
www.SYS-CON.com/JDJ18 July 2005

he Eclipse Open Source Inte-
grated Development Environ-
ment (IDE) (see http://eclipse.
org) is rapidly gaining popular-

ity among Java developers primarily
because of its excellent Java Develop-
ment Tools (JDT) and its highly exten-
sible plug-in architecture. Extensibility
is, in fact, one of the defining char-
acteristics of Eclipse. As the Eclipse
home page says, “Eclipse is a kind of
universal tool platform – an open ex-
tensible IDE for anything and nothing
in particular.” Although Eclipse is itself
a Java application, all tools, including
JDT, are on an equal footing in that
they extend the Eclipse platform via
well-defined extension points.
 Of course, an infinitely extensible,
but empty, platform might be interest-
ing to tool vendors, but very boring for
developers. Therefore, the initial ver-
sion of Eclipse came with the JDT and
the Plug-in Development Environment
(PDE), both examples of how to extend
the platform and very useful tools in
their own right. JDT supported J2SE de-
velopment while PDE supported Java-
based Eclipse plug-in development.
The combination of JDT and PDE
fueled the creation of thousands of
commercial and Open Source plug-ins
for Eclipse, many of which supported
J2EE development. For example, IBM
released Eclipse-based commercial
J2EE products, including WebSphere
Studio Application Developer, and
Rational Application Developer, while
eteration, JBoss, Genuitec, Exadel, and
Innoopract among others, released
Open Source offerings. However, the
profusion of J2EE plug-ins made it
difficult for vendors to build on each
other and for users to assemble an
integrated suite of tools. For example,
each J2EE toolset had its own way to
support application servers.

 As the popularity of Eclipse grew, it
became apparent that the next logical
step in its evolution was to add plat-
form support for J2EE. This support
would provide a common infrastruc-
ture for all J2EE plug-ins, with the goal
of improving tool integration, reduc-
ing plug-in development expense,
and simplifying the J2EE development
experience for Eclipse users.
 In June 2004, based on a proposal
from IBM, the Eclipse Management
Organization (EMO) agreed to create
a new top-level project, the Web Tools
Platform (WTP). However, it was be-
lieved that for WTP to be truly success-
ful it needed a broad base of vendor
support. A search began to engage ad-
ditional vendors to partner with IBM.
WTP was discussed in a BOF session at

the first EclipseCon conference held in
February 2004, and ObjectWeb agreed
to lead the project creation effort. Ob-
jectWeb assembled a set of vendors to
join the project and agreed to co-lead
the Project Management Committee
(PMC). WTP was formally launched in
June 2004 based on initial contribu-
tions from eteration, Lomboz, and
IBM Rational Application Developer.
 WTP got further industry endorse-
ment earlier this year when BEA joined
the project and announced plans to
base a future version of WebLogic
Workshop on it. BEA co-leads the
PMC along with ObjectWeb. At this
year’s EclipseCon, Sybase announced
the Data Tools Project (DTP), which
will add to the data tools in WTP and
create a platform layer dedicated to

????????????????????

by Arthur Ryman

Web Tools Platform:
J2EE Development the Eclipse Way

T

Arthur Ryman is the leader of the

Eclipse WTP Web Standard Tools

sub-project. He is a software devel-

opment manager and architect at

the IBM Toronto Laboratory where

he has spent the last 10 years

working on J2EE development

tools including VisualAge for Java,

VisualAge for e-business, IBM

XML and Web Services Develop-

ment Environment, WebSphere

Studio Application Developer, and

Rational Application Developer.

Arthur is a member of the W3C

Web Services Description Working

Group and an editor of the WSDL

2.0 Core Language Specification

and Test Suite. He is an adjunct

professor of computer science at

York University, a senior member

of the IEEE, and a member of

the IBM Academy of Technology.

He holds a PhD in mathematics

from Oxford University. Arthur is

a co-author of Java Web Services
Unleashed, and is currently work-

ing on a new book with co-authors

Naci Dai and Lawrence Mandel

about WTP titled Java Web Applica-
tion Development with Eclipse.

ryman@ca.ibm.com

The story of WTP 1.0, its scope, design principles, architecture, ecosystem, and plans

 Figure 1 Server preferences page

NEED
HEAD
SHOT

19July 2005www.SYS-CON.com/JDJ

database access. Oracle and Borland
also announced Eclipse projects closely
related to WTP. With major vendors
such as IBM, BEA, Borland, Oracle, and
Sybase all co-operating on a shared
Open Source tool infrastructure, the
center of gravity for J2EE tools has
clearly shifted to Eclipse.
 WTP 1.0 development is now well
underway and has released a series of
milestone drivers that can be down-
loaded from http://eclipse.org/webt-
ools. The final release of WTP 1.0 is on
track for a July 2005 delivery. The rest
of this article gives you an overview
of WTP, its scope, design principles,
architecture, ecosystem, and plans.

A Quick Tour of WTP
 One way to understand WTP is that it
extends Eclipse along two dimensions,
namely execution environments and
artifact types. The execution environ-
ment dimension defines where code
runs. Out-of-the-box, Eclipse lets you
develop Java main programs that run
in a command shell, applets that run in
a Web browser, JUnit tests that run in
a JUnit runner, and ANT tasks that run
in ANT. WTP extends Eclipse by adding
servers in general, and both J2EE and
database servers in particular, as new
execution environments. In general,
you need to install an execution envi-
ronment, configure it in Eclipse, and
associate it with development artifacts
that you want to run in it.
 The development artifact dimen-
sion defines what developers create.
Obviously, Eclipse majors in Java
source code as a primary develop-
ment artifact. However other artifacts,
such as PDE plug-in manifests and
Ant build scripts, are also supported.
Each artifact type has associated with
it builders, creation wizards, syntax-
aware editors, validators, semantic
search extensions, and refactoring
support. Eclipse users expect editors
to provide first-class programmer
assistance such as code completion,
syntax coloring, error markers, and
quick fixes. WTP extends Eclipse with
support for the large set of new artifact
types encountered in J2EE develop-
ment. These include HTML, CSS,
JavaScript, XHTML, JSP, XML, XSD,
WSDL, SQL, and all the J2EE deploy-
ment descriptors.
 One of the key design goals of WTP
is to extend Eclipse seamlessly to
support these additional execution
environments and artifact types. All

of the functions that Eclipse users
have come to expect from Java source
code should “just work” for the new
artifacts. For example, if I select a Java
main program, I can Run or Debug it.
The same should apply to a JSP. When
I select it, the Run command should
do something sensible. Specifically
for a JSP I expect the Run command
to somehow deploy my code into a
J2EE server and launch a Web browser
with the URL for my JSP. Similarly,
the Debug command should run my
J2EE server in debug mode and the
standard Eclipse Debugger should
let me step through my JSP source
code. My JSP editor should provide
code completion for both JSP tags and
inlined Java scriptlets. Furthermore,
I expect the code completion for Java
scriptlets to work exactly like the code
completion for Java source files. I don’t
want to learn new editing commands
simply because I’m editing a new
artifact type.
 WTP 1.0 achieves many of these
goals but there is much work to do to
support J2EE fully. Consider the prob-
lem of refactoring a J2EE application.
An operation as simple as renaming a
Java class can have many consequenc-
es. If the renaming isn’t fully rippled
through the application, a runtime
error can occur. For example, in ad-
dition to references from other Java
classes, a Java class can be referenced
by JSPs and deployment descriptors.
All of these artifacts must be updated
to reflect the new name. Suppose the
Java class is deployed as a Web Service
and that WSDL is generated from it.
The WSDL may also need to be regen-

erated. First-class refactoring of J2EE
applications will be an on-going focus
for WTP.
 Now let’s create a JSP version of
“Hello, world.” If you’d like to follow
along, you’ll need to do some setup.
Download and install the latest stable
driver of WTP from the Web site men-
tioned above. WTP provides support
for many popular commercial and
Open Source J2EE servers but doesn’t
include the runtimes. So you also need
to install a server on your machine.
For purposes of illustration, I’ll use
Apache Tomcat 5.0.28, which you can
obtain from http://jakarta.apache.
org/tomcat/. Finally, you’ll need a full
JDK since JSPs require a Java compiler.
I’m using Sun J2SDK 1.4.2_06.

 Figure 2 Project Explorer

 Figure 3 JSP editor with hello-world.jsp

www.SYS-CON.com/JDJ20 July 2005

 WTP provides a Preference page for
Servers. Open the Preference dialog
and go to the Server page. Add your
Tomcat 5.0 server and configure it to
use your JDK (if you use a JRE then JSP
compilation will fail). Figure 1 shows
the Server Preference page.
 Next, create a new Flexible Java
Project named Project1 and a new
J2EE Web module named Web1 in it. A
Flexible Java Project is a J2EE project
that can hold several J2EE modules.
Figure 2 shows the J2EE Project Ex-

plorer after Project1 and Web1 have
been created.
 Now we’re ready to create our JSP.
Select the WebContent folder of the
Web1 module and use the New File
wizard to create a JSP named hello-
world.jsp. The wizard fills in the skel-
eton of a JSP document and opens the
file with the JSP editor. The JSP editor
has full content assist for HTML and
JSP tags, as well as Java scriptlets. Edit
the file to say “Hello, world” and save
it. Figure 3 shows the JSP editor.

 Finally, we’re ready to run the JSP.
Select hello-world.jsp in the Project
Navigator and the Run on Server com-
mand from the context menu. You’ll
be prompted to define the server to be
used for the project since this is the
first launch. Select the Tomcat server
you previously defined and make it
the project’s default. The Web1 module
will be added to the server configura-
tion and the server will start. A Web
browser will then be launched with
the URL for hello-world.jsp. Figure 4
shows the Web browser with the Web
page generated by hello-world.jsp.
 Debugging JSPs is also simple. To
demonstrate debugging, let’s add a
Java scriptlet to the JSP. The scriptlet
will retrieve a query parameter named
“user” and display a welcome mes-
sage. Listing 1 shows the modified JSP
that includes the Java scriptlet.
 Set a breakpoint on the line that
begins String user = by double-clicking
in the left margin. Select the file hello-
world.jsp in the Project Explorer and
invoke the Debug on Server command
from the context menu. The server will
restart in debug mode and the Debug
Perspective will open with execution
halted at the breakpoint. Figure 5
shows the Debug perspective when
the JSP is passed the query parameter
user=JDJ readers on the URL.
 You can now step through Java
scriptlets and explore Java variables
as usual. In Figure 5, the variable user
has been selected in the Variables view
that shows its current value JDJ read-
ers. Click the Resume icon to finish
processing the JSP. Figure 6 shows the
Web browser displaying the resulting
Web page.

WTP 1.0 Features
 The preceding Quick Tour shows
a small cross-section of the features
available in WTP 1.0. The full set of
features in WTP 1.0 includes server,
Web, XML, Web Service, J2EE, and data
tools. I will now briefly describe these.
Consult the WTP Web site for more
details.
 The server tools let you define and
control servers. Servers can be associ-
ated with projects, and can be started,
stopped, started in debug mode, and
controlled in other ways. Projects can
be deployed to servers, or servers can
be configured to access your Eclipse

???????????????????

 Figure 4 Web browser with hello-world.jsp

 Figure 5 Debug perspective

www.SYS-CON.com/JDJ22 July 2005

workspace content directly. WTP in-
cludes server support for Apache Tom-
cat, Apache Geronimo, and JBoss, as
well as many other popular commer-
cial and Open Source J2EE application
servers. The server tools include an
extension point so that new server
types can be easily supported. You can
add a new server type by providing
either a simple XML configuration file
or a Java plug-in.
 The Web tools let you create static
Web pages based on HTML, XHTML,
CSS, and JavaScript. The Web tools in-
clude source editors that are based on
the WTP Structured Source Editor (SSE)
Framework. WTP Web editors provide
content assist, syntax highlighting,
validation, and other standard Eclipse
editor functions. The Web tools also
include an embedded Web browser and
a TCP/IP monitor that’s very handy for
debugging HTTP traffic.
 The XML tools include source edi-
tors for XML, DTD, and XSD that are
based on the SSE Framework. Besides
source editing, graphical editing is
also provided for XSD. The XML tools
also include code generators for creat-
ing XML instance documents from
DTD or XSD.
 The Web Service tools include a
WSDL editor, a Web Service Explorer,
a Web Services Wizard, and WS-I Test
Tools. The WSDL editor includes an
SSE-based source editor and a graphi-
cal editor. XSD editing is seamlessly
integrated with WSDL editing. The
Web Service Explorer lets you search
and publish to UDDI registries, and
dynamically test WSDL-based Web
Services. The Web Service Wizard
ties together the full development

lifecycle. It lets you deploy Java classes
as Web Services, generate server and
client code from WSDL, and generate
test clients, as well as being integrated
with the Web Service Explorer for
publishing and discovery. The Web
Service Interoperability (WS-I) Test
Tools let you validate WSDL and SOAP
for compliance with the WS-I profiles.
 The J2EE tools let you create
J2EE projects and artifacts like JSPs,
servlets, and EJBs, as well as the J2EE
deployment descriptors, and deploy
these to app servers. The J2EE tools
have an SSE-based JSP source editor
and a J2EE Project Navigator that
displays J2EE components as objects.
This provides a higher-level view of
your project resources, for example, by
displaying all the files related to an EJB
as a single EJB object.
 The data tools include support for
connecting to JDBC-based databases
such as Cloudscape, Derby, and other
commercial and Open Source data-
bases, and exploring their tables. The
data tools also include an SQL source
editor that lets you easily execute SQL
statements and view the results.

The WTP Noosphere
 In his essay “Homesteading the
Noosphere,” Eric Raymond likened
Open Source developers to home-
steaders who stake out their turf in
the sphere of ideas. I will therefore
describe the turf that WTP has staked
out in the Eclipse noosphere.
 WTP components are organized
along the lines of open standards.
WTP classifies the world of standards
along two dimensions – technology
and formality.

 The technology dimension ranges
from neutral standards on one ex-
treme to J2EE standards on the other.
Technology neutral standards form
the foundation of the Web. In fact,
the Web has succeeded because it’s
defined in terms of formats (such as
HTML and XML) and protocols (such
as HTTP) that specify how systems
interact, but don’t specify how systems
are implemented. This neutrality has
allowed vendors to choose the most
appropriate implementation technol-
ogy and compete on the basis of the
quality of their implementations. On
the other hand, J2EE standards specify
application portability rules for J2EE
implementations. Both kinds of stan-
dard are essential for the viability of
the Web.
 The formality dimensions define
how the standards are created. At one
extreme we have the de jure standards
bodies such as ISO and IEEE and at
the other we have technologies that
aren’t associated with any formal
standards definition organization,
but have become de facto standards
because of their popularity. Organiza-
tions such as W3C, OASIS, and JCP,
which define the standards relevant
to WTP, have formal processes and are
near the de jure end of the spectrum.
Popular Open Source technologies
such as Struts and Hibernate are at the
de facto end.
 Figure 7 shows the world of stan-
dards classified along the technology
and formality dimensions. The turf of
WTP is, in principle, all the important
standards that are relevant to Web
application development. However,
the charter of WTP focuses on the
standards that are formally defined
by recognized standards-definition
organizations, i.e., those that cluster
towards the de jure end of the spec-
trum. WTP consists of two sub-proj-
ects, Web Standard Tools (WST) and
J2EE Standard Tools (JST) that cover
the formally defined Web and J2EE
standards.
 The reasoning behind this scope
is that WTP aims to be a platform
that many vendors can build on. The
formal standards form the building
blocks that most vendors want. Sup-
port for this base layer of standards
is, in a sense, the “table stakes” of any
tool. Vendors can cooperate on this

????????????????

 Figure 6 Web browser with modified hello-world.jsp

www.SYS-CON.com/JDJ24 July 2005

base layer and produce high-quality
common components while sharing
the development expense. Conversely,
by not including the de facto stan-
dards, WTP leaves room for vendors to
innovate and differentiate. For Open
Source to succeed contributors must
have a way to generate a profit oth-
erwise they won’t be able to continue
contributing. We hope that this design
will yield an excellent set of core Open
Source J2EE tools for users, and a
solid platform that supports a thriving
aftermarket of extenders.
 The standards arena is very active
and as existing standards are revised
and new standards defined WTP will
support them based on their market
relevance. There may also be a migra-
tion of de facto standards to the de jure
quadrants. WTP’s charter may expand
in the future to include new sub-proj-
ects. However, immediately, WTP con-
sists of the WST and JST sub-projects.

The WTP Ecosystem
 WTP has the dual goals of providing
both tools for the developer commu-
nity and a platform for tool vendors
to extend. Satisfying the needs of
vendors requires that WTP define a
set of platform APIs. The significance
of a platform API is that it will be pre-
served in future releases. This means
that a plug-in that runs in WTP 1.0 will
also run – without recompilation – in
future versions of WTP. The stability of
platform APIs is key to vendor adop-
tion. Clearly if WTP changed its APIs
from release to release, vendors would
expend significant effort reacting to
the changes, and this would slow the

rate at which users and vendors move
to new versions of the platform.
 WTP relies heavily on the user
community for testing, bug reports,
and enhancement requests, and the
development of the user community is
one of our main focuses this year. The
WTP Web site has tutorials, articles,
presentations, and event informa-
tion. WTP will be well represented on
the conference circuit this year. Look
for upcoming WTP presentations at
events such as EclipseWorld, JavaOne,
and the Colorado Software Summit.
There are also a couple of WTP books
in the works. A thriving user commu-
nity is a magnet for vendors. As the
WTP user community grows so will
the number of tools built on it.
 Finally, WTP has a role to play in
education. Since WTP is free Open
Source and supports industry stan-
dards, it’s an ideal learning tool for the
coming generation of J2EE developers.
I hope to see universities, community
colleges, and even high schools use it
for teaching.
 The WTP contributor community is
drawn from both vendors and users.
There are many ways to contribute. You
can start by downloading WTP, kicking
the tires, and telling your friends about
it. If you find a problem or have an
idea, open a Bugzilla report. Monitor
the newsgroup, and share your solu-
tions to problems with others. If you
can write, submit a tutorial or contrib-
ute to the online Help system. If you
have fixed a problem, submit a patch.
If you have time to work on WTP, check
Bugzilla for open problems or look at
the WTP Help Wanted page. And after

you have established a track record
of valuable contributions, you can be
voted in as a committer.

What’s Next?
 WTP 1.0 is scheduled for release in
July 2005. We are planning to follow
that with WTP 1.1 later in the year.
The focus of WTP 1.1 will be on the
further development of platform APIs
to enable the first wave of products
based on WTP. Following that, WTP
2.0 will be released with Eclipse 3.2
in 2006. Candidate items for WTP 2.0
include support for revisions of major
specifications such as J2EE 1.5, SOAP
1.2, and WSDL 2.0, as well as new JSRs
and Web Service specifications.
 We also expect the shape of WTP to
change as new projects emerge and
mature at Eclipse. New vendors are
joining Eclipse and projects are being
created at a rapid clip. For example, the
data tools in WTP will move into a new
Data Tools Project. Technology projects
such as those proposed for EJB 3.0 and
JSF will likely move into WTP as they
mature.

A Final Word
 Like all Open Source projects, the
success of WTP depends on the con-
tributions of an enthusiastic commu-
nity. The project is still in its formative
stage and there’s much work to do. The
project needs users, testers, writers,
developers, speakers, trainers, mentors,
evangelists, extenders, distributors, and
leaders. If you are interested in J2EE
development, then please consider this
article as your formal invitation to join
the WTP community.

?????????????????????

 Figure 7 The scope of WTP

Listing 1: Hello-world.jsp with Java scriptlet
 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<html>
<head>
<%@ page language=”java” contentType=”text/html; charset=ISO-8859-1”
 pageEncoding=”ISO-8859-1”%>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1”>
<title>Hello, world.</title>
</head>
<body>
<h1>Hello, world.</h1>

<%
 String user = request.getParameter(“user”);
 String message = (user == null) ? “” : “, “ + user;
%>
Welcome to WTP<%= message %>.

</body>
</html>

