Sybase FacesConfig Editor Initial Review

Ian Trimble (ian.trimble@oracle.com)

February 20, 2006

Purpose

The purpose of this initial review is primarily to understand what work would be required to take Sybase’s contributed FacesConfig Editor and replace the use of the SSE XML model with an EMF model.

Key Model-related Interfaces and Classes

ISSESectionPart

Package: org.eclipse.wtp.jsf.facesconfig.editor.sectionparts

Extends: org.eclipse.wst.sse.core.internal.provisional.INodeAdapter

ISSESectionPart provides the controller interface between a UI section and the XML model. It extends INodeAdapter, thus enabling it to be a listener for DOM changes. It provides (and requires) access to both a UI section and the model (or part thereof, in the form of an IDOMNode). It also requires an implementer to provide a method to create the UI section.

AbstractSSESectionPart

Package: org.eclipse.wtp.jsf.facesconfig.editor.sectionparts

Implements: ISSESectionPart

As the name implies, this class is an abstract implementation of the ISSESectionPart interface. It requires subclasses to provide concrete implementations of methods that “hook into” and “unhook from” the XML model. These methods are called when the model is set and when the class is disposed.

ManagedBeanGeneralSectionPart

Package: org.eclipse.wtp.jsf.facesconfig.editor.sectionparts

Extends: AbstractSSESectionPart

This class is one typical example of a concrete subclass of AbstractSSESectionPart. It “hooks into” the model by adding itself as a listener of the “managed-bean” node and each of its child nodes. It “unhooks from” the model by simply removing the same adapters from the nodes. It responds to changes in the model nodes for which it has registered itself as a listener by locating the specific UI elements that are known to hold the values of the nodes and updating them accordingly. It creates a UI section when called upon to do so.

ISSESection

Package: org.eclipse.wtp.jsf.facesconfig.editor.sections

ISSESection defines the interface that UI sections must implement. It defines methods to set and access the input for the section, and methods to initialize, refresh, and clear the section.

AbstractSSESection

Package: org.eclipse.wtp.jsf.facesconfig.editor.sections

Extends: org.eclipse.ui.forms.SectionPart

Implements: ISSESection

This is an abstract implementation of an Eclipse Forms SectionPart. Its initialize method calls the abstract method that must be implemented in subclasses to create content for the Composite that this class creates as the section’s body.

ManagedBeanGeneralSection

Package: org.eclipse.wtp.jsf.facesconfig.editor.sections

Extends: AbstractSSESection

This class is one typical example of a concrete subclass of AbstractSSESection. From the method called to create content for the section’s body, specialized subclasses of text widgets are created. Upon each of these widgets, listeners are set which respond to changes to the text value by marking the editor dirty and which respond when called upon to apply the text value by creating and executing a command to update the corresponding IDOMNode instance.

Events

From XML Model

The “xSectionPart” classes “hook into” the model as listeners, so that when the XML model changes, the appropriate UI elements can be updated.

From UI

Events are fired when a UI field is modified, and when a UI field loses focus. Upon modification, the editor is marked as dirty. Upon focus loss, the XML model is updated.

EMF Model Integration

Since the editor was written to work with an XML model, it is assumed by many classes and by the event-handling mechanism that an IDOMNode is available with which to work.

At least the following changes are required in order to integrate an EMF model:

· All instances where an IDOMNode is expected need to be changed to expect an EMF object instead

· The input to UI sections will need to be EMF objects, and UI fields must be bound to EMF objects (apparently Eclipse 3.2 will provide a framework to support simpler EMF object to UI binding)

· The EMF model must be kept synchronized with the StructuredTextEditor (utilizing WTP-provided EMF-SSE synchronization classes handles this)

Conclusion

Many classes and perhaps some of the event-handling mechanism will need to be changed to integrate an EMF model in place of the existing XML model; there is no model abstraction layer that can be utilized to swap out an XML model and replace with an EMF model. Integration of an EMF model will require a non-trivial effort, due to the volume of code across multiple classes that rely on the XML model, or nodes thereof.

