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Abstract

Spontaneous disease extinction can occur due to a rare stochastic fluctuation. We explore this process, both numerically
and theoretically, in two minimal models of stochastic viral infection dynamics. We propose a method that reduces the
complexity in models of viral infections so that the remaining dynamics can be studied by previously developed techniques
for analyzing epidemiological models. Using this technique, we obtain an expression for the infection clearance time as a
function of kinetic parameters. We apply our theoretical results to study stochastic infection clearance for specific stages of
HIV and HCV dynamics. Our results show that the typical time for stochastic clearance of a viral infection increases
exponentially with the size of the population, but infection still can be cleared spontaneously within a reasonable time
interval in a certain population of cells. We also show that the clearance time is exponentially sensitive to the viral decay rate
and viral infectivity but only linearly dependent on the lifetime of an infected cell. This suggests that if standard drug
therapy fails to clear an infection then intensifying therapy by adding a drug that reduces the rate of cell infection rather
than immune modulators that hasten infected cell death may be more useful in ultimately clearing remaining pockets of
infection.
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Introduction

Deterministic models of viral infection have been successful in

fitting experimental data and extracting useful parameter values

[1,2,3,4]. Such models are based on a large population of infected

cells and virions, so they fail to capture some important stages of

viral infection dynamics for which intrinsic stochastic effects play a

dominant role. One of the remarkable phenomena observed in

stochastic population dynamics is spontaneous extinction of a

disease via a rare fluctuation. Small population sizes or heteroge-

neity in populations are some of the determining factors for

extinction to occur. A major characteristic of disease extinction is

the extinction time - the mean time in which the number of infected

cells reaches zero. An estimate of the time required for the infection

to be cleared can be tested during drug treatment on a patient.

The theory of disease extinction should identify parameters that

are most important for determining the extinction time, and hence

suggest processes that one might want to target by drug therapy to

decrease the extinction time. For example, recent experimental

work [5] has proposed a method that predicts the location, timing

and magnitude of the immune response needed for a vaccine to

eliminate persistent infection in the early stages of viral infection.

Models that describe spontaneous virus extinction can be

relevant to various stages of a viral infection. Up to one third of

patients with acute hepatitis C virus (HCV) infection spontane-

ously clear the infection [6]. Because HCV levels reach a plateau

or steady-state level within the first week to two of infection [7], it

is likely that patients who spontaneously clear do so from a steady

state. Spontaneous clearance of HCV infection can take place in

the presence of HCV specific immune responses [8,9]. There has

also been a report on chimpanzees demonstrating the clearance of

HCV infection spontaneously in the absence of a detectable

immune response [10]. More recent studies demonstrate the

clearance of low levels of HCV in humans in the absence of HCV

specific cellular immune responses [11]. These results suggest that

a small population of infected cells in the human liver can be

cleared spontaneously even in the absence of drug therapy or an

immune response. Under drug treatment, a drug may not be

delivered equally well to all infected regions in the body, as

reported for HIV-1 infection [12,13]. Thus, there may be regions

with a small number of infected cells in which drug levels are low

so that stochastic extinction of virus and infected cells may be the

major recovery mechanism in those regions. Spontaneous disease

extinction can also occur during HIV infection propagation at

early stages of the disease. Before entering the blood stream, a

sexually transmitted virus, such as HIV, has to diffuse through the

tissue in the genital tract where it experiences a scarce supply of

susceptible cells and spatial confinement in a strongly heteroge-

neous medium [14]. In such a situation, the infection may enter a

quasi-steady state locally. This state is characterized by a balance

between the rate of virus decay and replication. Spontaneous

infection clearance may take place from such a quasi-steady state.
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In the context of HIV or HCV infection, we will assume that the

total number of infected cells in the considered region, nI, is

relatively small and fluctuates with time so that the size of a typical

fluctuation is of the order of , nI
1/2. In the context of HCV

infection, we will use kinetic parameters estimated in Rong et al.

[27], while for HIV we use parameters discussed by Pearson et al.

[15]. Since an infection can go extinct only due to a rare event,

spontaneous infection clearance is described by the tails of the

infected cell number probability distribution. With these assump-

tions we estimate that the critical population size for spontaneous

clearance of HIV infection is of the order of nI ,10 cells. Our

estimates of the critical population size in infection with kinetic

parameters of HCV demonstrate that when the number of

infected cells in a region is about 40 or less, then spontaneous

clearance would take place during a year.

A theoretical approach to compute fluctuation induced disease

extinction time for non-viral infections was developed recently

based on the so-called semi-classical path integral technique

[16,17,18]. This method has been successfully applied to several

stochastic epidemiological models such as the endemic susceptible

– infected - recovered (SIR), and SI models [19], and the endemic

SIS model [18] to determine the mean extinction time of a disease.

Despite the success in epidemic models, the semi-classical

method has not been applied to viral infections. This can be

explained partly by the relative complexity of stochastic models

that involve both virus particles and infected/susceptible cells. One

of our goals in this manuscript is to show that the complexity of

viral infection dynamics can be effectively reduced in the semi-

classical approach using a coarse-graining technique developed

recently [20,21]. We will show that coarse-graining typically

reduces the models of viral infections to some of the previously

studied types of stochastic SI models.

Before we discuss a general model of interactions between

viruses and infected/susceptible cells, we explore in some detail

two minimal stochastic models of early infection that were partly

explored recently by Pearson et al. [15]. They studied the

extinction probability with the assumption that the infection starts

from a given number of virions and infected cells that are

introduced into a body in which an extremely large number of

cells are susceptible to infection; the question of spontaneous

infection clearance from an endemic state was not considered.

Stochastic simulations of HIV and SIV infection, performed

earlier [22,23,24], show that during early infection, the number of

virions and infected cells either both reach zero implying

extinction or they both eventually reach constant quasi-steady

state values at which the infection is maintained. Our semi-

classical technique complements the study by Pearson et al. [15]

by allowing us to consider more complex behavior such as

infection extinction from a metastable state.

Methods

Models of Viral Infection
We will concentrate on the two models studied by Pearson et al.

[15], the continuous virus production model (Model 1) and the

burst model of viral production (Model 2); however, our approach

can be easily extended to arbitrary systems. As in Pearson et al.

[15], we assume all virions are equivalent and equally infectious

and thus ignore non-infectious or defective virus particles. As

discussed by Pearson et al. [15], it is not known whether viral

production in HIV occurs in a burst or is continuous. Burst

production may be a reasonable approximation for viral

production from activated T cells, while continuous production

may be more relevant for production from resting T cells or

macrophages. Since HCV infection generally does not kill the cells

it infects [25], production of HCV is most likely continuous.

Model 1 (Continuous viral production). The kinetics of

Model 1 is explained in Figure 1(a). Virus, V, can infect susceptible

cells, T, with rate constant k, VzT �?k I . We neglect variations

in the number of target cells and hence this reaction can be written

as V �?kT
I . During its lifetime, an infected cell, I, continuously

produces virus particles with rate Nd, where N is the total number

of infectious viral particles produced by a cell during its lifespan

and 1=d is the average lifespan of an infected cell. Virus particles

are cleared and infected cells die, respectively, with rates c and d.

Model 2 (Burst model). Some viruses, rather than being

produced continuously by an infected cell, leave the cell in a large

burst that usually kills the cell as they exit. The kinetics of this

model is explained in Figure 1(d). Once an infected cell dies, it

releases N..1 virions in a single burst. The deterministic

equations for the burst model (Model 2) and the continuous

production model (Model 1) are identical. However, Pearson et al.

[15] showed that the stochastic effects in these two models are

different. Our coarse-graining approach will explain and quantify

this observation naturally.

Initially we assume that the number of susceptible cells is much

larger than the number of infected cells. In this case, we can neglect

variations in the number of target cells and assume that kT is a

constant. This is the case that was previously considered by Pearson

et al. [15]. We will explore it in the present work as well but this time

we will use our new semiclassical coarse-graining approach.

At later stages of the infection, virus may infect many of the

available susceptible cells and reach an equilibrium metastable

state. This equilibrium depends on how new susceptible cells are

produced or diffuse into the region of interest. Here we will

consider a few examples by assuming that the total number of cells

is kept constant, Nt, so that nI = Nt – nT,. where nI and nT are the

numbers of infected and target cells, i.e., cells susceptible to

infection, respectively.

The assumption of a constant total number of cells has been

made in models of hepatitis B virus (HBV) and hepatitis C virus

(HCV) infection of the liver [26,27]. The liver is known to

regenerate if it is damaged and a homeostatic process returns the

liver to its original size. In HIV infection total CD4+ T cell

numbers are not maintained constant over the disease course.

However, since T cell depletion occurs on a time scale of years,

with the T cell count on average falling from 1000/1000=mL to

200=mL over about 10 years. Thus, over shorter periods, say days

to months, the CD4+ T cell level is relatively constant in the

chronic stage of disease. Thus, this approximation may be valid in

such circumstances. We will explore the case in which the total cell

population is held constant in the present work and use our

semiclassical coarse-graining approach to calculate the probability

to escape from this metastable state.

We will use the mean field assumption that in the considered

region all uninfected cells are equally susceptible to infection by all

virions. This assumption, however, does not restrict us in choosing

a dependence of the viral infection rate kT on the total number of

cells Nt, in the region of interest. There are two types of

dependence, which emerge from different conditions. The first

corresponds to a linear dependence of kT on the number of

susceptible cells, i.e., kT~k01(Nt{nI ), where k01 is a constant.

This scaling is expected in a region where the law of mass-action

should hold, i.e., a region that is well-mixed with fixed spatial

dimensions and mobile susceptible cells and virions. Hence, we

will discuss it in the context of HIV infection, in which virions and

susceptible cells are assumed to be trapped in a finite region from

which they are unlikely to escape. We note that the parameter k01

Spontaneous Infection Clearance

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e38549



in kT~k01(Nt{nI ) is an effective parameter that depends on the

spatial dimensions of the considered region, since in a mass-action

context k01 would be multiplied by a cell density, i.e. (Nt{nI )
would be divided by the volume of the region and similarly k01
would implicitly need to be multiplied by this same volume. Since

experimental data on infection kinetics within a region of known

volume are not presently available, for demonstration of our

method, we will use effective parameters that were previously used

by Pearson et al. [15] in their studies of the early HIV infection.

Another scaling emerges when the region of interest contains a

dense population of immobile cells, so that the spatial dimensions

of the region increase with Nt. In this case the probability of any

given susceptible cell to be infected by a given virion decreases

inversely proportional to Nt. In such a case, we will assume

kT~k01
Nt{nI

Nt

: We will consider this type of scaling during our

discussion of HCV infection of cells in the liver. Here we note that

in this case, the parameter k01 has a clear physical interpretation; it

is the rate of collision of a virion with cells during the virion

diffusion multiplied by the probability that upon collision with a

susceptible cell that cell becomes infected. Because we assume k01 is

constant, i.e. the virus collides with cells at a constant rate, the size

of the region under consideration must be small. As we shall show,

the value of k01 do not depend on the spatial dimensions of the

considered region, and hence estimates of this parameter can be

obtained from clinical data about average virus kinetics. Thus, our

calculations in this second case can be performed completely using

only known facts about average kinetics of HCV infection.

Deterministic Scenario
Before considering stochastic effects, we note that the

deterministic equations for the concentration of virus, V, and

infected cells, I, in Model 1 can be written in the following form:

dV

dt
~{ kTzcð ÞVzNdI

dI

dt
~{dIzkTV

ð1Þ

Figure 2(a) shows the evolution of the number of infected cells at

constant kinetic rates using Gillespie’s stochastic simulation method

[28]. We use the following parameter values kT = 10 day21, c = 20

day21, d = 1 day21, previously used by Pearson et al. [15] in their

numerical simulations of HIV dynamics during the initial stage of

infection, but set N = 30. The actual number of infectious virions

released during chronic infection is not known. Chen et al. [29]

estimate that in SIV infection about 50,000 SIV particles are

released, but the fraction that are infectious has been estimated to be

between 1 in 1,000 to 1 in 10,000, suggesting that N should lie

between 5 and 50 [15]. However, recent estimates of the basic

reproductive number, R0, for HIV suggest each infected cell infects

about 10 others [30], and N would necessarily have to be 10 or

larger, and thus we have set N = 30. In these simulations, the

number of infected cells grows exponentially with time. Figure 2(b)

shows that if the depletion of susceptible cells is taken into account

(see Text S3), so that kT is no longer constant, kT~k’1 Nt{nIð Þ,
the number of infected cells reaches a steady state.

Fluctuations
The dynamics of a stochastic system can be described by the

birth- death master equation for the transition probabilities. For

Model 1, the master equation for the probability of having nV

viruses and nI infected cells at time t is given by

Figure 1. Schematic representation of viral infection models, (a) Model 1 (b) Comparison with simple SIS model (c) Comparison of
effective Hamiltonians for both these models (d) Model 2 (e) Comparison with simple SI model (f) effective Hamiltonian for both
these models.
doi:10.1371/journal.pone.0038549.g001
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LP nV ,nI ,tð Þ
Lt

~ kTzcð Þ nVz1ð ÞP nV z1,nI ,tð Þ{nV P nV ,nI ,tð Þ½ �

zNdnI P nV {1,nI ,tð Þ{P nV ,nI ,tð Þ½ �

zd nIz1ð ÞP nV ,nIz1,tð Þ{nI P nV ,nI ,tð Þ½ �

zkTnV P nV ,nI{1,tð Þ{P nV ,nI ,tð Þ½ �,

ð2Þ

and for Model 2 the master equation is given by

LP nV ,nI ,tð Þ
Lt

~ kTzcð Þ nV z1ð ÞP nV z1,nI ,tð Þ{nV P nV ,nI ,tð Þ½ �

zdnI P nV{N,nI ,tð Þ{P nV ,nI ,tð Þ½ �

zd nIz1ð ÞP nV ,nIz1,tð Þ{nI P nV ,nI ,tð Þ½ �

zkTnV P nV ,nI{1,tð Þ{P nV ,nI ,tð Þ½ �:

ð3Þ

Solving these master equations would provide a complete

description of the time evolution of the stochastic system, but in

general it is impossible to obtain explicit solutions for the master

equation.

Semi-classical Treatment of the System’s Dynamics
For our models, it is impossible to get a closed form solution for

master equations, and reasonable approximations are needed.

Here we will employ an eikonal approximation to recast the

problem in terms of an effective classical Hamiltonian system. This

semi-classical method can be applied to simplify analysis of

fluctuations, including rare event statistics, when the number of

interacting objects is relatively large. This method has been used

earlier to calculate the rare event statistics in reaction diffusion

systems [16] and it has been applied to various epidemiological

stochastic models (SI, SIS, SIR) as examples [18,19].

Our goal is to find the generating function,

G(xC ,t)~
P?

n~0

exC
:nP(n,t), where n is the vector of populations.

Components of this vector are numbers of agents (i.e. virus

particles, infected cells) of each type participating in a process. For

example, in our modelsn~(nV ,nI ), where nV is the number of

virions and nI is the number of infected cells. Note that with every

vector of populations, we associate a vector of conjugated

variables, xC . In our models, xC~(xC,V ,xC,I ). Knowledge of the

generating function provides information about all measurable

characteristics, including the extinction probability.

The master equation can be transformed into a Schrödinger-

like equation for the evolution of G with effective quantum

Hamiltonian, ĤH[16].

LG

Lt
~ĤHG ð4Þ

Here we do not provide the derivation of the semi-classical

approach and refer the reader to Text S1 as well as original

reviews and publications [16,18,31]. We only summarize the

procedure for obtaining the generating function by this technique:

1. The method starts with using the eikonal ansatz

G(xC ,t)~e{S(xC ,t):

2. By considering the trajectories that dominate the dynamics, it

was found that S(xC ,t) is given by

S xC ,tð Þ~
ðtf
0

_xxnzH n,xð Þð Þdt, ð5Þ

where x tf

� �
~xC and the function H, which we will call the

Hamiltonian, is obtained as follows:

Figure 2. The number of infected cells nI versus time t, for Model 1 with multiple stochastic runs (a) kT = constant, (b)
kT~k01(Nt{nI ). nI (0) = 0, nV (0) = 10, kT = 10 day21, N = 30, c = 20 day21, d = 1 day21, Nt = 1000, andk’1 = 0.01 day21.
doi:10.1371/journal.pone.0038549.g002
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Every elementary reaction contributes a specific term to H. For

example, if a reaction corresponds just to a creation of particles

with time according to a Poisson distribution, PP
n ~

(kt)ne{kt

n!
,

then a corresponding term in the Hamiltonian is

HP xð Þ~k ex{1ð Þ. There are other rules that we will need in this

article [20,21,31]:

2a) Let us consider a reaction describing a Poisson process of

conversion of particles of the type A into particles of the type B

given by.

mAA �?k mBB, ð6Þ

with some rate, k, which may depend on the number of all types

of particles in the reaction diffusion system. The corresponding

term in the Hamiltonian is given by.

H~k emBxB{mAxA{1ð Þ, ð7Þ

where xA and xB are conjugate variables to A and B. A detailed

derivation of Eq. (7) via a stochastic path integral approach is

provided in Text S1.

2b) When mB is not a constant, but some random variable with a

distribution P(mB), then exB in Eq. (7) is replaced by

z xBð Þ~
P
mB

exBmB P mBð Þ:

The latter rule follows from the fact that the Hamiltonian can be

derived from the form of the generating function, Z x,tð Þ, of the

given reaction at constant parameters [20,21], i.e.

Z x,tð Þ:
P
n

Pn tð Þenx~eH xð Þt. That is, if we find Z(x,t) with an

assumption that concentrations of particles are constant, we can

identify the Hamiltonian of the reaction. A Poisson process that

creates bursts of particles, with rate k and with each burst

described by the function z xBð Þ defined in the rule 2b), has the

generating function Z xð Þ:
P
n

PP
n z xð Þn~eHP z xð Þð Þt~ekt z xð Þ{1½ �.

More rules about constructing terms in the Hamiltonian that

correspond to various types of reactions can be found in earlier

publications [20,21,31].

3.Vectors, n(t) and x tð Þ in Eq. (5), are obtained by solving the

Hamiltonian equations.

_nn~
LH

Lx
, _xx~{

LH

Ln
ð8Þ

with boundary conditions, n t~0ð Þ~n 0ð Þ and x tf

� �
~xC . We

can then substitute the solutions of Eq. (8) into Eq. (5) to obtain the

generating function.

Following the above rules, (Eq. (6–7)) and examination of each

term in Model 1, the Hamiltonian is given by.

H1~kTnV exI {xV {1ð ÞzdNnI exV {1ð Þ

zcnV e{x
V {1ð ÞzdnI e{x

I{1ð Þ,
ð9Þ

where there are four terms corresponding to each elementary

reaction in Figure 1(a).

For Model 2 (burst model of virus production), the Hamiltonian

is the sum of three terms.

H2~kTnV exI {xV {1ð ÞzdnI eNxV {xI {1
� �

zcnV e{x
V {1ð Þ

ð10Þ

The latter Hamiltonian, H2, was derived assuming that number

of viruses produced per infected cell is a constant. Following the

rules described in 2b), if N is the mean of a Poisson distributed

number of produced viruses, the Hamiltonian for Model 2 should

rather be written as.

H2~kTnV exI {xV {1ð ÞzdnI ee
N xV {1ð Þ

{xI {1

� �
zcnV e{x

V {1ð Þ
ð11Þ

Note that the second term in H2 follows from the rule 2b), where

z xVð Þ~eN(e
x
V {1) is the generating function of Poisson distributed

virus particles with mean N. Hamiltonian equations of motion in

both cases are given by.

_nnI~
LH

LxI

, _nnV ~
LH

LxV

_xxI~{
LH

LnI

, _xxV ~{
LH

LnV

ð12Þ

Results

Coarse-Graining
Equations. (9), (11) and (12) are a substantial simplification

compared to the master equation because they are a set of a few

ordinary differential equations in comparison to master equation,

which is an infinite set of coupled differential equations for the

probabilities of all possible events. In comparison to similar

equations for SIS models, Eqs. (9) and (11) are still relatively

complex and cannot be solved explicitly in a closed form. To

resolve this problem, we note that in many applications, virus

kinetics and kinetics of living cells are characterized by different

time scales, namely, a single virus particle, when it is not inside an

infected cell, is cleared from the body on a much faster timescale

than the lifetime of an infected cell [1,2,4]. To be able to

propagate, virus should multiply in large numbers (N.1) and

infect cells as quickly as possible. Thus virus dynamics can often be

considered fast in comparison with infected cell dynamics.

The approach of using such a time-scale separation in the

semiclassical equations was developed previously [20,21]. The idea is

that fast degrees of freedom can be considered equilibrated at current

values of slow variables, so that time-derivatives in Eq. (12) of the fast

variables can be set to zero. The approach is commonly used in viral

dynamic modeling and in that field is called a quasi-steady state

assumption [32]. In particular, considering virus clearance to be fast,

we can eliminate the virus-related variables by setting.

LH

LxV

~0,
LH

LnV

~0: ð13Þ

This reduces some of the differential equations to algebraic

equations that can be solved explicitly, i.e., from Eq. (13) we obtain

Spontaneous Infection Clearance
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nV ~nV (nI ,xI ) and xV ~xV (nI ,xI ). For example, for Model 1, by

the elimination of the fast dynamics of the virus,

nV~
kTexI zcð ÞNdnI

kTzcð Þ2
, xV ~ ln

kTexI zc

kTzc

� �
: ð14Þ

We then substitute this result back into the expression for the

Hamiltonian and obtain the effective Hamiltonian that describes the

lower-dimensional evolution of slow variables only. For Model 1,

the effective Hamiltonian reduces to.

H
eff
1 nI ,xIð Þ~nI

kTNd

kTzc
exI {1ð ÞznI d e{xI {1ð Þ: ð15Þ

According to Eq. (15) and rules 2a-2b, Model 1 reduces to a

previously extensively studied SIS model as shown in Figure 1(b) in

which an infected cell either produces one more infected cell or

dies, and both processes are exponentially distributed with time, as

we illustrate in Figure 2(a). For this SIS model shown in Figure 1(b),

one can write the master equation which can be solved exactly for

the mean and variance using the generating function technique.

These results can be used further to make estimates of the key rate

parameters from experimental data that describe the primary

phase of a viral infection even for a single sample as shown in Text

S2 and Figure S1.

The effective Hamiltonian for Model 2 with a Poisson

distribution of burst sizes, Eq. (11), after elimination of the fast

viral degrees of freedom is given by.

H
eff
2 nI ,xIð Þ~nI d e

{xI z kTN
kTzc

exI {1ð Þ{1

� �
: ð16Þ

The form of H2
eff in Eq. (16) corresponds to the decay of

infected cells with rate nI d, which when this happens, leads to an

elimination of one infected cell and creation of a burst of new

infected cells. Actually, Eq. (16) corresponds to the process, in

which there is a burst release of free viruses which then either

quickly decay or infect new cells. The number of newly infected

cells per burst has Poisson statistics. Hence, a branching stochastic

process Model 2 is reduced to an effective one as described in

Figure 1(e). If a fixed burst size is assumed then starting from Eq.

(10) after eliminating fast variables one obtains.

H
eff

2 fixedNð Þ~dnI e{xI
kTexI zc

kTzc

� �N

{1

 !
ð17Þ

The two Hamiltonians, H1
eff and H2

eff describe evolutions of the

number of infected cells in Models 1 and 2. The different forms of

H1
eff and H2

eff mean that the behavior of fluctuations in the two

models is very different. Nevertheless, the Hamiltonians, H1
eff and

H2
eff, lead to essentially the same type of behavior for the mean

number of infected cells. It is well known that the equation for an

average quantity is given by [16,17,18,31]:

S _nnIT~
LH

LxI

DxI ~0 ð18Þ

Then, for constant parameters, Eqs. (15), (16) and (17) all

predict that.

SnIT~nI 0ð Þ exp d
kTN

kTzc
{1

� �
t

� �
: ð19Þ

In this section, we showed that using the coarse graining

approach [20,21] it is possible to reduce the complexity of models

of viral infections. The resulting Hamiltonian dynamics can be

analyzed with the same approach as in previously studied SI

models (see Text S3, Figure S2, for a model that includes

susceptible cells, i.e. target cells, in addition to virions and infected

cells).

Effective Hamiltonians can be used further to study infection

kinetics on a coarse-grained level. For illustration, we will consider

both models as examples and use the coarse graining technique to

calculate disease extinction time.

Spontaneous Infection Clearance
The extinction of a disease occurs along a trajectory in the

phase space of the classical Hamiltonian known as the optimal

path trajectory [33]. The probability of disease extinction

decreases exponentially with increasing population size. The

mean extinction time of the disease along the Hamiltonian

trajectories that start from the metastable state and end at the

extinction state where the number of infected cells reaches zero

has the form.

t~s{1 exp {Sð Þ, ð20Þ

where S is known as action in classical physics [31]. A precise

estimation of the prefactor s can be a hard task because it is

influenced by the non-semiclassical and geometric phase correc-

tions to our approximations. Its precise value is, however, not

important because Eq. (20) is dominated by the exponent. Using

arguments in Reference [13] one can estimate that s ed.

As was discussed earlier, disease extinction is a rare event. Due

to an unusually strong fluctuation the system can jump from its

equilibrium metastable state to the extinction state along an

optimal path that minimizes the action S. The optimal Hamilto-

nian trajectory that describes S starts from the metastable state and

ends at the extinction state. Since the probability of extinction is

found by minimizing the action, we compute such trajectories

satisfying the zero energy condition, i.e., H = 0, as discussed in

Reference [13]. This strongly simplifies further calculations

because virus degrees of freedom are already eliminated, and

one does not have to solve Hamiltonian equations explicitly.

Instead, from H = 0, one can find how nI depends on xI along this

trajectory and then the action has the form.

S~{

ð0
�nnI

xI nIð ÞdnI~

ðxI nI ~0ð Þ

xI nI ~�nnIð Þ
nI xIð ÞdxI , ð21Þ

where �nnI is the number of infected cells in the steady state.

At the metastable state, the average number of infected cells is

given by.
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dSnIT
dt

~
LH

LxI

DxI ~0~0, ð22Þ

such that SnIT~�nnI

Consider the problem of spontaneous infection clearance from

the metastable state in Model 1 and Model 2.

We first assume a finite well-mixed population of virions and

cells such that kT~k’1 Nt{nIð Þ, where k’1 is a constant, and Nt is

the total number of cells.

Model 1
Following the above methodology, the number of infected cells

in the steady state for Model 1 is.

�nnI~Nt{
c

k’1 N{1ð Þ : ð23Þ

Using the relation kT~k’1 Nt{nIð Þ and equating the effective

Hamiltonian for Model 1 to zero we get the following algebraic

equation for the number of infected cells.

nI xIð Þ~Nt{
c

k’1 NexI {1ð Þ , ð24Þ

where xI nI~�nnIð Þ~0 and xI nI~0ð Þ~ ln
czk’1Nt

Nk’1Nt

� �
: Substi-

tuting Eq. (24) into Eq. (21) one can calculate the action S and

from it the mean extinction time according to Eq. (20).

S~

c ln cN

N{1ð Þ czk’I Ntð Þ

� �
zk’I Nt ln

Ntk’I N

czk’I Ntð Þ

� �
k’I

: ð25Þ

Model 2
Similarly, following Eq. (22).

�nnI~Nt{
c

k’1 N{1ð Þ : ð26Þ

Again equating the Hamiltonian for Model 2 to zero yields.

nI xIð Þ~Ntz
cxI

k’1 xIzN 1{exIð Þð Þ : ð27Þ

Substituting this into Eq. (21), S can be computed numerically.

Figure 3(a) shows the numerically computed mean extinction

time t as a function of Nt for both of these models with parameter

values applicable to HIV dynamics. While the two models predict

quantitatively different exponents, qualitatively they lead to similar

conclusions at realistic parameter values. For a total population of

around 70 to 80 cells in an isolated region, one is likely to see

spontaneous infection clearance within several days. As a practical

matter spontaneous extinction can take place only up to a critical

cell number. As Nt increases further, the extinction times become

so large that they become unreachable, suggesting that the

infection cannot be cleared spontaneously at those conditions.

From Eq. (24) or (27) one can compute that for the parameters

used in Fig. 3, when Nt = 80, the number of infected cells is about

11. Thus spontaneous clearance in a few days would only be

expected to occur in small foci of infected cells of order 10 or less

as shown in Figure 3(b). Further, as one can see from the figure

spontaneous clearance is more rapid when virus production is

continuous (model 1) than when it occurs in bursts (model 2).

Let us now switch to the case for which kT~ k’1
Nt

Nt{nIð Þ. One

can calculate the mean extinction time for both the models using

the same methodology as above:

Model 1

�nnI ~ Nt{
cNt

k’1 N{1ð Þ : ð28Þ

nI xIð Þ~ Nt{
cNt

k’1 NexI {1ð Þ , ð29Þ

wherexI nI~0ð Þ~ ln czk’1
Nk’1

� 	
and xI nI~�nnIð Þ~0:

S~Nt ln
cNt

k’1 N{1ð Þ

� �
z

Nt czk’1ð Þ
k’1

ln
cN

czk’1ð Þ N{1ð Þ

� �
ð30Þ

Model 2
Using Eq. (22) and equating the Hamiltonian in Eq. (16) to zero,

we get.

�nnI~Nt{
cNt

k’1 N{1ð Þ ð31Þ

nI xIð Þ~Ntz
cxI Nt

k’1 xIzN 1{exIð Þð Þ : ð32Þ

The action S can then be calculated numerically using the above

set of equations.

From the action, S, one can numerically calculate the mean

extinction time, t, as a function of Nt, this time, in the context of

HCV dynamics where kT~
k’1
Nt

Nt{nIð Þ. Unlike HIV and HBV,

HCV is a chronic infection that can be cured in patients by

antiviral therapy [2,34]. Spontaneous clearance of HCV infection

has also been reported, both in the absence and presence of HCV-

specific cellular immune responses [11,26,35], and our theory can

make predictions about the size of regions in the liver that can be

cleared spontaneously. It has been estimated that in the absence of

treatment about 5%–20% of hepatocytes (liver cells) are infected

during chronic HCV infection [36,37]. Taking the geometric

mean of these estimates, we shall assume 10% of hepatocytes in

any region of the liver are infected. Further, as done by Rong et al.

[34], we assume that due to different states of differentiation or

due to some cells being in an interferon-induced ‘‘antiviral state’’

only about 50% of hepatocytes are targets of HCV infection at any

time (i.e., Nt is about 50% of hepatocytes in any region being

considered and hence k’1~kT=0:8). Then using previously
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estimated parameter values characterizing HCV infection, c = 6.2

day21, d = 0.14 day21, N = 336, kT = c=N[34], we find

k’1 = 0.023 days21. Figure 4(a) shows the numerically calculated

mean extinction time, t, as a function of Nt for models 1 and 2. We

predict for models 1 and 2, for regions of the liver that contain

around 170 and 85 susceptible hepatocytes (Figure 4(a)) or around

380 and 170 total hepatocytes, respectively, infection can be

cleared spontaneously within a year. If Nt .170 for model 1 and Nt

.85 for model 2, spontaneous infection clearance becomes

practically impossible. With 10% of the total hepatocytes being

infected, for model 1 and 2, within a year, one is likely to see

spontaneous infection clearance in a small region with around 35

or 17 infected cells respectively (Figure 4(b)). It is also seen from

Figure 4(b) that 10 or fewer infected cells are removed from the

human liver spontaneously in about 20 days, while for HIV

infection 10 infected cells can be spontaneously cleared in about 4

days (Figure 3(b)). Also, as in the case of HIV, clearance is more

rapid in model 1 than in model 2. Also, for HCV continuous

production model (model 1) is probably more biologically realistic

than burst production as there is little evidence to suggest that the

virus kills infected cells in vivo.

Ordinary differential equation models of HCV infection and

treatment have shown that there is a critical drug effectiveness, ec,

such that if the drug effectiveness, e, is below ec, the HCV viral

load goes to a new on therapy steady state in which the HCV level

is lower than in the pre-treatment steady state [38]. The drug

effectiveness can be below its critical value when therapy is

suboptimal as appears to be the case in the approximately 50% of

people who do not clear HCV with interferon-based therapy. In

addition, e may be less than ec in regions of the liver where drugs

do not reach properly or in the presence of drug resistant HCV

variants. Our calculations suggest that viral clearance may still

occur when evecdue to spontaneous fluctuations. The closer e is

to ec, the lower the on therapy viral load and the more likely

spontaneous fluctuations can clear the infection. We note,

however, that the presence of such regions in HCV infected liver

in which clearance is spontaneous remains a hypothesis.

We also make an observation that the exponent, S, in Eq. (20)

for the mean time to clearance is independent of the parameter d,

which represents the infected cell death rate. One can show that

the latter rate only enters the prefactor of the exponent, s~dd. Thus

the kinetics of infection clearance is not very sensitive to this rate.

Physically this means that infection clearance is not exponentially

sensitive to the average lifetime of an infected cell. In contrast, we

found that the infection lifetime is exponentially sensitive to the

parameters k’1, N and c, all of which describe virus kinetics.

Discussion

We have developed a theory based on a mixed computational/

theoretical approach to analyze stochastic events in the course of a

viral infection. This method has been applied earlier to stochastic

biochemical networks, such as enzymatic reactions, characterized

by slow non- Poissonian fluctuations [20].

We explored two previously introduced models of viral infection

that involve either continuous or burst production of virus from

infected cells and used the coarse-grained semi-classical treatment

to capture various aspects of the corresponding stochastic

dynamics. During any viral infection, from HIV to the common

cold, it is important to know whether the infection goes extinct or

becomes persistent. We predicted the mean time for infection

clearance in both our models and showed that this extinction time

is sensitive to virus related parameters such as the virion clearance

rate and the virion infectivity. On the other hand, the extinction

time is not exponentially sensitive to the lifetime of an infected cell.

This is in contrast to deterministic evolution models, in which all

kinetic rate parameters are usually equally important and the time

to eliminate an infection by therapy is more sensitive to the lifetime

of an infected cell than other parameters [39]. Thus, if drug

therapy fails to clear an infection and leaves foci of infected cells in

tissues, as has been suggested for both HIV and HCV [13,40],

then intensifying therapy by adding a drug that reduces infection

would seem to be a better strategy that adding an immune

modulator that could increase the rate of infected cell death.

Figure 3. Numerically computed mean extinction time t, (a) as a function of Nt, inset shows the extinction time at higher values
of Nt (b) as a function of nI, solid line: Model 1 and dashed line: Model 2, kT~k’1 Nt{nIð Þ, N = 30, c = 20 day21, d = 1 day21 and
k01 = 0.01 cell21 day21.
doi:10.1371/journal.pone.0038549.g003
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Our theoretical approach provides a method to estimate of the

number of cells in a finite population that can be cleared

spontaneously leading to disease extinction. For parameters

relevant to HIV infection, as used here, we showed that

spontaneous clearance is only likely to occur in small cell

populations, i.e., a population of less than 100 cells (Figure 3(a)).

Thus, once infection is established throughout the body, sponta-

neous extinction is predicted not to occur, consistent with the

observation that essentially no one infected with HIV has

spontaneously cleared the infection. Nonetheless, the theory

predicts that if small isolated clusters of infected T cells exist,

infection could spontaneously die out in individual clusters. Note

the simple theory presented here, ignores the complications of

latently infected cells [41] and long-lived infected cells [42], the

existence of which reduce the probability of extinction. However,

our theoretical method can be straightforwardly generalized and

applied to more complex interacting stochastic processes, such as

those involving these additional cell populations, as well as

situations in which neither the number of target cells nor the

total number of cells are assumed to be constant.

In the case of HCV infection, the assumption of a constant total

number of cells, susceptible plus infected, has been made

previously and seems reasonable as this virus, unlike HIV, usually

does not kill the cells it infects. Further, unlike HIV, spontaneous

clearance of infection has been frequently observed [6] and in

some cases even in the absence of a strong immune response [11].

For parameters relevant to HCV infection, we showed that

spontaneous clearance can occur in infected cell populations of the

order of 40 infected cells or less in a region of the human liver,

based on predictions of the continuous production model

(Figure 4(b)). It is unclear if current drug therapy completely

clears HCV infection or simply reduces the amount of virus and

number of infected cells to a low level, with the ultimate clearance

then being immune mediated or occurring spontaneously due to

stochastic fluctuations, as in our model [40]. However, more

elaborate models that incorporate immune defenses would be

valuable to pursue in the context of the stochastic modeling

approach presented here.

Supporting Information

Figure S1 The logarithm of nI(t)/nI(0) as a function of time t.

The numerically simulated data points for the number of infected

cells nI at equal time intervals is given by the black points while the

solid curve is a linear fit to the simulation data points.

(TIF)

Figure S2 Schematic representation of (a) viral infection model

(b) simple SI model (c) comparison between their effective

Hamiltonians.

(TIF)
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