Module Developer Guide
What is a module?

A module is a component used by a voice application developer to add function to their applications. Each block displayed in the application editor is an instance of one module or another. An application can have multiple instances of the same module that have independent configurations and identities. Modules serve many different roles within an application: interacting with the user to present or collect information or just performing some back-office integration that is needed.

OpenVXML supports most of the standard VXML elements by default with the build-in modules that are packaged with the Designer. These built-ins include simple interactions like menus and announcements and even complex actions like control flow and database queries. The majority of a typical application can be built using only these modules. This basic functionality can be extended to support a custom integration with a legacy system or to perform more complex user interaction. New features are added to OpenVXML through the creation of custom modules. Once installed in the Designer the application developer can use them to enhance the capabilities of their applications.
What does a custom module look like?

A custom module consists of two pieces: an XML descriptor document and a Java class that implements the org.eclipse.vtp.framework.api.Interaction interface. The XML document contains information about the capabilities and configuration options available in the module while the class is used by the runtime to perform the module’s actions. The descriptor is used by the Designer to automatically generate the GUI dialogs needed to configure that module. The descriptor is also used by the Runtime component to apply the configuration provided in the Designer to the executable component implemented by the Java class.

Custom modules are organized together in groups called Module Groups and bundled as Eclipse Plug-ins. A single plug-in can declare any number of Module Groups each containing a set of related custom modules. The declarations of module groups and information about their creator are recorded in two other XML documents that are included in the plug-in jar file.

Life-cycle of a module

A module’s life-cycle is very simple. When the module’s action needs to be performed by the application, a new instance of the Interaction implementation is created and configured. Once the module has completed its task, the instance is destroyed and never reused. This avoids the hassles of implementing thread safe operations in your interactions and also allows the replacement of a module even at runtime in the middle of a session.

Simple Custom Module Example

Creating the Module Project

To start your module project, simply create a new Eclipse Plug-in project in your workspace. If you are unfamiliar with Eclipse Plug-in development, there is great information and many tutorials available in the Help documents included with Eclipse. The only plug-in dependency needed is provided by the org.eclipse.vtp.framework.api plug-in.

Our first task is to create the vendor and module group descriptor XML documents. A new directory will need to be created in the META-INF directory located in your project called “openVXML”. Please note that capitalization is important. Once the directory has been created, we can begin by creating the vendor description document. In the openVXML directory create a new XML document named vendor.xml. Once created you can copy the following text into the file, replacing the information in brackets with your own values:

<?xml version="1.0" encoding="UTF-8"?>

<vendor>

<info-block>

<name>[name]</name>

<description>

</description>

</info-block>

<module-groups>

<module-group>[group-name]</module-group>

</module-groups>

</vendor>
The name element will be displayed as the top level structure for all module groups provided by that vendor. The module group name will be used in the next step.

Next we need to define the contents of our module group. This is done by creating another XML document named the same as the value provided in the group name element of the vendor document. Once this is completed, you can copy the following text into the document, again replacing the text in brackets with your own values.

<?xml version="1.0" encoding="UTF-8"?>

<module-group>

 <info-block>

 <name>[group-name]</name>

 <description>

[description of module group]

 </description>

 </info-block>

 <versions>

<version number='1.0.0.0'>

<modules>

<module>HelloOpenVXML</module>

</modules>

</version>

 </versions>

</module-group>

Now we are ready to define our first custom module. Inside this same directory we will create yet another XML document. This document needs to be named HelloOpenVXML_1.0.0.0.xml. The extended naming scheme includes versioning information used by the runtime component to select the proper module when multiple versions of a module are available.

Our first module will be a rendition of the age old hello world. We need to define the capabilities of our module so the Designer component knows what UI elements to create for us. The following XML specifies that we will interact with the caller and specifically we will announce something to them. It also identifies the exits that can result from this module when it completes.
<?xml version="1.0" encoding="UTF-8"?>

<module name='HelloOpenVXML' class-name='com.eclipse.vtp.examples.general.HelloOpenVXML' hasMediaContent='true'>

<preconditions>

</preconditions>

<exit-points>

<exit-point type='exit' name='Continue'/>

</exit-points>

<properties>

</properties>

<media-script>

<dialogs>

<dialog type="message" name="Hello Message"/>

</dialogs>

</media-script>

<media-library>

</media-library>

</module>

The key sections of the document have been highlighted. The first section is the declaration of the module name and the Java class that implements Interaction. This is the class that the Runtime component will instantiate when this module is executed. The hasMediaContent attribute signifies that this module will interact with the caller.

The second section defines the end results this module is capable of. The Designer will allow the application developer to connect the next module to this one with these values.

The last highlighted section identifies the number and types of interactions this module will perform with the caller. Our module will simple announce something to the caller using a Message dialog. The prompts and other configuration properties will be managed by the Designer component relieving that development effort from module developer.
Creating our interaction class

We need to create the Java class we referenced in the module descriptor. This class needs to implement the org.eclipse.vtp.framework.api.Interaction interface. There is a single method in the Interaction interface: execute(Conversation). This method operates in a similar fashion to the service method of servlets. The return value identifies the exit state produced by the module and must be one of those declared in the module definition XML document. Here is the code for our custom module:
import com.mindtrust.kernel.api.Conversation;

import com.mindtrust.kernel.api.ExecutionResult;

import com.mindtrust.kernel.api.Interaction;

import com.mindtrust.kernel.api.Message;

public class HelloOpenVXML implements Interaction {

public ExecutionResult execute(Conversation conversation)

{

Message message = conversation.createMessage("Hello Message");

message.send();

return ExecutionResult.success("Continue");

}

}
Bundling and installing your custom module

The plug-in jar file can be created by right-clicking on the project and selecting Export->Deployable plug-ins and fragments. This will generate the jar file that contains your custom module. Just drop this file into the plugins directory of your eclipse installation and the new module will be available in the context menu of the application editor.
