
1

Rational® Application
Development and
M2Eclipse

Maven in the development workbench for
RAD & RSA

Chuck Bridgham (cbridgha@us.ibm.com)
Roberto Sanchez Herrera (rsanchez@mx1.ibm.com)
August 2011 – Updated June, 2012

2

Contents
M2Eclipse and Rational Java Application Development .. 3

Setup and Prerequisites .. 3

M2Eclipse features .. 6

How does m2eclipse work? What should I expect? ... 10

Maven Archiver and MANIFEST generation in Rational Application Developer 11

Recommended Preferences .. 12

M2Eclipse preferences .. 12

Java EE preferences from Rational Application Developer .. 13

Sample Scenarios ... 15

Creating Maven web project .. 15

“Mavenize” existing Rational Application Developer projects 18

WebSphere Application Server deployment ... 22

Full Java EE Maven sample .. 22

Known issues .. 27

What’s next?.. 27

References .. 27

3

M2Eclipse and Rational Java Application Development
This paper explores real-world scenarios using either Rational® Application Developer or Rational®

Software Architect and m2eclipse together. Today, there are more options and better integration

available due to improvements to the m2eclipse features in Web Tools Platform based on Eclipse

technology. I provide recommendation on several tips that help prevent problems that many users

commonly encounter. This paper is a follow-up to my overview published in 2010 <link> detailing the

world of Maven in a Rational Application Developer environment, and a more detailed explanation of

the Maven build system. The previous article mentioned many instances where Maven and Rational

Application Developer conflicts, or represent similar properties by separate mechanisms. This is still

true, but by following the best practices outlined in this paper, and help from m2eclipse translation of

the internal metadata, the differences are hidden to the user.

The m2eclipse open-source project originally was hosted by the company that founded Maven, Sonatype

Inc. In 2010, Sonatype announced that this project would be donated and incubated at Eclipse with a

new name m2eclipse. The project successfully graduated with their Indigo release (2011), and is on track

to deliver again with the Juno (2012) release in June. This project has many features that allow Maven

developers to take advantage of Eclipse and Rational Application Developer features, while maintaining

Maven project metadata. Maven projects can either be created or imported from existing environments.

Maven dependency mechanisms and module structures are integrated into Rational Application

Developer Java class path resolution framework. Maven repositories can be searched, and auto-update

projects based on any updates to the repository. Form-based editing of the Maven pom.xml file is also

supported. The Eclipse Java builder is responsible for compiling, building, assembling, and indexing all

Java artifacts. The m2eclipse project configurator handles all non-java artifacts to be assembled by the

Maven builder, and aggregates the results according to the Maven project model (pom.xml). The latest

Indigo release of m2eclipse is backward compatible with the Helios release, making it compatible with

Rational Application Developer V8.0.3 or later.

Maven, the m2eclipse feature, and its extended connectors (including m2e-wtp) are not supported by

IBM®, but have a very active mailing list and problem reporting systems through Eclipse bugzilla and

Sonotype that are monitored closely.

Setup and Prerequisites
This paper targets several releases of Rational Application Developer including V8.0.4, V8.0.4.1, V8.5.0,

Websphere Development Toolkit V8.5, and Rational Software Architect V8.5. All recommendations and

assumptions are based on these product-levels.

We are going to use the new Eclipse m2eclipse release 1.0.100 as part of the Indigo release. This

supports the Helios release that Rational Application Developer requires. In addition, it supports Indigo

for WDT installations. We are also going to add the latest m2e-WTP add-on support that is compatible

http://www.ibm.com/developerworks/wikis/download/attachments/113607155/RAD_755_MAVEN_0601.pdf?version=1
http://eclipse.org/m2e/
https://dev.eclipse.org/mailman/listinfo/m2e-users
https://bugs.eclipse.org/bugs/enter_bug.cgi?product=m2e
https://issues.sonatype.org/browse/MECLIPSEWTP

4

with m2e and Helios. A separate Maven installation in not required, because m2e configures an

embedded version of Maven.

1. In a new or existing Rational Application Developer or WDT workspace, open the menu Help → Install
New Software

2. In the Available Software page of the Install wizard, click the Add button next to the Work with field
and add this new location:

http://download.jboss.org/jbosstools/updates/m2eclipse-wtp/

3. Click on Available Software Sites link and verify the check boxes for the following sites are selected.
Then click OK.

For RAD/RSA:

• m2eclipse-wtp updates
http://download.jboss.org/jbosstools/updates/m2eclipse-wtp/

• “Eclipse Project Test Site”
http://download.eclipse.org/eclipse/updates/3.6

• The Eclipse Web Tools Platform (WTP) software repository
http://download.eclipse.org/webtools/repository/helios

For WDT on Java EE EPP Package for Indigo:

• m2eclipse-wtp updates
http://download.jboss.org/jbosstools/updates/m2eclipse-wtp/

• “Eclipse Project Test Site”
http://download.eclipse.org/eclipse/updates/3.7

• The Eclipse Web Tools Platform (WTP) software repository
http://download.eclipse.org/webtools/repository/indigo

4. In the Work with field of the Available Software page, select: m2eclipse-wtp updates

5. Under the Name column, select the following check boxes:

• Maven Integration for Eclipse

• Maven Integration for WTP

• Expand Maven Integration for Eclipse Extras folder and select only m2e connector for
mavenarchiver pom properties

http://download.jboss.org/jbosstools/updates/m2eclipse-wtp/
http://download.jboss.org/jbosstools/updates/m2eclipse-wtp/
http://download.eclipse.org/eclipse/updates/3.6
http://download.eclipse.org/webtools/repository/helios
http://download.jboss.org/jbosstools/updates/m2eclipse-wtp/
http://download.eclipse.org/eclipse/updates/3.7
http://download.eclipse.org/webtools/repository/indigo

5

6. Click Next in the Available Software page.

7. Click Next in the Install Details page.

8. In the Review Licenses page, accept the Eclipse Public Licenses and click Finish.

9. In the Security Warning window, click OK to accept unsigned content.

10. Allow the workspace to restart when finished.

6

M2Eclipse features
Now that we have the m2eclipse features installed, here are some of the key features and integration

with Rational Application Developer workbench:

1. Maven Project Wizards: The new Maven Project wizard allows you to create custom Maven

projects, or use predefined Maven archetypes that describe the purpose, layout, and required

dependencies of a project. For example, a new Java web project can be found by typing web in the type

filter text field. Several archetypes appear and by selecting the popular Maven-archetype-webapp

creates a simple web project defaulting to the Servlet 2.3 specification.

2. Maven Repository Management: Automatic dependency downloads and updates happen

behind the scenes. The console logs messages during an initial Maven project creation and build that

indicate the dependent libraries required for project creation and build:

7

3. Maven Import Wizards: Importing existing Maven projects is useful for easily creating Rational

Application Developer projects for each Maven pom.xml file. For instance, if the root directory is

pointing to a previous set of Maven example projects, each of these projects are imported, class path is

configured, and the appropriate facets are applied. Any directory that contains a valid pom.xml file

appears in this dialog. The example shown below is based on the samples from the previous Rational

Application Developer and Maven paper, and is mentioned below in the Sample Scenarios section.

4. Maven Repository Browser: Browsing and searching remote Maven repositories using the

Maven Repositories view, available by selecting from the toolbar Window → Show view → Other →

Maven → Maven Repositories

8

5. M2E Connectors: Ability to connect to various software configuration management (SCM)

systems and other extended features. To use the connectors from RAD, you must add the Equinox p2

discovery feature by selecting Help → Install New Software. The list of available connectors or extended

features built on top of m2eclipse 1.0.0 appears by pressing the “Open Catalog” button from the Maven -

> Discovery preference page. Extensions for Android, AspectJ, Groovy, eGit, and others are currently

available.

9

6. Form-based POM.XML Editor: The overview and dependencies pages allow form-based editing

of the vast properties available for the Maven dependency model. The effective pom.xml is a read-only

XML source view showing a fully populated model including all the defaults, and at last the pom.xml

file itself using the source editor with semantic assistance from the Maven schema.

10

How does m2eclipse work? What should I expect?

Maven captures many of the semantic properties of a given project in the pom.xml file. This is the
driving force behind the m2eclipse feature. Rational Application Developer traditionally stores

project information in a variety of locations (.classpath, .settings, MANIFEST.MF and
other files) The most important tip to remember while developing with m2eclipse with the Web
Tools Platform connector is to always manipulate the pom.xml file, and all other Rational
Application Developer metadata gets updated automatically. Making changes to any of the various
Eclipse or Rational Application Developer metadata files create problems if the semantic equivalent
is not captured in the pom.xml file. Properties and editors to avoid in Rational Application
Developer include the Java Build Path and Deployment Assembly project property sheets, and the
MANIFEST.MF editors. M2eclipse captures project dependencies and structure defined in the POM,
and generates appropriate Rational Application Developer properties from the Project Configurator
that runs incrementally or can be forced to run using the project pop-up menu Maven –> Update
project configuration. As a convenience, Maven archetypes are a popular method for creating

module projects initialized with relevant pom.xml settings. The m2e-wtp connector recognizes
basic pom settings that represent module types. For example, any archetype that has the
<packaging>war</packaging> fragment automatically results in the Java web facet being

installed. The m2e-wtp connector is only intended to work on Java EE type projects, such as WAR,
EAR, EJB, App Client,Connector projects, and including plain Java projects. Other archetypes
supporting other programming models, such as Service Component Architecture (SCA) can not be
recognized. Automatic Rational Application Developer configurations that setup specific Rational
Application Developer facets does not occur, but manual configuration is an option in these cases.

Here is a mapping of project configurator actions based on maven project types according to m2e-
wtp developers:

 WAR projects : Adds the Java and Dynamic Web Facets, based on maven-war-plugin
configuration

 EJB projects : Adds the Java and EJB Facets, based on maven-ejb-plugin configuration

 EAR projects : Adds the EAR Facet, based on maven-ear-plugin configuration

 RAR projects : Adds the Java and Connector Facets, based on maven-rar-plugin configuration

 JAR projects packaged with JavaEE projects : Adds the Java and Utility facets

Let’s take some example Maven pom.xml fragments, and show the resulting Rational Application

Developer and Java EE metadata:

POM Fragment Change in Rational Application Developer

<packaging>war</packaging> Natures added to .project:
<nature>org.eclipse.wst.common.modulecore.ModuleC

oreNature</nature>
<nature>org.eclipse.wst.common.project.facet.core

.nature</nature>

Java and Web facet added to

.settings/org.eclipse.wst.common.projec

t.facet.core.xml

11

<build>

 <finalName>TestWar2</finalName

>

Changes.settings/org.eclipse.wst.common.

component
<property name="context-root"

value="TestWar2"/>

<build>

<outputDirectory>${project.basedir}/an

otherTarget/classes</outputDirectory>

 <testOutputDirectory>${project.basedir

}/anotherTarget/classes</testOutputDirectory>

Changes to output location of Java source folders

<plugin>
<groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.1.1</version>
 <configuration>
 <archive>
 <manifest>

<addClasspath>true</addClasspath>

<classpathPrefix>lib/</classpathPrefix>
 </manifest>
 <manifestEntries>
 <Ignore-Scanning-

Packages>org.apache.avalon, org.apache.batik,

org.apache.commons</Ignore-Scanning-Packages>
 </manifestEntries>
 </archive>
 </configuration>
</plugin>

Generated MANIFEST.MF file in the target/m2e-

wtp/web-resources/META-INF folder

Manifest-Version: 1.0

Built-By: cbridgha
Build-Jdk: 1.6.0
Created-By: Maven Integration for

Eclipse
Ignore-Scanning-Packages:

org.apache.avalon, org.apache.batik,

org.apa

 che.commons

class-path: util.jar

Maven Archiver and MANIFEST generation in Rational Application Developer

The m2e + m2e-wtp plugins depend on generating a MANIFEST.MF, and packages this file in the
deployed module. If a MANIFEST.MF file exists in any source folder, it is required to move any existing
MANIFEST.MF properties to the pom.xml archive sections, so they are generated correctly by the
Maven builder. Then delete these files. For JAR, EJB, and Connector projects, the Maven generated
MANIFEST.MF file is generated under target/classes folder. Web projects generate in
target/m2e-wtp/web-resources/ folder and EAR projects, generated in target/m2e-
wtp/ear-resources/folder. Because this is an additional resource mapping to the projects;
root, the single root validator shows warnings. The deployed application is copied first to the
workspace metadata directory, but then be incrementally changed.

Information for packaging JAR files in EAR files rather than WAR files are located here:

http://maven.apache.org/plugins/maven-war-plugin/examples/war-manifest-guide.html

More general information on regarding the Maven archiver can be found here:
http://maven.apache.org/shared/maven-archiver/index.html

http://maven.apache.org/plugins/maven-war-plugin/examples/war-manifest-guide.html
http://maven.apache.org/shared/maven-archiver/index.html

12

Recommended Preferences

M2Eclipse preferences
M2Eclipse by default is installed with an embedded Maven runtime environment, and sets up a new

local repository, but different runtime environments or repositories can be configured by using the

various Maven preferences. If doing Java EE 5 development, generating deployment descriptors are

optional. The WTP Integration preference for generating application.xml should be disabled in

this case. You can find the WTP Integration preference page by going to the toolbar, select Window →

Preferences → Maven - > WTP integration. Clear the Generate application.xml under the build

directory check box.

13

Java EE preferences from Rational Application Developer
There are a few Java EE preferences that are recommended if using m2eclipse for project development.

Many of these preferences affect the entire workspace; a separate workspace is first recommended for

all non-maven projects.

1. Classpath Containers – In the Java EE preferences page (from the toolbar select Window →

Preferences → Java EE), under the Classpath containers section, clear the Use Ear Libraries classpath

container and Use Web App Library classpath container check boxes, such that projects does not use

these class path containers, and rely on the Maven container to provide class path entries.

2. Java EE Project settings – The default folder structure for creating Java EE projects or adding

facets is available here. These settings are used when creating projects using the new project wizards

from Rational Application Developer. If you are using the new Maven project wizards, defaults based on

the chosen archetype are used. Most Java projects follow the same Maven defaults. There are some

differences from the previous recommendations using the standard m2eclipse without Web Tools

Platform support because of the additional resource mapping to the temp directory used for the

MANIFEST generation. In the case of web projects, the output folder is left to the Maven default of

/target, and the deployment is required to assemble the application files in the

<workspace>\.metadata\.plugins\org.eclipse.wst.server.core folder. In addition,

the setting to create an EAR project when creating a new module project has been cleared, because this

configuration should be handled only in the pom.xml of the EAR project.

14

Use these values in the Window → Preferences →Java EE → Project preference page:

a. Under Enterprise Application membership, clear the Add project to an EAR check box.

b. Under Enterprise Application Project, in the Content Directory field, type
src/main/application

c. Under Dynamic Web project, type the following values for each field:

 Default Source Folder: src/main/resources

 Output Folder: target/classes

 Content Directory: src/main/webapp

d. Under EJB Project, type the following values for each field:

 Default Source Folder: src/main/resources

 Output Folder: target/classes

e. Under Application Client Project, type the following values for each field:

 Default Source Folder: src/main/resources

 Output Folder: target/classes

f. Under Connector Application Project, type the following values for each field:

 Default Source Folder: src/main/resources

 Output Folder: target/classes

g. Under Utility/JPA Project, type the following values for each field:

 Default Source Folder: src/main/java

 Output Folder: target/classes

15

A copy of these settings have been provided in a preference file (*.epf file), and can be imported into

your workspace using the Import Preferences wizard by selecting from the toolbar File → Import →

General → Preferences.

Sample Scenarios

Creating Maven web project

M2eclipse contains enhancements to the enriched set of web development tools from Rational

Application Developer which improves the experience of creating a Maven web project. In this example,

start by creating a project based on a popular archetype.

1. Select from the toolbar File → New → Project → Maven → Maven Project. Click Next.

2. In the New Maven Project wizard, select Next.

https://www.ibm.com/developerworks/wikis/download/attachments/113606723/Mavenprefs.epf?version=1

16

3. On the New Maven project page, you can use the Filter field to search for an archetype by

specifying your search texts. Type webapp in the Filter field, under the Artifact Id column find the

webapp-jee5 archetype, and then click Next.

Tip: Allow the Maven indexer to finish searching the nexus repository, or these types cannot be found.

The indexing process can take about 30 minutes to complete.

4. In the Group Id field, type mygroup.

5. In the Artifact Id field, type TestWar, and click Finish.

6. The above setting creates a web project with the default Maven folder settings. However, the

project is not yet targeted to a runtime environment.

7. In the Enterprise Explorer view, right-click the TestWar project and select Properties → Targeted

Runtimes. Use the Targeted Runtimes preference page to specify the server type, such as WebSphere®

Application Server V7.0.

8. Open the Markers view from the Java EE perspective, and see the warnings reported.

17

9. These warnings are an indication that deployment of this project cannot be done without

copying the files to the temporary workspace metadata location, which slows initial deployment

performance.

10. In the Enterprise Explorer view, right-click the TestWar project and select Properties →

Deployment Assembly to verify the folder mappings. Observe that for web projects, the entire class

path container Maven Dependencies is mapped to the WEB-INF/lib location. The folder

/target/m2e-wtp/web-resources is used to temporarily generate files such as MANIFEST.MF.

Generation of the MANIFEST based on Maven archiver options is important if you want to develop

skinny WAR projects, such as packaging dependant JAR files in the EAR rather than in the web app

lib directory.

11. In the Web Deployment Assembly properties page, click OK.

12. Create a Servlet class.

a. From the toolbar select File → New → Other → Web - >Servlet and click Next.

b. In the Java package field for the Create Servlet wizard, type test

c. In the Class name field, type TestServlet

d. Accept all other defaults. Click Finish.

13. The TestServlet.java editor opens, replace the existing doGet method with the

following code:

protected void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.println("<html>");
 pw.println("<head><title>Hello World</title></title>");

18

 pw.println("<body>");
 pw.println("<h1>Hello World</h1>");
 pw.println("</body></html>");

 }

14. There is an error message that the PrintWriter cannot be resolved to a type. To fix this

error message, right-click on the TestServlet.java editor and select Source → Organize Imports.

The import java.io.PrintWriter; gets added to the TestServlet.java source. Save

the changes by selecting in the toolbar File → Save.

15. To test the WAR project on WebSphere Application Server, you must contain the web project in

an EAR. The next scenario is going to cover creating an EAR project using traditional Java EE wizards

from Rational Application Developer, and convert the application to using Maven.

“Mavenize” existing Rational Application Developer projects
An existing or newly created Java EE project from Rational Application Developer can be configured to

use Maven, and must be converted to properly interact within the Maven project dependency model.

Here are the instructions to create and configure an EAR project:

1. Create a new EAR project.

a. Open the New EAR Application Project wizard by selecting from the toolbar File → New →

Project → Java EE → Enterprise Application Project and click Next.,

b. In the Project name field, type MyEar.

c. In the EAR version list, select 5.0.

d. In Target runtime list, ensure the project has a valid runtime environment, such as WebSphere

Application Server V7.0 or V8.0, and click Finish. In the following steps, we are going to add the WAR

module to the project through the pom.

2. In the Enterprise Explorer view, right-click the MyEar project and select Configure → Convert To

Maven Project.

3. In the Maven POM page of the Create new POM wizard, type mygroup for the Group Id field.

There is a known limitation with the packaging options in this wizard, you must manually type ear for

the Packaging field. Click Finish. A sparsely populated pom.xml file is created along with project

metadata, such as Maven natures and builders.

19

4. The pom editor opens, click on the Dependencies tab.

5. Under the Dependencies section, click the Add.

6. In the Select Dependency wizard, type TestWar in the filter text box. Under the Search

Results list, select mygroup TestWar and click OK.

7. In the pom editor, select the pom.xml tab to view the source. Add the below fragment of code

after this line of code: <packaging>ear</packaging>. The fragment of code properly aligns the

maven EAR plugin settings with the Rational Application Developer project, such as configuring the

following settings: set the EAR version to 5.0, do not generate deployment descriptor, specify the

archive name, specify the location of the source folder and other settings.

<build>

20

 <finalName>MyEar</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-ear-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <version>5</version>
 <modules>
 <webModule>
 <groupId>mygroup</groupId>
 <artifactId>TestWar</artifactId>

 <bundleFileName>TestWar.war</bundleFileName>
 </webModule>
 </modules>
 <fileNameMapping>no-version</fileNameMapping>

 <generateApplicationXml>false</generateApplicationXml>

 <earSourceDirectory>${basedir}\src\main\application</earSourceDirectory

>
 </configuration>
 </plugin>
 </plugins>

</build>

21

8. In the Enterprise Explorer view, right-click the MyEar project and select Maven → Update

Project Configuration. Select both MyEar and TestWar check boxes and click OK.

9. In Enterprise Explorer view, expand src → main → application→ META-INF folder and right-click

application.xml file and select Delete. The application.xml file was initially generated by

Maven before the pom.xml changes were applied.

10. In the Enterprise Explorer view, verify the WAR module is now part of the EAR.

22

WebSphere Application Server deployment
1. Test the Maven application by publishing it on the server. In the Enterprise Explorer view,

expand TestWar → TestWar → Servlets and right-click TestServlets and select Run As… → Run on Server.

2. In the Run On Server wizard, under the Select the server that you want to use list, select the

WebSphere Application Server entry, and click OK.

Full Java EE Maven sample
In the previous Java EE Development using Rational Application Developer 7.5.5 and Maven paper, an

example was used to demonstrate an application with various Maven project types. This sample has

been provided again as an example, with changes following the best practices for m2eclipse

development. To run the sample complete the following steps:

1. Import the sample.

a) Save a copy of the CompanySample.zip file into a known folder location.

b) In the toolbar select Import… → General → Existing Projects into Workspace.

c) On the Select page of the Import wizard, click Next.

d) In the Import Project page, select Select archive file option, browse to the location of the

sample saved on your file system, and then click Open.

e) In the Import wizard, click Finish.

2. The default environment for this sample is set to WebSphere Application Server V7.0. If

the Workspace Migration wizard display, click Next.

1. On the Workspace projects which need migration page, click Next.

2. On the Migration Project Resources page, click Next.

https://www.ibm.com/developerworks/wikis/download/attachments/113606723/CompanySample.zip?version=1

23

3. In the Server Runtimes list on the Undefined Server Runtime page, for the

was.base.v7 entry, select WebSphere Application Server v8.0 or WebSphere Application

Server v7.0 under the New Server Runtime column. Click Next.

4. On the Complete Migration Startup page, click Finish.

5. On the Migration Validation window, click OK.

3. A sample of a Derby database is also provided to use with the sample above.

a) Unzipping the database contents to a known folder location.

b) Create a Derby database connection from the Data Source Explorer view from Rational

Application Developer. In the Data Source Explorer view, right-click the Database Connections folder

and select New.

c) Under the Select a database manager, select Derby. An existing JDBC driver should be found:

BIRT SampleDb Derby Embedded Driver.

d) In the Database location field, browse to the folder where the unzip database sample exists and

then click OK.

e) In the New Connection wizard, click Finish.

https://www.ibm.com/developerworks/wikis/download/attachments/113606723/Derby_SAMPLE.zip?version=1

24

4. In the Enterprise Explorer view, right-click DataProject JPA project and select Properties → JDBC

Connections. Verify the new SAMPLE connection is associated with this project.

5. In the Enterprise Explorer view, right-click MyCompanyEJBEar project and select Java EE →

Open Websphere Application Server Deployment. Verify the WebSphere Application Server data

source binding to jdbc/SAMPLE is also using this connection data.

6. This sample also refers to several installed JAR files that need to be added to the local repository

for a clean Maven build. The JAR files for the WebSphere Application Server runtime environment are

located in your local installation of WebSphere Application Server. Installing these JAR files into your

local repository can be done in two ways. The first method is if you have a local installation of Maven on

your workstation, you need to execute scripts on the command prompt. Here is an example of running

the scripts if you are working with a WebSphere Application Server V7.0:

mvn install:install-file -

Dfile=C:\IBM\SDP\runtimes\base_v7\runtimes\com.ibm.ws.ejb.thinclient_7

.0.0.jar -

DgroupId=websphere -DartifactId=com.ibm.ws.ejb.thinclient -

Dversion=7.0.0 -

Dpackaging=jar

25

mvn install:install-file -

Dfile=C:\IBM\SDP\runtimes\base_v7\runtimes\com.ibm.ws.jpa.thinclient_7

.0.0.jar -

DgroupId=websphere -DartifactId=com.ibm.ws.jpa.thinclient -

Dversion=7.0.0 -

Dpackaging=jar

mvn install:install-file -

Dfile=C:\IBM\SDP\runtimes\base_v7\runtimes\com.ibm.ws.admin.client_7.0

.0.jar -DgroupId=websphere -DartifactId=com.ibm.ws.admin.client -

Dversion=7.0.0 -

Dpackaging=jar

mvn install:install-file -

Dfile=<workspace_dir>\MyCompanyEJBEar\src\main\application\MyCompanyUt

ilities.jar -

DgroupId=root.SampleProject.Utilities -DartifactId=MyCompanyUtilities

-Dversion=1.0 -

Dpackaging=jar

26

The second method is using the embedded Maven runtime environment within Rational Application

Developer. Specify a run configuration of type Maven build using the goal install:install-file. Here is an

example screen capture of the Maven build run configuration:

7. To run the sample:

f) In the Enterprise Explorer view, expand MyCompanyWeb → MyCompanyWeb → Servlets .

Right-click DepartmentSalarySearch and select Run As → Run on Server.

g) Under the Select the server that you want to use list, select the WebSphere Application Server

entry, and click OK.

27

Known issues
Here is a list of known issues and restrictions

EJB Client projects

If creating EJB projects using the EJB wizards from Rational Application Developer, clear the option to

create an EJB Client project because the proper Maven dependencies are not properly created. Create a

new Maven project with JAR packaging, and add a dependency to the EJB project pointing to this new

project (using the pom editor).

What Java EE version module are you developing?

Rational Application Developer and Maven have different mechanisms for tracking what is the intended

specification version of the module project, and keeping these mechanisms in sync is important to avoid

errors that could occur. If these problems arise, synchronize the facet version of the project and the

module version specified within the pom.xml, usually within the plugins <configuration> tag.

What’s next?
The Rational’s tools development team is continuously improving the environment for various

frameworks such as Maven and m2e, and this paper evolves as problems are resolved, and

enhancements are offered. The m2eclipse project and various connector extensions continue to

improve in quality and function, and collaboration between the m2eclipse and other Eclipse projects

continues to strengthen. In March 2012 it was announced that a new incubator project at Eclipse was

proposed and accepted for m2e-wtp. This project will enable both m2e and wtp projects to share, and

integrate with a common theme and goals. Updates to this paper are forthcoming as significant

improvements become available. Questions and feedback can be added using the Rational Application

Developer tools forum, or by emailing the authors.

References

Java EE Development using Rational Application Developer 7.5.5 and Maven
http://www.ibm.com/developerworks/wikis/download/attachments/113607155/RAD_755_MAVEN_0601.pdf?version=1

Rational Desktop Tools forum
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=430

Apache Maven website
http://maven.apache.org/

M2Eclipse project site
http://www.eclipse.org/m2e/

M2Eclipse-WTP Wiki
https://github.com/sonatype/m2eclipse-wtp/wiki

http://www.eclipse.org/m2e-wtp/
http://www.ibm.com/developerworks/wikis/download/attachments/113607155/RAD_755_MAVEN_0601.pdf?version=1
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=430
http://maven.apache.org/
http://www.eclipse.org/m2e/
https://github.com/sonatype/m2eclipse-wtp/wiki

