
Introduction

The purpose of this document is to suggest a new architecture for the time graph
views by introducing a layer of abstraction. This architecture would decouple the UI
from the data model and the core, which increases the maintainability, testability
and portability of the code base.

To decouple UI and core, we want to extract a serializable model that can populate
other views, for instance, a JavaScript one. This was already done in the XY
Line/Scatter charts. A data provider pattern shall be implemented for time graph.

A high-level view of how time graph is currently working follows.

Current architecture

This is a very simplified class diagram of the current architecture of the control flow
view.

Other views that inherit from AbstractTimeGraphView work relatively the same way
as the control flow view. Thus, following sections will use control flow view as
example. Let’s understand how those classes interact between each other by
showing a simple use case: user opens a trace.

1

1. User opens a trace.
2. Important methods called in ControlFlowView that build the current model

are:
a. buildEntryList() uses a State system to build a collection of

ControlFlowEntry. This method only builds the tree on the left side of
the view. ControlFlowEntry is a composite pattern.

b. zoomEntries() uses a State system to replace the event lists for each
ControlFlowEntry previously built by buildEntryList method. A
collection of TimeEvent is created for each ControlFlowEntry. A
TimeEvent is a rectangle of color on the right side of the view which
represents a state between two timestamps.

3. Once the ControlFlowView has finished building its model, it calls the
refresh method that notifies the TimeGraphViewer that the model is ready.
The viewer then draws the model.

Graphically, a ControlFlowEntry is a row in the control flow view. It
encapsulates a list of TimeEvent shown as colored rectangles. In addition,
the view also has arrows (implemented as a collection of TimeLinkEvent),
bookmarks (shown in red selection in the figure) and tool tips on TimeEvent
and on TimeLinkEvent.

2

The main issue of this architecture is that ControlFlowView class is responsible for
computing the model. Thus, it is highly coupled to the Eclipse platform and we want
to limit that.

The following section presents the data provider pattern applied to time graph. This
document does not cover the solution for bookmark and tool tip. It focuses mainly
on time graph rows (entry on left and list of time events) and arrows. A data provider
pattern could be applied to bookmarks and tool tips too.

Data Provider pattern

The Data Provider pattern is greatly inspired by the Repository/Service pattern.

 The Repository layer is an abstraction on top of the data access. Its
responsibility is to retrieve data, regardless of how it is stored (SQL database,
MongoDB, simple file). In our case, we can consider the state system as the
Repository layer.

 The Service layer is built on top of the Repository layer. This layer contains
business logic. Indeed, once the data is retrieved, the classes of this layer are
responsible to manipulate/modify it. In our case, a Data Provider could be
considered as a Service.

The Data Providers build and return a serializable model. The created model should
be simple (least external dependencies), ready to render and immutable. In addition,
the Data Providers should be RESTful as much as possible.

As HTTP responses, it will also work with status. The following class diagram shows
how Data Providers are used for XY Charts and TreeViewer.

3

 The Data Provider’s clients only manipulate a ResponseModel. They don’t
care how it is built. They only know an IDataProvider which is responsible to
return a ResponseModel.

 The ResponseModel encapsulates a Status. In our case, a status could be:
RUNNING, COMPLETED, CANCELED or FAILED. Then, it’s the data provider
client’s responsibility to deal with each status (requesting again, log error,
stop requesting, etc.)

 The IDataProvider needs a QueryFilter. Basically, a QueryFilter encapsulates
all required information to compute a model. For example, the
CpuUsageDataProvider (a subclass of XYDataProvider) needs the selected
thread and CPU to compute the CPU usage for the given thread or CPU.

 The classes implementing IDataProvider are responsible for building the
specific model. For example, XYDataProvider will always create an
XYModel.

Suggested architecture

The design goals of the suggested architecture are:

- A “ready to render” model. Except for getters, no methods should be
available. The model should be immutable and serializable.

o Serializable models are more testable and support multi-language
clients.

o Immutable models are inherently thread safe. This will also lead to
more stable builds and more accurate views.

- In order to reuse the model with other micro services such as a JS view, we
need to limit the size of the model, to minimize the volume of exchanged
data, (especially in the case of remote servers). Querying only the required
data is a possible approach to limit the size of the model.

4

- A new layer of abstraction between the view and the data, Data Providers.
Classes of this layer are responsible for computing and returning the model.

- To limit API break and preserve backward compatibility when possible.
- RESTful

The TimeGraphEntry and ControlFlowEntry classes and interfaces shall be kept.
They will be built by composition in the new model instead of inheritance (to avoid a
diamond pattern). The logic behind computing the model is moved to the Data
Provider layer. This layer will be in core packages.

Classes presented in the previous class diagram should be preserved. They are part
of “Front-end” layer. Now, let’s introduce new classes in order to reach the goal
architecture.

The blue dotted rectangle preserves the current architecture and isolates the
current classes in the front-end. Instead of keeping fields like name, start time,
end time, the TimeGraphEntry now encapsulates a TimeGraphRowModel to
avoid breaking the API. Classes inside the red dotted rectangle are part of the core
package and should be common/reused/extended by other TimeGraphView

5

implementations. To support grouping, the TimeGraphEntryModel has his parent’s
ID. It’s the view’s responsibility to show either a flat or hierarchical structure.

Before/After analogies

 TimeGraphRowModel is a model for the current TimeGraphEntry.
However, it no longer references its parent directly but has a parent ID (int)
field. We use the parent's ID to rebuild the tree in the front end, thus avoiding
double linkage in the model and slightly reducing its size.

 TimeGraphState is a model for the current TimeEvent. For the
ControlFlowView, some states must show a label, for example system calls.
So, when needed, TimeGraphState’s label field should be set only if the size
of the rectangle allows to. An other stategy to limit the model size is to use a
presentation provider for repeating labels.

 TimeGraphArrow is a model for the current TimeLinkEvent. It no longer
references its source and destination entries directly but has a source and
destination ID.

All models in red dotted rectangles are immutable. They are intended to be simple
and contain only "ready to render" information.

Use case: user open a trace

Now, let’s see how Data provider impacts the use case presented in previous
architecture.

6

With the Data Provider, the ControlFlowView class is no longer responsible for
computing and building the model. Its logic is moved to fetch methods of the data
provider and returns a “ready to render” model. The model contains only data, there
is no information about the UI (Color, thickness, etc). The view's responsibility is to
query the data provider with a start time and end time. Information about UI (Color,
thickness) will be handled by a presentation provider.

ControlFlowView is still responsible for querying the Data Provider until the
analysis is complete. Indeed, ControlFlowView must handle the ModelResponse
according to its Status. If Status is RUNNING, for example, the computed model is
partial and ControlFlowView should wait X milliseconds before requesting the Data
Provider again.

Data provider: main methods

Since we want to limit data transfer, here is a description of available methods of
the data provider, their usage, the parameters and what they return.

Method Usage Parameter Returns
fetchEntries Used only for retrieving

data about the left side of
the control flow view.

A list of
TimeGraphEntry
Model

fetchRowModel Used only for building the
events of the time graph.

Start time
End time
Resolution
List of
TimeGraphEntr
yModel ids

A list of
TimeGraphRowM
odel

fetchArrows Use only for retrieving
arrows.

Start time
End time
Resolution

A list of
TimeGraphArrow
s

Estimated sizes of transactions and amount of
transactions

 fetchEntries() : the size of the model is proportionate to the number of
entries in the trace. This method should be polled until the analysis is
complete, it does not change afterward.

 fetchRowModel() : the size of the model is proportionate to screen size
(because we have a virtual view that queries only visible items). Worst case is
having one event per horizontal pixel and one entry per vertical pixel. For a
FullHD screen, that means ~2 million elements. This method is called every
time a zoom/pan is done on the time graph.

7

 fetchArrow() : for the ControlFlowView, the number of arrows is
proportionate to the number of horizontal pixel and the number of CPUs. This
method should be called every time a zoom/move action is done on the time
graph.

Comparison of two architectures:

Potential gains:

 Testable
 Maintainable
 Reusable
 Reduced responsibility of the view

Potential issues:

 Performance due to copying the model into the ViewModel
 Complexity
 Response time
 Presentation provider and tool tip handling? Making sure all the features still

work.

8

	Introduction
	Current architecture
	Data Provider pattern
	Suggested architecture
	Before/After analogies
	Use case: user open a trace
	Data provider: main methods
	Estimated sizes of transactions and amount of transactions
	Comparison of two architectures:

