
ORMF Architecture in Brief

Functional architecture
The diagram that follows is a high level representation of our vision for the structure of ORMF, with some
of the add-on plug-in tools that it will facilitate. As the diagram shows, we plan to architect ORMF in three
tiers, namely the client tier, the server tier and the database tier. Each tier will provide APIs and extension
mechanisms that will enable the creation of the add-on plug-ins. These are indicated in the diagram by
the components that have a red border. The client tier rests on the Eclipse platform, whereas the server
tier is based upon the OSGi (Equinox) platform.

The client tier
This tier contains all components which deal with the direct production or with the consumption of the
requirements.

The consumption portion of the client tier is of no great interest for this discussion as it will simply consist
of a suitable program on the consumer's machine, e.g. web browser, Acrobat Reader, Microsoft Word etc.

The production portion of the client tier is a lot more interesting. It is a set of custom Eclipse plug-ins that
will be based on a common extension of the Eclipse Platform that provides services of general
applicability. Example of such services are:

ORMF Architecture in Brief
 1

ORMF high level architecture

Eclipse platform

ORMF Base Plug!in

A
d

m
in

istra
tio

n
 in

te
rfa

ce
 p

lu
g
!in

Common views & wizards

R
isk

s

O
th

e
r d

o
cu

m
e

n
t ty

p
e

s

A
cto

r

U
se

 ca
se

Issu
e

s

N
o

te
s

G
lo

ssa
ry

Editor Plug!ins
"contribute editor# wizards & stereotypes$

Database

 tier

OSGi# SAT# Riena# EMF# BIRT# EclipseLink# ect%

S
e

rv
e

r se
rv

ice

Remote services

C
o

lle
ctio

n
 se

rv
ice

D
o

u
cu

m
e

n
t se

rv
ice

R
e

la
tio

n
sh

ip
 se

rv
ice

R
e

p
o

rtin
g

 se
rv

iceP
ro

je
ct se

rv
ice

A
d

m
in

istra
to

r S
e

rv
ice

B
u

sin
e

ss lo
g

ic

P
e

rsiste
n

ce
 S

e
rv

ice

Document

type

speci&c

contributions

Reporting and publication engine

XHTML

PDF

Excel

RTF

etc%

Document

type

speci&c

contributions

Published Documents

Documentation consumption

Client tier Server tier

Documentation production

the translation of the XML based model elements into/from visual gadgets;

a common wizard validation mechanism;

a single pattern for handling views updates upon model changes based upon the well known
observer/observable pattern

common strategies for synchronisation of the contents of the visual components with changes
occurring at the server level as a result of other users modifying the project.

The base plug-in is also responsible for acting as the communication mechanism between the client and
the server tier.

The client tier will also offer a plug-in containing many common views, wizards and dialogs that will be
used by any specialised tool that functions on top of ORMF.

Finally the client tier will also offer the Administration interface for direct usage by all ORMF based tools.

The server tier
The server tier will offer all the business logic and persistence mechanisms that are required to handle
users requests coming from the client tier. These services will be mediated by agents located in a Web
services layer, which will also be utilised by the publication and reporting engine. The latter will be
responsible for the production of publishable documentation for consumption. Any tool that is built on top
of ORMF will simply need to add its own document specific contributions to both the business logic
components and to the publication and reporting engine, as indicated in the diagram above.

The persistence layer will finally be responsible for any communication with the database tier.

The database tier
Presently the framework is dependent on the Apache Derby database. It will be considered in the future if
there is sufficient demand by the community for the database to be replaceable by any SQL compliant
datastore.

Server component architecture
To be completed.

ORMF Architecture in Brief
 2

ORMF Architecture in Brief
 3

Client

ServerRemoteService

ServerService

ServerDelegate

Shared Code
Bundles

Model

Remote
API

Common
(f.i. utilities)

ProjectRemoteService

ProjectService

ProjectDelegate

CollectionRemoteService

CollectionService

CollectionDelegate

RelationshipRemoteService

RelationshipService

RelationshipDelegate

DocumentRemoteService

DocumentService

DocumentDelegate

LOVRemoteService

LOVService

LOVDelegate

AdminstationRemoteService

AdminstatorService

AdminstatorDelegate

PersitenceService

AuthServiceConfiguratorService

DerbyService

ReportingService UpdateService

The clients of the ReportingService
will be defined in the future.

The UpdateService runs
automatically as required, it has no

specific client.

This diagram does no show
dependencies on outside services, f.i.
EMF, BIRT, EclipseLink, Riena and SAT.

