Tigerstripe EMF-Based Model-API (M-API) – Approach 
E. Dillon – 12/02/09
Overview	1
Milestone M1	2
Milestone M2	3
Milestone M3	4
Milestone M4	4

[bookmark: _Toc89852959]Overview
The current  API offered by Tigerstripe to access the model, either from a template or from Java does not leverage EMF. The whole object hierarchy is proprietary and prevents from treating a Tigerstripe model as-yet-another-emf model with regards to all components available in the Eclipse Modeling project.
The end-goal is to remedy to that by rebuilding the API to the model with EObjects and leverage any of the modeling components as applicable.
This represents a significant overhaul of Tigerstripe, and as such it should be broken up into several steps. 4 major milestones should be considered:
M1. Availability of an EMF based API that can be used programmatically from Java and from Velocity Templates. This API exists in parallel with the old API. The old API is used by Workbench. Both APIs allow to read the model, only the old API allow to write.
M2. Both APIs allow to read/write the model indifferently. Notifications have been fully implemented in the EMF M-API. Tigerstripe still uses (mostly, TBD) the old M-API.
M3. Tigerstripe Workbench uses the EMF based API natively in its implementation.
M4. The current API (marked as deprecated) is completely removed.
By M2, any new development on top of Tigerstripe’s core should use the EMF-based M-API. At this stage, Tigerstripe models can be used natively like-any-other-EMF-based models.
By M3, the old M-API will only remain for compatibility reasons and will not be used by any code distributed by the Tigerstripe project. 
[bookmark: _Toc89852960]Milestone M1
The first milestone should focus on providing all the necessary components to read an existing Tigerstripe model into a set of EMF objects.
This means the following should be taken into account
1. An ECore should be created as the basis for replacing the current IModelComponent object hierarchy. The goal would be that through EMF generation, the result would be “close” to the current IModelComponent object hierarchy and would allow users to navigate through the model.
It is expected that this can be accomplished completely independently of any other task.
2. The persistence layer should be done to account for the “Tigerstripe way” of persisting models: models per projects, cross-project references, modules vs. models, etc… This should leverage the EMF Persistence API, re-use the current parsing/persistence logic, and re-use a lot of the current indexing implemented in the Art. Manager. The result should be a simplified version of the IArtifactMgrSession allowing to go from a ITigerstripeModelProject to its content, and walk references to projects dependencies. The persistence layer could be further abstracted out to allow any ECORE to use the “tigerstripe way” of persisting models (i.e. splitting 1 resource per EObject automatically, project-based/classpath resolution, etc… TBD).
3. In order to ensure the model is read-only, we could already put in place the transaction mechanism. This would force a bit of ground work on the “write” API, yet the implementation would never “provide” a transaction to execute a write during this milestone.
4. This milestone should implement the facet mechanism as well. Here again, the option is to fully abstract out what a facet means for ANY ecore and provide a Tigerstripe implementation, or simply provide a “built-in” Tigerstripe facet. TBD
5. The integration with the Annotation Framework should be provided. Read/Write? Or Read only (i.e. should allow creation of Annotation on EMF-based objects or simply read? It seems since Annotations are stored separately anyway we could do both in one go?)
6. Having the old M-API still there means that a change may trigger a re-parse of a resource as opposed to getting native EMF object changes. This logic needs to be in place though to ensure coherency while using the new M-API.
At the end of this milestone, JUnit tests should allow to read models from projects/modules/references indifferently from old & new M-API. No noticeable performance on queries, facet resolution should be introduced. Both old and new M-API should co-exist from ITigerstripeModel project (you get a IArtifactMgrSession or a IModelManager (e.g.) depending on what you want to use). A similar mechanism would allow to get EMF-based or non EMF-based objects from velocity.
As for validation of the design we should come up with a pure EMF scenario where we read in a Tigerstripe model and leverage some pure EMF component (OCL?) as a demonstration. 
We should also list of the use-cases to validate thru JUnit testing with regards to reading/parsing/faceting… etc.
[bookmark: _Toc89852961]Milestone M2
The focus of this milestone should be on an EMF-based write M-API.
From a highlevel, this should take the following into account:
1. Transactions. No write without transaction. 
2. Listeners should be put in place to handle persistence nicely (no explicit “write()” or “doSave()” any more). This should take into account refactoring: for example changing the name or package of an artifact may lead to a refactor: multiple files created/deleted/updated. Should this be transparent? Should this be an explicit refactor operation? However editing the description of a method or attribute would not lead to a refactor but a simple 1 resource being re-written on disk.
3. Listeners should also be used to fire notifications of model changes. Here we may want to consider that EMF-object-level notifications (EAdapters) are just the native EMF notifications. We may need to have the IModelManagers provide a more coarse grain notification API to mimic what is currently in place on the ArtifactManager as everything else in the workbench relies on it? Should we deprecated the old notifications? Frankly we may need to look at what is in place as now as it may need a bit of “rationalization”.
4. A working copy mechanism should be put in place too. This means allowing the “Editors” to grab a working copy of an object of the model, do local changes on it until they commit it as a whole. Editors already know how to keep track of a local history of changes, so this could be used to build up a transaction that would replay all of the changes (in a smart way, i.e. removing the multiple potential undo-redo). I shall also be noted that the Editor holding the working copy should be notified if the “original” object changes and should apply this changes to the copy: this use case occurs when an editor is open on an artifact that is elsewhere edited (thru a diagram e.g.).
At this stage, it should be possible to read/write models indifferently from one API or the other.  We’d need a proving scenario to validate the API. Maybe re-writing some import/export? Prototype the Editors (as their interactions are fairly self-contained)?
Many JUnit tests to be implemented here to convince ourselves that both the design and all use-cases are covered… which means listing out the use-cases in question.
[bookmark: _Toc89852962]Milestone M3
Scary part comes here. Start removing the old M-API from the workbench code.
Not sure where we’d start. Editors and wizards probably? Adaptation to diagrams could be improved using the fine grain nature of the EMF notifications as opposed to having to figure out what has changed. An attempt of more granular notifications is already implemented in the editors. This could be the tradeoff. Also, this should allow for a better undo-redo overall support.
During this milestone we should also start planning a transition for our users? Adopters? So that by M4 (when the old stuff has disappeared) they are still with us.
It seems that in order for M3 to be successful, we need to carefully cover all use cases in M1 & M2, which means studying the current implementation carefully as the basis for the M1/M2 design and use cases…
[bookmark: _Toc89852963]Milestone M4
Open a good bottle of wine!
Timeline
I think until we understand the use-cases for M3 a bit better we can only guess  timeline for M1/M2. Maybe we could set up a goal of having a timeline by Xmas? Living us a few weeks for ground work/design?
I suspect that a lot of the existing prototyping can be leveraged. Also, we should decide on the value of “generalizing” everything vs. simply providing a built-in version of things for Tigerstripe only.
Finally, where to we build in some of the concept we heard of in Germany, like the versioning system based on changes, rather than changed files; the overall history.
How do we factor in the existing Bugzilla? It seems that once we gotten to a reasonable highlevel design we should identify those bugzillas that are still worth fixing because they’re independent and those that should be postponed until the world is a better place?

Tigerstripe EMF-Based Model-API (M-
API) - Approach

oy Wk b A o s oo

e Tierarie el can b s ety e sy ENF-




