex workflow graph as a whole is very exhaustive.
In this section we introduce an approach how a workflow graph can be recognized
as sound by dividing the graph into single-entry-single-exit (SESE) fragments and
validate some fragments quickly as sound or unsound.
First we show the decomposition into SESE fragments. After that we explain how
some fragments be discovered as sound or unsound [A mp].

3.3.1 Workflow Fragmentation

A SESE fragment is a not empty sub graph F = (N ′, E ′) of G, where G is a workflow
graph.
So we say F is a SESE fragment of G if N ′ ⊆ N ∧ E ′ = E ∩ (N ′ ×N ′) such that ∃ a
edge e, e′ ∈ E : E ∩((N\N ′)×N ′) = {e}∧E ∩(N ′×(N\N ′)) = {e′}, where e = eentry

7

Figure 6: A workflow graph and its decomposition into SESE fragments. A
SESE fragment is displayed as a dotted box. All fragments are canonical.

and e′ = eexit of F . A SESE fragment F can be considered as a workflow graph if we
add the edges eentry, eexit and the nodes nstart, nstop.

Canonical Fragments Two SESE fragments F ,F ′ are in sequence if eexit of F =
eentry of F ′ or eexit of F ′ = eentry of F . F ∪F ′ describes a SESE fragment again. A
fragment F is not canonical if ∃ fragments X, Y such that X and Y are in sequence ∧
F = X ∪ Y ∧ ∃ a fragment Z such that F and Z are in sequence, else F is considered
as canonical.
If we say fragment we only mean the particular fragments of a workflow graph, which
are canonical in the following.
In figure 6 a workflow graph fragmented into canonical SESE fragments is shown [A
mp,5].

3.3.2 Sound Fragments

Based on the definitions given by Hauser et al [A 4] we now introduce the conditions
for a fragment to be recognized as sound. First we explain some general fragment
definitions for a fragment F of a workflow graph G: well-structured, unstructured
concurrent, unstructured sequential and complex.
well-structured →
• ∀ nodes n ∈ N of F : n /∈ Ndecision,Nmerge,Nfork,Njoin.

• |Ndecision| = 1, |Nmerge| = 1, Nfork = ∅ and Njoin = ∅ of F . eentry =
ein(ndecision) ∧ eexit = eout(nmerge).

• |Ndecision| = 1, |Nmerge| = 1, Nfork = ∅ and Njoin = ∅ of F . eentry =
ein(nmerge) ∧ eexit = eout(ndecision).

• |Nfork| = 1, |Njoin| = 1, Ndecision = ∅ and Nmerge = ∅ of F . eentry =
ein(nfork) ∧ eexit = eout(njoin).

unstructured concurrent→ F 6=well-structured, contains no cycles and Ndecision =
∅, Nmerge = ∅.
unstructured sequential → F 6=well-structured and Nfork = ∅, Njoin = ∅.
complex → F 6=well-structured∧ 6=unstructured concurrent∧ 6=unstructured sequen-
tial.

8

Figure 7: The process structure tree of a workflow graph which is shown in
Figure X. The fragments are depicted as boxes and the leafs of the tree are the
nodes of the graph.

The following theorem defines the soundness of a fragment using the definitions above.

Theorem 2. ∀ F in G: F is well-structured, unstructured concurrent or unstruc-
tured sequential → F is sound ↔ ∀ F ′: F ′ is sound, where F ′ is child fragment of
F .

3.3.3 Unsound Fragments

Fragments can be recognized as unsound if a complex fragment applies to theorem 3.

Theorem 3. A fragment F is not sound → F is complex and one of the follow-
ing conditions is satisfied:

• |Nmerge| > 0(|Ndecision| > 0), Ndecision = ∅(Nmerge = ∅) of F .
• |Nfork| > 0(|Njoin| > 0), Njoin = ∅(Nfork = ∅) of F .
• Ndecision = ∅, Nmerge = ∅ of F and F contains no cycle

3.4 Sound Workflow Graphs
Two fragments of a workflow graph G are either nested or disjoint thus the decompo-
sition into fragments can be ordered as a tree. Such a tree is called process structure
tree of a G which is shown for the graph in figure 7 [A mp,5]. We denote a fragment
F from a node n ∈ N of G F(n). We call a fragment F as child fragment of F ′ if F ′
contains F(n). We also define F ′ as the parent fragment of F . A workflow graph G is
recognized as sound if all fragments of G are sound.

Theorem 4. A workflow graph G is sound ↔ ∀ fragments f ∈ child fragments: f is
sound ∧∃ a sound workflow graph G′, where ∀ child fragments f ∈ G: f ∈ Nexecutables

of G and otherwise G′ is structured like G [A mp,12,13,14,18]

To validate the soundness of a A workflow graph G we check the soundness of each
fragment f of the process structure tree of G starting at the leafs and moving upwards
to the root because if f is recognized as sound it can be considered as executable node
in the parent fragment which is shown in figure 8.

9

Figure 8: J and V are fragments of a workflow graph from figure X and X which
ignore the structure of their child fragments

4 JWT Workflow Validation
This section explains how a workflow graph created in the JWT Workflow Editor,
which has been introduced in section 2.1, can recognized as sound or unsound. The
correctness of the workflow graph is validated applying the approach explained in sec-
tion 3. Therefore it is necessary to decompose the workflow graph into its canonical
fragments which are representing the nodes in the corresponding process structure tree.
Now we can perform the validation of the workflow graph in linear time, which is the
final goal of this paper.

4.1 Input graph
To perform a validation of soundness of a workflow graph G we need an editor which
provides a concrete input graph. In this paper we show how workflow graphs created
by the JWT Workflow Editor are validated.
The graph G provided by the JWT Workflow Editor is too concrete, thus it has to be
reduced to a workflow graph Gred defined in section 3. Information about guards, etc.
is not needed to recognize a workflow graph as sound or unsound, so only Executable
Nodes and Control Nodes, including their connections, the Activity Edges, are required.
The adapter of the Codegen Framework implements the reduction from G to Gred

[codegen framework adapter].

4.2 Fragmentation into canonical fragments
In order to derive the canonical fragments F from a JWT Workflow Editor graph G
we use the adapter provided by the Workflow Codegen Framework to reduce G into a
more abstract graph Gred, where specific information of G has been removed. Actually,
we change or remove basically the following elements from the input graph G:
• ∀n ∈ Nprocess of G: n ∈ Nexecutable of Gred.

• the set of Guards in G will be removed in Gred → the set of Guards in Gred = ∅.
• Nreferencable of G will be removed in Gred → Nreferencable ∩ Gred = ∅.
As result, there is a more abstract graph that can be further used within the Code-

gen Framework. Furthermore, we decompose this graph into a set of SESE fragments
using the transformer. During this decomposition, we build up the process structure
tree which is defined in section 3.

10

4.3 Validation
The process structure tree TG is derived from a workflow graph GT , where each node
n ∈ N of TG is considered as a fragment F ∈ GT defined in section 3. ∀n ∈ N of TG:
n is a canonical fragment Fc.
In our case these features are provided by the tokenanalysis framework so we only have
to put all nested or disjoint fragments Fc together to a process structure tree TG. All
fragments F ′c nested in Fc become child fragments of Fc. We recognize Fc as sound or
unsound as we defined soundness in section 3. If Fc is unsound we mark Fc in order
to remember that Fc has been modeled incorrectly. Note that the fragment will be
just marked, the validation continues ignoring the result of the fragment validation.
Hence more potential unsound fragments can be located in TG. Further we do not
have to care about the way we validate the fragments Fc ∈ TG. The only condition is
that all fragments Fc ∈ TG have to be validated if the algorithm terminates.
Whenever a fragment Fc ∈ TG occurs as a child fragment of F ′c ∈ TG Fc will be
replaced by an Executable Node nexecutable in F ′c. If all nodes n ∈ N of T are marked
as sound or unsound the output of the validation of G will be generated by refering
each unsound fragment to thier origin in G. Note that all nodes n ∈ N of T have
direct connections to the process structure tree TG which also is directly connected to
G. So each unsound fragment of T can easily be traced back to its origin in G.

5 JWT Workflow Validation Plugin

5.1 An Overview
This Plugin provides a comfortable approach to validate process models. It allows the
user to validate an existent process model or to create his own process model by using
this Plugin and then to validate it. After the validation the unsound SESE fragments
will be marked. The user may be allowed to adjust them and then lets the Plugin
validate this new process model again.
The significant components of the JWT Workflow Validation Plugin are displayed in
Fig. 9.
Because of setting up basically on the Codegen Framework, the base structure is very

Figure 9: JWT Workflow Validation Plugin

similar, thus not creating code as output, but displaying the results in the Workflow

11

Figure 10: The classdiagramm of the implementation of the process structure
tree.

Editor. As first step, we used the Model Adapter from the Codegen Framework to get
access to the graph model of the Workflow Editor. It provides the common process
model format we wanted to operate on for validation. Next, our first implemented
component is the Process Structure Tree Builder, which transforms the abstract graph
representation into single-entry-single-exit fragments. The chosen result structure is
a tree of each node point to a fragment, which each has enough information to be
validated. This is the input for the Process Validator, which actually validates each
fragment based on the rules we described in section 3. The validation gives as result
set the lists of sound, unsound and undetermined fragments. The last component, the
Result Adapter takes these lists and offers some methods to handle the result, e.g. for
visualization in the Workflow Editor. In the following subsections, our implementation
of the new components is described in details.

5.2 Process Structure Tree Builder
The components provided by tokenanalysis framework represent the canoncial frag-
ments we need for the validation. The components consist of a set of component nodes
which represent the structure of the fragment.
So we just need to put the fragments which are either nested or disjoint into a tree
format. The class structure of the process structure tree is shown in figure 10.
The process structure tree consists of a set of nodes, where each node contains a
fragment. This fragment may contain other child fragments. The ProcessStructure-
TreeFragments refer to the basic fragments so that each ProcessStructureTreeFragment
refers to a component and each FragmentNode refers to the according component node.
Additionally the FragmentNode provide the reference to the original node of the work-
flow editor workflow and the node type information which is important for the vali-
dation.
The ProcessStructureTreeBuilder acts as a transformer which transforms a workflow-
graph created by the workflow editor which is already decomposed into fragments by
the tokenanalysis framework into the process structure tree structure introduced above
and shown in figure 10 and ensures that each node in each fragment can be traced
back to the curresponding node of the BP_Meta_Graph. The BP_Meta_Graph

12

Figure 11: The classdiagramm of the implementation of the tokenflow tree.

represents the source workflow graph for the transformer.

5.3 Tokenflow Tree Builder
This transformer is only used for acyclic complex fragments which can not be recog-
nized as sound by Theorem 3.. This component returns a set of tokenflow trees, where
each tree can be considered as a possible tokenflow through the complex fragment.
The class diagramm of the tokenflow tree structure is shown in figure 11. Similar to
the process structure tree introduced in 5.2 the tokenanalysis framework provides the
component nodes representing the structure of the fragment. Based on this structure
the tokenflow trees were derived from the FragmentNode which containing fragment is
regcognized as an acyclic complex fragment.

5.4 Process Validator
An essential component of this Plugin is the Process Validator which implements the
theory of this article to validate the SESE fragments from the Process Structure Tree.
The Process Validator checks at first whether a SESE fragment can be verified to be a
well-structured, unstructured-concurrent or unstructured-sequential fragment. In case
the SESE fragment matches one of them, it is validated to be sound and the Process
Validator begins to validate the next one. Otherwise the Process Validator checks
whether this SESE fragment matches one of the conditons which are mentioned in the
Theorem 3. In case this SESE fragment satisfies the Theorem 3, it is validated as an
unsound fragment. Otherwise it is undetermined, that is to say, this SESE fragment
is neither sound nor unsound. The Process Validator works on every SESE fragment

13

one by one, until the whole Process Structure Tree is finished with validation.
The validation of complex fragments which are not recognized as unsound using the
fast heuristics algorithm remain undecided. The subset of these fragments which are
acyclic can be validated by validating all responding tokenflow trees generated by the
TokenFlowTreeBuilder for each fragment. The conditions for a tokenflow tree to be
recognized as sound are explained in ??.
The TokenFlowResult component is used to validate each tokenflow tree. Note that
the unsoundness of only one tokenflow tree of the set of tokenflow trees generated from
the complex fragment causes the unsoundness of the whole fragment.

5.5 Validation Result Adapter
The aim of the Result Adapter is to handle the result set that’s given by the Process
Validator for a concrete modeller, that is in this case the Workflow Editor. It takes the
list of sound, unsound and not determined fragments, but also the list of formal invalid
fragments and marks them within the editor. Unsound fragments are marked with red
color as well as formal invalid nodes (nodes that are missing an edge for validation).
Not determined fragments will be set to a green color. So, one could see fast what’s
wrong with the tested workflow. For unsound and not determined fragments, there is
set a log entry for notice which fragment has failed validating and what’s the reason
for that.
Additionally, we’ve implemented a method to the adapter that shows the results as
message box on the screen, so you could see all nodes of each sound, unsound or not
determined fragment, but also the count of formal invalid nodes.
Sum up, the Result Adapter provides all information the user can see after validating
the workflow.

6 Conclusion
In this work we introduced a visual tool for creating workflow process, JWT Workflow
Editor.This Editor makes the creation of workflow process simple and comfortable.The
created process can also be stored for further use. We have also provided an Intro-
duction to the Workflow Generation Framework from both the structural aspect and
the functional aspect. The assignment of this Framework is to generate workflow code
from any kind of process models. In order to evaluate process models we introduced
the definition of soundness. Furthermore we gave a detailed description for determin-
ing the soudness of a process model. At last we proposed and implemented a concrete
tool to validate workflow process. This tool is implemented as a Eclipse Plug-in and
is an important part of the project Eclipse Java Workflow Tooling (JWT).
Our main goal, to validate a workflow within linear effort was not obtained here. The
implementation of the fast heuristic algorithm lacks of completeness, because there
is a subset of possible fragments we can not be validated with this approach. Thus
we implemented an other approach to validate the complex fragments which can not
be recognized as sound or unsound using the fast heuristic algorithm. The second
algorithm lacks of a general proof of corectness and also of completeness, because only
acyclic complex fragments can be validated. Moreover the effort it takes to validate a
acyclic complex fragments is expotential not linear. So there there is still the subset
of cyclic complex fragments left, which still remain undecided.
In the future there may be some refinements for the implementation for the fast heuris-
tic algorithm. But the main issue to be solved is that the whole possible set of complex
fragments could be validated (with linear effort?).
SO plugin for workflow validation desribed within this paper is just the first step pro-
viding validation tool support for the JWT Workflow Editor.

14

Acknowledgments
We thank Florian Lautenbacher for supplying this opportunity and his valuable sug-
gestions. We also thank Benjamin Honke, who implemented the Workflow Generation
Framework, and the chair for Programming Distributed Systems at the University of
Augsburg.

Literatur
[1] Faster and More Focused Control-Flow Analysis for Business Process Models

Through SESE Decomposition Jussi Vanhatalo, Hagen Völzer1, and Frank Ley-
mann; IBM Zurich Research Laboratory; Springer-Verlag Berlin Heidelberg 2007

[2] van der Aalst,W.M.P., Hirnschall, A. (Eric) Verbeek, H.M.W.: An alternative
way to analyze workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C.,
Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 535 to 552. Springer,
Heidelberg (2002)

[3] Sadiq,W., Orlowska, M.E.: Analyzing process models using graph reduction
techniques. Inf. Syst. 25(2), 117 to 134 (2000)

[4] Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing
control regions in linear time. In: PLDI. Proceedings of the ACM SIGPLAN’94
Conference on Programming Language Design and Implementation, pp. 171 to
185. ACM Press, New York (1994)

[5] Hauser, R., Friess, M., K¨uster, J.M., Vanhatalo, J.: An incremental approach
to the analysis and transformation of workflows using region trees. IEEE Trans-
actions on Systems, Man, and Cybernetics Part C (June 2007) (to appear, also
available as IBM Research Report RZ 3693)

[6] Valette, R.: Analysis of Petri nets by stepwise refinements. Journal of Computer
and System Sciences 18(1), 35 to 46 (1979)

[7] van der Aalst, W.M.P.: Workflow verification: Finding control flow errors using
Petrinetbased techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A.
(eds.) Business Process Management. LNCS, vol. 1806, pp. 161 to 183. Springer,
Heidelberg (2000)

[8] Zerguini, L.: A novel hierarchical method for decomposition and design of work-
flow models. Journal of Integrated Design and Process Science 8(2), 65 to 74
(2004)

[9] Using Token Analysis to Transform Graph-Oriented Process Models to BPEL;
Götz, Roser, Lautenbacher and Bauer, Report 2008 08, Juni 2008

[10] de.uniAugsburg.wf-codegen.userManual_1.1.0.pdf; Benjamin Honke, Stephan
Roser

[11] Mathias Götz, Stephan Roser, Florian Lautenbacher, and Bernhard Bauer. Us-
ing Token Analysis to Transform Graph-Oriented Process Models to BPEL.
2008, forthcoming.

[12] Richard Johnson, David Pearson, and Keshav Pingali. The program structure
tree: computing control regions in linear time. In Conference on Programming
language design and implementation, pages 171 to 185. ACM Press, 1994.

[13] Chun Ouyang, Marlon Dumas, Arthur H.M. ter Hofstede, and Wil M.P. van
der Aalst. Pattern-based translation of BPMN process models to BPEL web
services. International Journal of Web Services Research (JWSR), 2007.

[14] Jussi Vanhatalo, Hagen V¨olzer, and Frank Leymann. Faster and More Focused
Control-Flow Analysis for Business Process Models Through SESE Decomposi-
tion. In 5th ICSOC Conference, LNCS, pages 43 to 55. Springer, 2007.)

15

	1 Introduction
	2 Tools and Frameworks
	2.1 Workflow Editor
	2.2 Workflow Generation Framework
	2.2.1 A structural view of the Workflow Generation Framework
	2.2.2 A functional view of the Workflow Generation Framework

	3 Validation of Workflows
	3.1 Workflows
	3.2 Sound Workflow Graphs
	3.3 Enhanced Control-Flow Analysis
	3.3.1 Workflow Fragmentation
	3.3.2 Sound Fragments
	3.3.3 Unsound Fragments

	3.4 Sound Workflow Graphs

	4 JWT Workflow Validation
	4.1 Input graph
	4.2 Fragmentation into canonical fragments
	4.3 Validation

	5 JWT Workflow Validation Plugin
	5.1 An Overview
	5.2 Process Structure Tree Builder
	5.3 Tokenflow Tree Builder
	5.4 Process Validator
	5.5 Validation Result Adapter

	6 Conclusion

