
DRAFT - Getting Started with Eclipse Runtime

Nov 24th, 2009
1. DRAFT - Getting Started with Eclipse Runtime 1
2. Overview .. 1
3. Desktop Applications .. 1
4. Web Applications .. 2
5. SOA... 3
6. Enterprise Applications ... 3
7. Platforms .. 4
8. Embedded Systems... 5
9. [Conclusion - Snappy Phrase] ... 5

Overview

How can you start using The Eclipse Runtime projects for your development needs? The
Runtime (or "RT") project is a combination of several Eclipse projects oriented around
developing and running many types of software application, services, and even embedded
software.

While individual projects and even the component-oriented nature of RT have been covered
in depth elsewhere, this white paper gives an overview of how RT addresses the needs of
different types of software projects: desktop applications, web applications, SOA, enterprise
applications and services, platforms, and embedded systems.

Desktop Applications

[Placeholder for Riena application example screenshot]

The expectations for desktop applications have dramatically changed: users expect
applications that are connected to networked services (like the web) and that are frequently
updated. Desktop applications with these attributes gives users the ability to tweak existing

1

http://www.eclipse.org/equinox-portal/whitepaper/20080310_equinox.php
http://docs.google.com/a/redmonk.com/File?id=dcncmb3n_40hjwrftdb_b
http://docs.google.com/a/redmonk.com/File?id=dcncmb3n_40hjwrftdb_b

business models and use new ones, such as social networking, rather than being held back
by their aging software. Legacy desktop frameworks focus on single user, disconnected
scenarios and do not contain the SDK and functionality to deliver the connected, frequently
updated desktop.

Starting with RCP, Eclipse Runtime provides a modern desktop framework with rich
networking and updating support. RCP has been used by companies like IBM to deliver its
highly dynamic and network-dependent Lotus Connections social networking portfolio.

Extending the success of RCP, the Riena project provides a complete framework for creating
next generation client/server applications. In addition to making GUI development with RCP
easier, Riena provides the communications back-end needed to create and run connected
desktop applications.

The p2 provisioning platform in Equinox provides the runtime updating framework needed
to support frequent feature delivery. More than just providing a place to click and download
an installer for a new version of the application, Equinox-driven desktop applications can
update select components with p2 over the network resulting in easier to manage update
cycles. Without solving the problem of frequent, small updates as p2 does, agile delivery
models just create more desktop management hassle for IT.

The tooling to support all of this comes from the many years Eclipse has spent at the center
leading IDE and development tool-chains. More than being sourced by one vendor or used
by one community, the Eclipse tool-chain has been honed and perfected by many eyes over
many years, resulting in a tooling foundation that is well known by many developers.

Web Applications

Web applications are clearly one of the favorite delivery models for many development
teams. While web applications are quick and easy to create, as they grow the demands to
extend and maintain the application can quickly overwhelm the team. The Eclipse Runtime
project provides the reliable, but flexible frameworks for web user interfaces, back-ends,
and the tools that support a healthy software development process.

The Eclipse Rich Ajax Platform (RAP) is not only a runtime for running web applications, but
a complete framework and tool-set for developing Ajax applications. In addition to web
applications, RAP builds on the SWT Eclipse UI framework meaning that it can be used to
single source web and desktop UIs for teams that are pressured to do both.

A rich UI is vital for any contemporary web application, but access to all types of data and
processes is required as well. Many web applications are backed by databases and SOA
infrastructural. Both EclipseLink for data mapping and Swordfish for SOA are part of the
Eclipse Runtime stack, along with SMILA which can be used to interact with unstructured
data such as documents.

Eclipse even provides a light-weight, high-performance web server, Jetty. During
development, Jetty's easy configuration management and fast startup time enables rapid
feedback loop code-build-deploy-test cycles, allowing developers to stay focused in their
development environments. In production, Jetty's provides a diverse array of performance
profiles for different scenarios.

Over the years, the Eclipse community has developed plugins for developing just about

2

http://www-01.ibm.com/software/lotus/products/connections/

every type of web application including state of the art Ajax for both web and mobile
delivery. Because these web development plugins build on and integrate with all Eclipse
tooling, developers and teams don't have to sacrifice a fully integrated tool-set and process
framework for functionality.

SOA

[Place holder diagram]

The Eclipse Runtime project contains a comprehensive, production-hardened SOA
framework called Swordfish. The project originated from one of the world's largest post
services, Deutsche Post, and has since been extended and deployed in many more
environments. Swordfish is built on a proven ESB platform integrating with several Eclipse
and non-Eclipse projects, services, and frameworks. Additionally, Swordfish .Net provides
native .Net integration ensuring that the resulting SOA is in no way siloed by platform,
language, or vendor.

Key to Swordfish's success has been the tight integration with the Eclipse tool chain and
developer environment. Rather than having to learn new tools and then switch between
those and their Eclipse IDE, Swordfish lets developers start and then stay in the
environment they know and work in best.

In addition to the Swordfish project, the Eclipse Communications Framework (ECF) contains
libraries that provide asynchronous point-to-point and publish-and-subscribe messaging.
Along with the Jetty web server, ECF can be used to create light-weight SOA or RESTful
end-points and consumers when a more comprehensive SOA framework would be overkill.
[tk: is this true about ECF?]

[May delete for space:] Building in the proper abstractions and separations of concerns is
key for the long-term health and flexibility of any service-oriented architecture. For SOA
design concerns, the component-oriented nature of the Eclipse Runtime project (supported
by Equinox) helps divide the system into smaller sub-systems that teams can more easily
create and then manage over multiple releases.

Enterprise Applications

[Customer quote here would be ideal]

More so than ever, IT departments are expected to deliver applications more frequently,
delivering on the promise of agile software development. IT departments are now required
to provide new offering and change existing ones to match ever changing consumer desires

3

http://docs.google.com/a/redmonk.com/File?id=dcncmb3n_42z3k4kbdz_b
http://docs.google.com/a/redmonk.com/File?id=dcncmb3n_42z3k4kbdz_b

at a frightening frequency. As business offers and services evolve at a rapid clip, software
must change and move at the same fast pace.

The collection of tools and production frameworks in the Eclipse Runtime project offer the
foundation needed for agile software delivery. Starting with Equinox's component-driven
model, the UI and back-end projects, and the comprehensive tooling available in the Eclipse
ecosystem, enterprise developers have can create applications whose functionality can be
iteratively built and dynamically updated as new features and modifications are requested.

Riena, RAP, and RCP provide UI-tier development frameworks and runtimes that helps focus
teams on rapidly delivering applications. Projects like Swordfish, EclipseLink, and SMILA are
equally effective at integrating with enterprise back-ends and the services required for most
enterprise applications. For enterprise grade reporting, the widely used BIRT project fits into
the Eclipse RT-driven development chain.

[Can delete for space/repetition]: Finally, many enterprise tool-chains are already based on
and use Eclipse technologies. Enterprise developers are likely to be immediately familiar
with the RT tools and those day-to-day IDE skills will easily translate to other popular
enterprise technologies.

Platforms

"The One Bench plus Update Manager combination lets us develop and deploy quickly
while reducing our risk."
--Paul Sampat, Vice President, IB Technology Exotics & Hybrids group, JPMC

Development teams are often tasked with building a "platform": a shared set of services
and frameworks to build applications for use by themselves or others. The Eclipse
Foundation itself is a provider of platforms and most of the projects, including the Eclipse
Runtime project, are build to be such platforms. As such, it's little wonder that many of the
early users of the Eclipse Runtime project have built platforms that allow them to rapidly
deliver applications to their customers and end-users.

For example, JP Morgan Chase used Equinox [tk: true?] and RCP to build its successful One
Bench platform, relied on by the banking giant to rapidly build and deploy financial
applications to [tk: JPMC employees - but what type? analysts, bankers, quants, traders?].
JPMC has successfully built a platform that allows them to consolidate disparate applications
onto one, shared platform, laying a solid foundation for security, auditing, scalability,
interoperability, and reusability.

The component-oriented nature of the Eclipse Runtime project - provided by the OSGi-
based Equinox model and complimented by sibling projects that build on Equinox - creates a
technology base that's built to be extended, to be a platform. Architects can use the design
and policy enforcement aspects available in various Eclipse Runtime projects to architect
proper avenues for extension and application development in their organization. Developers
can use their familiar tool-chains when developing for the platform instead of being forced
to use custom platform tools. The management services available in Eclipse Runtime such
as p2 and the orchestration services in Swordfish gives IT the ability to deploy and then
maintain applications built on the platform.

4

http://www.eclipse.org/community/casestudies/jp_morgan_final.pdf
http://www.eclipse.org/community/casestudies/jp_morgan_final.pdf
http://www.eclipse.org/community/casestudies/jp_morgan_final.pdf

Embedded Systems

"Equinox is absolutely essential for our applications going forward. It makes reliable
development and deployment of loosely coupled, but highly cohesive applications
possible in very short timeframes."
--John Cunningham, President, Band XI

While the Eclipse Runtime projects is often used for traditional software projects, it works
well for embedded software as well. Embedded software faces a different set of challenges
than traditional software: limited resources require high performance, low-profile
frameworks and yet embedded devices are increasingly expected to be as dynamic and
functional as regular applications.

Once again, the close attention to a high performance, component-oriented architecture
lays the foundation for Eclipse Runtime's success in embedded software. The embedded
Rich Client Platform (eRCP) provides a field-tested layer for application delivery, helping
support everything from physical security management to bomb sniffing. And with a 10 meg
runtime [tk: is this right?], eRCP is a small enough profile for many embedded scenarios.

Connections to back-ends can be designed with the Eclipse Communications Framework [tk:
true in the embedded space?], and back-end data stores and orchestration services can be
provided with the extensive server-side projects such as EclipseLink and Swordfish. The
updating and management mechanisms in Eclipse Runtime mean that embedded devices
can be updated dynamically, adding new functionality as needed across the life-time of the
device, even at runtime [tk: true?].

Developers can also use the same tool-chain between embedded, desktop, server, and even
mobile development with the familiar Eclipse working environment, making developers more
productive by cutting down context-switching costs and helping unify development teams
instead of splitting them based on the delivery model.

[Conclusion - Snappy Phrase]

[Once main content is nailed down, the conclusion will tie together with a theme like "RT
enables agile/rapid application delivery no matter what the delivery mode," or RT as a
diverse, general purpose development and production environment." A key part will be
emphasizing again that RT is only partly about development, but is also largely about
production runtimes.]

5

http://www.eclipse.org/community/casestudies/cyranofinal.pdf
http://www.eclipse.org/equinox-portal/case_studies/skidatafinal.pdf
http://www.eclipse.org/community/casestudies/cyranofinal.pdf

	DRAFT - Getting Started with Eclipse Runtime
	Overview
	Desktop Applications
	Web Applications
	SOA
	Enterprise Applications
	Platforms
	Embedded Systems
	[Conclusion - Snappy Phrase]

