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Motivation

Establish easy to follow rules that will make the code look consistent, clean, and understandable.
This document is based on previous experience with code, styled in different ways.

This document sets a foundation for future code quality guidelines, such as static checks, code
coverage by unit tests etc.

Test code style

Prefer as little assertions per test method.
Try to always organize the test method according to the Arrange-Act-Assert principle.
Name unit test classes as ClassTest.

Name integration test classes as ClassIT. Use maven-failsafe plugin to run them at the verify
stage.

Name test methods as testObjectActionExpectation(), like testConnectionAcceptsRequests
OF

Formatting rules

Formatting rules are not to be enforced strictly in the coming future, but the code that is being
contributed has to be formatted consistently.

Recommended configuration file for Eclipse can be downloaded here. In order to import its
rules, open Eclipse Preferences and navigate to Java > Code Style > Formatter and use Import to
open the file:

Applying the rules

In order to manually format a file in Eclipse, press Ctrl+shift+F on Windows or Linux and
Cmd+Shift+F on Mac.

In order to apply formatting to the code you have changed since last commit automatically,
enable automatic formatting under Java > Editor > Save Actions:

Automatic formatting is not removing trailing spaces reliably (especially in non-Java files). In or-
der to overcome this problem, install AnyEdit plugin from the Eclipse Marketplace and configure
it to remove all trailing writespace and enforce spaces.

Settings for XML are located under XML > XML Files > Editor.
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* A sample source file for the code formatter preview
*/

package mypackage;
import java.util.lLinkedList;

public class MyIntStack {
private final LinkedList fStack;

public MyIntStack() {
fStack = new LinkedList();
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Figure 1: Eclipse Preferences dialog for code formatting
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Figure 2: Eclipse Preferences dialog for formatting on save
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Figure 3: Eclipse Preferences dialog for AnyEdit
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Settings for JSP are by default controlled by HTML settings under Web > HTML Files > Editor.

eCe Preferences
Editor vy w

> Java
» Java EE HTML editing preferences. Note that some preferences may be set on the Structured
» JavaScript Text Editors preference page.
» Maven

Model Editor Formatting
» Model Validation
» Mylyn Line width: 72
»OocCL . ) . )
» Oomph Split multiple attributes each on a new line
» Papyrus Align final bracket in multi-line element tags

» Plug-in Development
» ProR
» Run/Debug
> Server
P Sirius
SWTBot Preferences
> Team
Validation
¥ Web
> CSS Files
VHTML Files
Validation
VISP Files
b Editor
Validation
> Web Services

Clear all blank lines

Indent using tabs
° Indent using spaces
Indentation size: 2 [
Inline Elements:
a Add...
abbr
acronym
b
basefont
big
br
cite

Remove

em
» WindowBuilder P

A\ (&)
@ @ Cancel RT—
o/ —/

Figure 5: Eclipse Preferences dialog for HTML

Space delimiter motivation

Project code is viewed in different tools, such as IDEs, IDE and online diff tools, text-based
documentation like this one.

Different programming languages have different preferred delimiter sizes and many tools do
not allow setting a delimiter size based on the file type, use the default of 8 spaces, and are not
intuitive to configure.

Therefore, spaces are preferred over tabs in order to maintain compatibility over many tools.
Tab delimiter sizes:

* JavaScript, HTML, CSS, XML: 2 spaces.
* Java and other files: 4 spaces.

State of the art

For further improvement of the code quality, look into the following resources:

* Google Java Style Guide

* Checkstyle for enforcing the aforementioned style

* Cobertura for testing code coverage

* Qulice for using multiple static analysis tools

* SonarQube for continuous monitoring of the code quality
* Working Effectively with Legacy Code

* Refactoring: Improving the Design of Existing Code

* Clean Code: A Handbook of Agile Software Craftsmanship


https://google.github.io/styleguide/javaguide.html
http://www.vogella.com/tutorials/Checkstyle/article.html
http://www.qulice.com/
https://www.goodreads.com/book/show/44919.Working_Effectively_with_Legacy_Code
https://www.goodreads.com/book/show/44936.Refactoring
https://www.goodreads.com/book/show/3735293-clean-code
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