Asynchronous Service Specification Version 1.0 Introduction

139

139.1

139.1.1

139.1.2

Asynchronous Service
Specification

\ersion 1.0

Introduction

OSGi Bundles collaborate using loosely coupled services registered in the OSGi service registry. This
is a powerful and flexible model, and allows for the dynamic replacement of services at runtime. OS-
Gi services are therefore a very common interaction pattern within OSGi.

As with most Java APIs and Objects, OSGi services are primarily synchronous in operation. This has
several benefits; synchronous APIs are typically easier to write and to use than asynchronous ones;
synchronous APIs provide immediate feedback; synchronous implementations typically have a less
complex threading model.

Asynchronous APIs, however, have different advantages. Asynchronous APIs can reduce bottle-
necks by encouraging more effective use of parallelism, improving the responsiveness of the appli-
cation. In many cases asynchronous programs can easier to write for high throughput systems.

The purpose of the Asynchronous Service is to bridge the gap between existing, primarily synchro-
nous, services in the OSGi service registry, and asynchronous programming. The Asynchronous Ser-
vice therefore provides a way to invoke arbitrary OSGi services asynchronously, providing results
and failure notifications through the OSGi Promise API skt TODO REFsskstsksx

Essentials

Asynchronous Invocation - A single method call that is to be executed without blocking the re-
questing thread.

Client - Application code that wishes to invoke one or more OSGi services asynchronously.

Async Service- The OSGi service representing the Asynchronous Services implementation. Used
by the client to make one or more Asynchronous Invocations.

Async Mediator - A mediator object created by the Async Service which represents the target ser-
vice. Used by the Client to register asynchronous invocations.

Success Callback- A callback made when an asynchronous invocation exits with a normal return
value.

Failure Callback- A callback made when an asynchronous invocation exits by throwing an excep-
tion.

Entities

Async Service - A service that can create Async Mediators and run Asynchronous Invocations.
Target Service - A service that is to be called asynchronously by the client.
Client- The code that makes asynchronous invocations using the Async Service

« Promise- An OSGi promise, representing the result of the Asynchronous Invocation.

OSGi Enterprise Release 6 Page 655

Michael Dürig
what?

Michael Dürig
Mention promise combinators and its use

Usage

Asynchronous Service Specification Version 1.0

Figure 139.1

139.2

139.2.1

139.2.2

Class and Service overview

Client «interface>>
______ MyService

Target Service

Async

Async Impl

Usage

This section is an introduction in the usage of the Async Service. It is not the formal specification,
the normative part starts at Async Service on page 658. This section leaves out some of the details
for clarity.

Synopsis

The Async service provides a mechanism for a client to asynchronously invoke methods on a target
service. The service may be aware of the asynchronous nature of the call and actively participate
in it, or be unaware and execute normally. In either case the client's thread will not block, and will
continue executing its next instructions. Clients are notified of the completion of their task, and
whether it was successful or not, through the use of the OSGi Promise API.

Each asynchronous invocation is registered by the client making a method call on an Async Medi-
ator, and then started by making a call to the Async service that created the mediator. This call re-
turns a Promise that will eventually be resolved with the return value from the asynchronous invo-
cation.

An Async Mediator can be created by the client, either from an Object, or directly from a Service
Reference. Using a Service Reference has the advantage that the mediator will track the underlying
service. This means that if the service is unregistered before the asynchronous call begins then the
Promise will resolve with a failure, rather than continuing using an invalid service object.

Making Asynchronus Invocations

The general pattern for a client is to obtain the Async service, and a ServiceReference for the target
service. The client then creates an Async Mediator for the target service, invokes a method on the
mediator, then starts the asynchronous call. This is demonstrated in the following example:

private Async asyncService;
private ServiceReference<List> listRef;

dReference
synchronized void setAsync(Async async) {
asyncService = async;

}

Page 656

OSGi Enterprise Release 6

Michael Dürig
Each? Shouldn’t this be “Usually”. Services might choose to return a Promise directly making going through the Mediator unnecessary.

Asynchronous Service Specification Version 1.0 Usage

139.2.3

@dReference(service = List.class)

synchronized void setlList(ServiceReference<List> list) {
listRef = list;

}

public synchronized void doStuff() {
List mediator = asyncService.mediate(ref);
Promise<Booleans promise = asyncService
.call(mediator.contains(“badEntry”));

This example demonstrates how simply clients can make asynchronous calls using the Async ser-
vice. The eventual result can be obtained from the promise using one of the relevant callbacks.

One important thing to note is that whilst the call to asyncService.call(...) causes the asynchronous
invocation to begin, the actual execution of the underlying task may be queued until a thread is
available to run it. If the service has been unregistered before the execution actually begins then the
promise will be resolved with a ServiceException. The type of the ServiceException will be ASYNC
sk TODO REF core seskorok

Asynchronous invocations of void methods

The return value of the mediator method call is used to provide type information to the Async ser-
vice. This, however, does not work for void methods that have no return value. In this case the client
can either pass an arbitrary object to the call method, or use the zero argument version of the call
method. In either case the returned promise will eventually resolve with a value of null. This is
demonstrated in ???

private Async asyncService;
private ServiceReference<List> listRef;

dReference
synchronized void setAsync(Async async) {
asyncService = async;

}

dReference(service = List.class)

synchronized void setlList(ServiceReference<List> list) {
listRef = list;

}

public synchronized void doStuff() {
List mediator = asyncService.mediate(ref);
mediator. clear();
Promise<Void> promise = asyncService
.call();

OSGi Enterprise Release 6 Page 657

Async Service

Asynchronous Service Specification Version 1.0

139.2.4

139.3

139.3.1

139.3.2

Multi Threading

By their very definition asychronous tasks do not run inline, and typically they will not run on the
same thread as the caller. This is not, however, a guarantee. A valid implementation of the Async
service may have only one worker thread, which may be the thread currently running in the client
code. Asynchronous invocations also have the same threading model as the OSGi Promise APL This
means that callbacks may run on arbitrary threads, which may, or may not, be the same as the client
thread, or the thread which executed the asynchronous work.

It is important for multi-threaded clients to note that calls to the mediator and async service must
occur on the same thread. For example it is not supported to invoke a mediator using one thread,
and then to begin the asynchronous invocation by calling one of the Async.call(...) methods on a
different thread.

Async Service

The Async service is the primary interaction point between a client and the Async Service im-
plementation. An Async Services implementation must expose a service implementing the
org.osgi.service.async.Asyncinterface. Clients obtain an instance of the Async Service using the
normal OSGi service registry mechanisms, either directly using the OSGi framework API, or using
dependency injection.

The Async service is used to:

- Create async mediators
- Begin asynchronous invocations
- Obtain Promise objects representing the result of the asynchronous invocation

Using the Async service

The first action that a client wishing to make an asynchronous invocation must take is to create

an async mediator using one of the mediate methods. Once created the client invokes the method
that should be run asynchronously, supplying the arguments that should be used. This call records
the invocation, but does not start the asynchronous task. The Asynchronous task begins when the
client makes invokes one of the call methods on the Async service. The call methods must return a
valid Promise representing the-state-ofthe asynchronous invocation. This must resolve with the val-
ue returned by the asynchronous invocation, or fail with the failure thrown by the asynchronous
invocation.

Asynchronous failures

There are a variety of reasons that asynchronous invocations may be started correctly by the client,
but then fail without running the asynchronous task. In any of these cases the Promise representing
the asynchronous invocation must fail with an org.osgi.framework.ServiceException. This Service-
Exception must be initialised with a type of ASYNC (st Ref core R6 sokskotox).

The following list of scenarios is not exhaustive, but indicates failure scenarios that must result in a
ServiceException

- Ifthe client is using a service reference backed mediator and the client bundle's bundle context
becomes invalid before looking up the target service.

- Ifthe client is using a service reference backed mediator and the service is unregistered before
making the asynchronous invocation.

- Ifthe client is using a service reference backed mediator and the service lookup returns null

- If the Async service is unable to accept new work, for example it is in the process of being shut
down.

Page 658

OSGi Enterprise Release 6

Michael Dürig
valid?

Michael Dürig

Michael Dürig

Michael Dürig
I think this is unclear and is better left out

Michael Dürig
Maybe better: “This Promise….”

Asynchronous Service Specification Version 1.0 The Async Mediator

139.3.3

139.4

139.4.1

139.4.2

139.4.3

. If the target service is unable to be invoked using the recorded arguments.

Thread safety and instance sharing

Implementations of the Async service must be thread safe. They should be safe to use simultaneous-
ly across multiple clients and from multiple threads within the same client. Whilst the async ser-
vice is able to be used across multiple threads, if a client wishes to make an asynchronous invoca-
tion then the call to the mediator and the call to async.call(...) must occur on the same thread. The
returned Promise may then be shared between threads if required.

It is expected, although not required, that the Async service implementation will use a Service Fac-
tory to create customized implementations for each client bundle. This simplifies the tracking of
the relevant client bundle context to use when performing service lookups on the client bundle's
behalf. Clients should therefore not share instances of the Async service with other bundles. Instead
both bundles should obtain their own instances from the service registry.

The Async Mediator

Async Mediators are dynamically created objects that have the same type or interface as the object
being mediated, and are used to record method invocations and arguments. Mediators may be creat-
ed either from a ServiceReference or from a service object. The actions and overall result are similar
for both mediate(...) methods, with the primary difference being the manner in which the types to
be mediated are determined.

Determining the mediated types for a ServiceReference

Mediator objects for service references are lazy, and creating one should not result in a lookup of
the service object. Therefore, when creating the Async Mediator object the Async Service must not
introspect the service object, but instead it should attempt to load all of the types listed in the ob-
jectClass property of the service reference, using the client bundle. Any ClassNotFoundException
thrown when attempting to load these classes should be ignored. The successfully loaded classes are
then used when creating the mediator object. If the set of successfully loaded classes is null then an
Illegal ArgumentException must be thrown.

Determining the mediated types for a service object

When mediating a service object there is no way to be lazy, therefore the service object can be in-
trospected to determine its type. In this case the class to be mediated is the class returned by calls to
serviceObject.getClass().

Building the mediator object

Once the set of types to be mediated has been determined then the set must be filtered into java in-
terface types and java class types. The generated mediator object must extend the most specialised
class type, and implement all of the provided interfaces. If there is no class type to be extended then
the mediated object should extend java.lang.Object.

There are three reasons why the Async service may not be able to mediate a class type:

The most specialised class type is final
. The most specialised class type has no zero-argument constructor

One or more public methods present in the type hierarchy (other than those declared by
java.lang.Object) are final

If any of these constraints are violated then the Async service should fall back to the next most spe-
cialised type, creating an interface-only mediator if necessary.

OSGi Enterprise Release 6 Page 659

Michael Dürig
must?

Michael Dürig
empty

Delegating to asynchronous implementations Asynchronous Service Specification Version 1.0

139.4.4

139.4.5

139.5

139.6

Async mediator behaviours

When invoked the Async mediator should record the method call, and its arguments, and then re-
turn rapidly (i.e. it should not perform blocking operations). The values returned by the mediator
object are opaque, and the client should not attempt to interpret the returned value. The value may
be null (or null-like in the case of primitives) or contain implementation specific information. If the
mediated method call has a return type, specifically it is non-void, then this object must be passed to
the the async service's call method when beginning the asynchronous invocation

Thread safety and instance sharing

Async mediators, unlike instances of the Async service, are not required to be thread safe. Clients
should not share mediator objects with other bundles, or accross threads. Also, if a client wishes to
make an asynchronous invocation then the call to the mediator and the call to async.call(...) must
occur on the same thread. The returned Promise may then be shared between threads if required.

Async mediators created from ServiceReference objects are lazy, and may remain directly associated
with the service reference and client bundle after creation. Clients should therefore not share medi-
ator objects with other bundles. Instead both bundles should create their own mediators.

Delegating to asynchronous implementations

Some service APIs are already asynchronous in operation, and others are partly asynchronous, in
that some methods run asynchronously and others do not. There are also services which have a syn-
chronous API, but could run asynchronously because they are a proxy to another service. A good
example of this kind of service is a remote service. Remote services are local views of a remote end-
point, and depending upon the implementation of the endpoint it may be possible to make the re-
mote call asynchronously, optimizing the thread usage of any local asynchronous call.

Services that already have some level of asynchronous support may advertise this to clients and to
the Async Service by implementing org.osgi.service.async.AsyncDelegate. This interface can be
used by the asynchronous services implementation, or by the client directly, to make an asynchro-
nous call on the service.

When making an asynchronous invocation the async service must check to see whether the target
service implements AsyncDelegate. If the target service does implement AsyncDelegate then the
async service must delegate the asynchronous call using the async method.

If the call to the AsyncDelegate returns a Promise, then the Promise returned by the async service
must be resolved with that Promise. If the call to the AsyncDelegate returns null then the async ser-
vice must continue with the asynchronous invocation as if the target service did not implement
AsyncDelegate. If the call to the AsyncDelegate throws an Exception then this must be used to fail
the promise returned by the async service.

Because the AsyncDelegate behaviour is transparently handled by the async service, clients of the
async service do not need to know whether the target service implements AsyncDelegate or not,
their usage pattern can remain unchanged.

Security

Asynchronous Services implementations must be careful to avoid elevating the privileges of client
bundles when calling services asynchronously. This means that the implementation must:

Use the client bundle to load interfaces when generating the asynchronous mediator. This pre-
vents clients from gaining access to interfaces they would not normally be permitted to import.

Page 660

OSGi Enterprise Release 6

Asynchronous Service Specification Version 1.0 org.osgi.service.async

139.7

139.7.1

139.7.2

Provider Type

139.7.2.1
Type Arguments

r

- Use the client's bundle context when retrieving the target service. This prevents the client bun-
dle from being able to make calls on a service object that they would normally be forbidden from
obtaining.

Further security considerations can be addressed using normal OSGi security rules. For example ac-
cess to the Async service can be controlled using ServicePermission[Async, GET].

org.osgi.service.async

Asynchronous Services Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the APIin this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:
Import-Package: org.osgi.service.async; version="[1.0,2.0)"
Example import for providers implementing the API in this package:

Import-Package: org.osgi.service.async; version="[1.0,1.1)"
Summary

Async - The Asynchronous Execution Service.
AsyncDelegate - This interface is used by services to allow them to optimize Asynchronous calls

where they are capable of executing more efficiently.
public interface Async

The Asynchronous Execution Service. This can be used to make asynchronous invocations on OSGi
services and objects through the use of a mediator object.

Typical usage:
Async async = ctx.getService(asyncRef);
ServiceReference<MyService> ref = ctx.getServiceReference (MyService.class);
MyService asyncMediator = async.mediate(ref);

Promise<BigInteger> result = async.call(asyncMediator.getSumOverAllValues());

The Promise API allows callbacks to be made when asynchronous tasks complete, and can be used
to chain Promises.

Multiple asynchronous tasks can be started concurrently, and will run in parallel if the Async ser-
vice has threads available.

Consumers of this API must not implement this type

public Promise<R> call(R r)
<R>
the return value of the mediated call, used for type information

This method launches the last method call registered by a mediated object as an asynchronous task.
The result of the task can be obtained using the returned promise

OSGi Enterprise Release 6 Page 661

org.osgi.service.async Asynchronous Service Specification Version 1.0

Returns

139.7.2.2

Returns

139.7.2.3
Type Arguments

target

Returns

139.7.2.4
Type Arguments

target

Typically the parameter for this method will be supplied inline like this:

I i = async.mediate(s);
Promise<String> p = async.call(i.foo());

a Promise which can be used to retrieve the result of the asynchronous execution

public Promise<?> call()

This method launches the last method call registered by a mediated object as an asynchronous task.
The result of the task can be obtained using the returned promise

Generally it is preferrable to use call(Object) like this:

I i = async.mediate(s);
Promise<String> p = async.call(i.foo());

However this pattern does not work for void methods. Void methods can therefore be handled like
this:

I i = async.mediate(s);
i.voidMethod ()
Promise<?> p = async.call();

a Promise which can be used to retrieve the result of the asynchronous execution

public T mediate(T target)
<T>
The service object

Create a mediator for the given object. The mediator is a generated object that registers the method
calls made against it. The registered method calls can then be run asynchronously using either the
call(Object) or call() method.

The values returned by method calls made on a mediated object should be ignored.
Normal usage:

I i = async.mediate(s);
Promise<String> p = async.call(i.foo());

A mediator for the service object

public T mediate(ServiceReference<T> target)
<T>
The service object

Create a mediator for the given service. The mediator is a generated object that registers the method
calls made against it. The registered method calls can then be run asynchronously using either the
call(Object) or call() method.

The values returned by method calls made on a mediated object should be ignored.

This method differs from mediate(Object) in that it can track the availability of the backing service.
This is recommended as the preferred option for mediating OSGi services as asynchronous tasks
may not start executing until some time after they are requested. Tracking the validity of the Ser-
viceReference for the service ensures that these tasks do not proceed with an invalid object.

Normal usage:

I i = async.mediate(s);

Page 662

OSGi Enterprise Release 6

Asynchronous Service Specification Version 1.0 References

Returns

139.7.3

139.7.3.1

args

Returns

139.8

Promise<String> p = async.call(i.foo());

A mediator for the service object

public interface AsyncDelegate

This interface is used by services to allow them to optimize Asynchronous calls where they are ca-
pable of executing more efficiently. This may mean that the service has access to its own thread
pool, or that it can delegate work to a remote node, or act in some other way to reduce the load on
the Asynchronous Services implementation when making an asynchronous call.

public Promise<?> async(Method m,Object[] args) throws Exception
the method that should be asynchronously executed
the arguments that should be used to invoke the method

This method can be used by the Async service to optimize Asynchronous execution. When called,
the AsyncDelegate should execute the supplied method using the supplied arguments asynchro-
nously, returning a promise that can be used to access the result. If the method cannot be executed
asynchronously by the delegate then it should return null.

A promise representing the asynchronous result, or null if this method cannot be asynchronously
invoked.

References

OSGi Core Release 6
http://www.osgi.org/Specifications/HomePage

OSGi Enterprise Release 6 Page 663

References Asynchronous Service Specification Version 1.0

A
A
0
Q

Page 664 OSGi Enterprise Release 6

	Chapter 139. Asynchronous Service Specification
	139.1. Introduction
	139.1.1. Essentials
	139.1.2. Entities

	139.2. Usage
	139.2.1. Synopsis
	139.2.2. Making Asynchronus Invocations
	139.2.3. Asynchronous invocations of void methods
	139.2.4. Multi Threading

	139.3. Async Service
	139.3.1. Using the Async service
	139.3.2. Asynchronous failures
	139.3.3. Thread safety and instance sharing

	139.4. The Async Mediator
	139.4.1. Determining the mediated types for a ServiceReference
	139.4.2. Determining the mediated types for a service object
	139.4.3. Building the mediator object
	139.4.4. Async mediator behaviours
	139.4.5. Thread safety and instance sharing

	139.5. Delegating to asynchronous implementations
	139.6. Security
	139.7. org.osgi.service.async
	139.7.1. Summary
	139.7.2. public interface Async
	139.7.2.1. public Promise<R> call(R r)
	139.7.2.2. public Promise<?> call()
	139.7.2.3. public T mediate(T target)
	139.7.2.4. public T mediate(ServiceReference<T> target)

	139.7.3. public interface AsyncDelegate
	139.7.3.1. public Promise<?> async(Method m,Object[] args) throws Exception

	139.8. References

