Option for non-fixed Multiplicity

Requirements:

User needs to be able to specify Non-fixed values for lower and upper bounds of multiplicity, on a per-field/association end/method return etc.

Need to ensure no impact on existing projects/models (this can only be forward compatibility – not backwards!)

Need to control the ability to use non-standard types by a profile setting.

Possible approaches

1. Allow users to add new values to (something like the) existing Enumerated list of Multiplicities “up front” eg in the profile.
2. Implement a fully flexible approach with separate lower and upper bounds.

Approach 1 has the advantage of minimising impact on the existing code base.

The downside is that the user would have to create any new Multiplicity value up front, and if they discover a new multiplicity needed, then they need to add it to the profile (probably), deploy profile etc. In the case of import this would need a complete pass on the model to ensure the profile has all values in it before starting the “real” import.
Approach 2 will require a more thorough and deep rooted change to the code. The usage will be much improved compared to approach 1 though.
While looking at the choices, it would be worth taking a slightly longer term view on the choices in front of us.

Looking at EMF and UML, they group the multiplicity elements of upperBound and lowerBound with attributes like unique and ordered. These are attributes of “ETypedElement” or “MutliplicityElement” interfaces that are implemented by “EAttribute” or “Parameter”.

There may be value in adopting a similar model to smoothe any transition to EMF in tigerstripe core at a later date. This would also reduce some of the confusion that arises from having a RelationEnd which has a multiplicity and also has an IType at the end that has its own multiplicity (which is always 1).

I think in this case Approach 2 is a must, and I recommend that we adopt a similar approach to EMF if we go ahead with this change.
Areas impacted by Approach 2:

Repositories/ Existing models

In the pojo files, the multiplicities are all stored as string in Tigerstripe tags. This is really useful as we can parse these in a different manner to create any new object we like.

This means that we can limit the amount of specialised handling needed internally I think generators and non-deprecated methods in the API are the two min areas.
Core model

Any change will affect the published API, so need to be properly managed. This is the biggest problem with changing to the Interface on the element itself rather than on the type.

In the model, all multiplicities are of type EMultiplicity – an Enumerated list.

We will need to implement a new Interface that is implemented by the appropriate elements.

Auditors

Not sure we do much checking here – just needs a check.
UI

Multiplicities are set through simple drop down lists which display the values of the Multiplicity Enumeration.

This would have to be changed to two separate controls for upper and lower. Need to limit the values? Eg where only 0,1,* are allowed
Diagrams

This looks pretty straightforward for class Diagrams.

We would need to enhance logic for instance Diagrams – potentially complex I just don’t know.

Import Export

These would all need updating to conform to any changes. Probably not too severe as we have full control.
Generators

Need backwards compatibility to continue to support existing multiplicity usage in generators. This is probably quite a bit of work to ensure seamless operation.
Testing

All tests (base and ui) will potentially be affected.
