
AspectJ 1.8.0 Release Review - 2Q2014

Planned Review Date: [Date]

Communication Channel: aspectj-
users@eclipse.org, aspectj-dev@eclipse.org

Andy Clement

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Introduction
 AspectJ is a seamless extension to Java that adds

the ability to capture cross-cutting concerns
 It adds a few new keywords and constructs (e.g.

pointcut, aspect) to the Java language and provides a
compiler that understands these extensions

 The compiler is a modified form of the JDT core compiler

 It also includes a weaver that can be used to apply
cross cutting concerns to code that has previously
been compiled to bytecode

 The weaver can be used as an offline post-compile step or
as a load-time weaver.

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Features
 AspectJ major/minor version numbers have

traditionally tracked Java version numbers

 AspectJ 1.8.0 is the first Java 1.8 version of AspectJ

 AspectJ takes and modifies the JDT compiler. For 1.8.0
AspectJ has been rebased on the 'Java 8 patch' released
alongside Eclipse 4.3.2.

 Basic 1.8.0 readme:

http:www.eclipse.org/aspectj/doc/released/README-180.html

 Simply showing ability to use 1.8 constructs in AspectJ
code.

http://www.eclipse.org/aspectj/doc/released/README-180.html

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Features
 Weaving into Java8 code

 Required updating to using the asm toolkit v5 as it
understands Java8 bytecode (actual version: v5.0.1)

 Required updating the bcel derivative used in AspectJ to
understand Java8 bytecode (e.g. TypeAnnotation
attributes)

 Fewer features in AspectJ 8 because resource was
spent helping Eclipse itself support Java8

 Type annotations, lambda serialization

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Features
 Weaver upgrade for Java 1.8

 On the back end the AspectJ weaver has been upgraded
to understand the new bytecode changes in Java 1.8

 It already understood bootstrap
methods/invokedynamic since AspectJ 1.7

New changes to support included type annotation
attributes in the classfiles

Only tolerating these features for now, not exploiting
them

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Non-Code Aspects
 The readmes for each release continue to provide the

most up to date documentation, some of the new
features discussed in these do need folding into the
main documentation.

 All the existing documentation (getting started,
reference material, etc) remains valid and relevant to
AspectJ 1.8.0

 Moved to git from cvs for 1.7.0 release

 Ditched some unwanted code/modules in the move

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

APIs
 Primary API exposed for integration into AJDT

 recent releases have increased the granularity in the API
to enable finer grained interactions between AJ/AJDT →
improving incremental compilation

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Architectural Issues
 On the front end AspectJ continues to be based on a

modified JDT core compiler, there is no real need for
additional extensibility in this area

 However, continuing to maintain a large 'patch' on JDT
core does slow down the ability to keep up with Eclipse
versions

 There were concerns as to whether the patching could be
done in the same way on ECJ for Java 8 because Java 8
is such a big change, but it appears to be OK

 Experimenting with different patching approaches to
reduce the amount of patch work (using diffs rather than
file-by-file compare)

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Tool Usability
 For the Eclipse UI, defer to the AJDT project
 As a pure compiler/weaver the project is currently

actively (and successfully) used through:

 Command line batch invocation

 Loadtime weaving (-javaagent)

 Maven AspectJ plugin

 Gradle (no central plugin but a number of users building
their own custom plugins pulling in AspectJ)

 The maven plugin does fall behind with supporting
new options as it isn't the AspectJ team maintaining it
– we may try to get more involved with it

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

End-of-Life
 AspectJ continues to maintain a high degree of

backwards compatibility. Programs compiled with
versions back to AspectJ 1.2 will work just fine with
the latest AspectJ release

 Nothing is being end-of-lifed/removed in 1.8.0

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Bugzilla

 Bugs/Enh opened since 1.7.0: 90
 Bugs/Enh resolved since 1.7.0: 73
 Total bugs/enh open against AJ: 412bugs 205enh

 No P1 Bugs open

 Bugzilla could still do with a pass to close a number
of the minor/niche problems that we just won't get to
in the foreseeable future

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Standards
 J2SE

 AspectJ now utilizes generics in its source code

Requires Java 1.5 (this is a divergence from JDT core
which only requires Java 1.4)

 Code generated by AspectJ can run on Java 1.1 and later

 AspectJ 1.8.0 can now cope with compiling Java 1.8
source code or weaving into previously compiled Java 1.8
class files

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

UI Usability
 Defer to AJDT project for Eclipse UI usability

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Schedule
 AspectJ 1.8 builds were made available very early (July 2013)

due to requirements from other projects (Spring Framework).
 The most recent AspectJ available included the Kepler SR2

Java8 patch and was released on the same day as Java8
 Basic upgrade to Java 1.8 was relatively easy as AspectJ

could build upon the work done in JDT core

 In recent user testing, some issues occurring that will need
to be fixed before 1.8.0 release, related to the impact of
type annotations on type bindings in Eclipse JDT

 AspectJ 1.8.1 likely at the same time as Luna

 Folding in Eclipse JDT Java8 fixes made in that timeframe

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Communities
 Mailing list continues to be the most active place for

AspectJ discussions – 99% of posts getting a
response within 24hours

 Bug triage time a little worse than the 'within 48hours'
it used to be

 Inclusion of AJDT in SpringSource Tool Suite drives
some traffic on the STS forums related to AspectJ

 Blog on AspectJ and other eclipsey stuff:
http://andrewclement.blogspot.ca/

 Could do with a recent article!

http://andrewclement.blogspot.ca/

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

IP Log
 Nothing unusual to report for 1.8.0

 Moved to asm version 5.0.1 (from orbit)

 Iplog hosted here:

 http://www.eclipse.org/projects/ip_log.php?projectid=tools.aspectj

http://www.eclipse.org/projects/ip_log.php?projectid=tools.aspectj

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

IP Issues
 The EMO explicitly asks during the Release Review if

any Member would like to assert that this release
infringes their IP rights.

 If so, the EMO and the project will follow the Eclipse
IP Policy in discussions with that Member.

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Project Plan
 http://www.eclipse.org/projects/project-plan.php?projectid=tools.aspectj

 Work items on the horizon

 persistent build state to avoid full builds being required on
eclipse startup

 For the 'Spring insight' project

more memory optimization work

more loadtime weaving performance work
 Future plans may include

 adding new language constructs to support weaving of the
 invokedynamic instruction

 pointcuts that match and bind on type annotations

http://www.eclipse.org/projects/project-plan.php?projectid=tools.aspectj

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

