Specifications for SkDialer library
Mike Greenawalt

01 February 2006

The SkDialer library is OS-specific code that implements the Java-Skype client interface created for implementing the Tellme Browser application launcher in the Eclipse Voice Tools Project.

The library must be a file named suitably to be loaded by the Java statement: System.loadLibrary("SkDialer"); On Windows, that means SkDialer.dll. Other platforms have their own library file-naming conventions.
The library must implement the following entry points. (The names and types here are all according to JNI conventions.) I will explain what each method does, and what results it returns.

JNIEXPORT jboolean JNICALL Java_org_eclipse_vtp_dialer_skype_SkDialer_initializeNative (JNIEnv * envptr, jobject obj)

This method in the Windows implementation:

· uses JNI mechanisms to locate the callback methods it has to use in Java.

· checks the Registry to determine if the Skype client is installed on the machine.

· if installed, determines if Skype is a running process on the machine.

· if Skype is NOT installed, send a message “DLL Message 1: Skype is not installed on this machine!\nYou must install Skype before you can continue.” This message must be sent to the Java callback: receiveMessageFromSkype(). (Sorry about having DLL there. I was not thinking about non-Windows at the time.)
· if Skype is running, determines what Windows messages Skype has registered for connecting to it.

· If Skype is NOT running, send a message “DLL Message 4: Skype is not currently running on this machine!\nYou must start it and login before continuing.” This message must be sent to the Java callback: receiveMessageFromSkype(). (Sorry about having DLL there. I was not thinking about non-Windows at the time.)

Returns:
· false if Skype is not installed or is not running, or if the Java callback functions cannot be determined.

· true otherwise, and if the initialization has been done already with no subsequent destroy call.

JNIEXPORT jboolean JNICALL Java_org_eclipse_vtp_dialer_skype_SkDialer_connectNative (JNIEnv * envptr, jobject obj)

This method in the Windows implementation:

· starts a new thread which will handle the message communication with the Skype client

· creates an invisible window to support the window-messaging with Skype

· issues the initial broadcast message to Skype which tells Skype that our app wants to talk

· leaves the new thread in the message-handling loop for the invisible window
Returns:
· true if connect has been called before with no subsequent destroy call, and if the message-handling thread is successfully created.

· false otherwise

JNIEXPORT jboolean JNICALL Java_org_eclipse_vtp_dialer_skype_SkDialer_sendNative (JNIEnv *envptr, jobject obj, jstring message)

This method in the Windows implementation:

· retrieves the message string from the Java environment (using JNI mechanisms)

· formats the message into a COPYDATASTRUCT

· sends the message to the Skype main window

· if the library has not yet been initialized, send a message “DLL Message 3: SkDialer.dll has not been initialized” This message must be sent to the Java callback: receiveMessageFromSkype(). (Sorry about having DLL there. I was not thinking about non-Windows at the time.)

Returns:
· true if the message has been sent

· false if the dll was not initialized or the connection has not been made

JNIEXPORT void JNICALL Java_org_eclipse_vtp_dialer_skype_SkDialer_destroyNative (JNIEnv * envptr, jobject obj)

This method in the Windows implementation:

· kills the message-handling thread

· destroys the invisible window

· resets the flags indicating initialization and connection have been done

Sending Skype messages to Java:

When messages are received from Skype, they have to be communicated to the Java environment. There are two Java methods that are called when messages are received, depending on the type of message.

Responses from the request to connect to Skype:

In Windows, these responses are codes, not strings. For consistency in the higher levels of the code, where necessary these codes are converted to strings and the strings are sent to the Java method: receiveConnectMessageFromSkype(final String message)

The codes and what the Windows library does with them:

 SKYPECONTROLAPI_ATTACH_SUCCESS=0,

When this code is received, it means that the connection with the Skype API is complete and successful.
Response: The string “ATTACH CONNECTED” is sent to receiveConnectMessageFromSkype
 SKYPECONTROLAPI_ATTACH_PENDING_AUTHORIZATION=1,

The first time an application tries to connect to the Skype API, Skype client raises a dialog box asking the user to authorize the use. If that happens, this code is returned to the application.

Response: Do nothing. A code of either success or refusal will be received later.

 SKYPECONTROLAPI_ATTACH_REFUSED=2,

This code will be received if the user disallows the use of the Skype API.

Response: The string “ATTACH REFUSED” is sent to receiveConnectMessageFromSkype

 SKYPECONTROLAPI_ATTACH_NOT_AVAILABLE=3,
This code most likely means that the Skype client is running on the machine, but no user has logged in.

Response: Raise a dialog box suggesting that the user login.
 SKYPECONTROLAPI_ATTACH_API_AVAILABLE=0x8001
This code indicates that the API is available for use. It would be sent after Skype comes up and a user logs in. In the current application, this message is most likely never seen.

Response: Try to connect to Skype again. After that attempt, one of the other messages described will be received.

On other platforms, it appears there are different mechanisms for making connection to Skype. The message strings that the receiveConnectMessageFromSkype method expects are:

ATTACH CONNECTED

indicates successful connection

ATTACH REFUSED

indicates the user has refused the application’s attempt to connect

Whatever mechanisms are used on non-Windows platforms to connect to Skype, these messages must be passed to the Java callback.

All other messages received from Skype:

These messages are all strings, and are passed, intact, to the method: receiveMessageFromSkype(final String message)
JNI reference:
	
	Java™ Native Interface: Programmer's Guide and Specification, The
By Sheng Liang
...

Publisher: Addison Wesley Professional
Pub Date: June 10, 1999
Print ISBN-10: 0-201-32577-2
Print ISBN-13: 978-0-201-32577-5
Pages: 320
Slots: 1.0

	

Also see: http://java.sun.com/j2se/1.4.2/docs/guide/jni/index.html
