Code style for KTH MDA & Eclipse Lyo projects

Andrew Berezovskyi

Motivation

Establish easy to follow rules that will make the code look consistent, clean, and understandable.
This document is based on previous experience with code, styled in different ways.

This document sets a foundation for future code quality guidelines, such as static checks, code
coverage by unit tests etc.

Test code style

Prefer as little assertions per test method.
Try to always organize the test method according to the Arrange-Act-Assert principle.
Name unit test classes as ClassTest.

Name integration test classes as ClassIT. Use maven-failsafe plugin to run them at the verify
stage.

Name test methods as testObjectActionExpectation(), like testConnectionAcceptsRequests
OF

Formatting rules

Formatting rules are not to be enforced strictly in the coming future, but the code that is being
contributed has to be formatted consistently.

Recommended configuration file for Eclipse can be downloaded here. In order to import its
rules, open Eclipse Preferences and navigate to Java > Code Style > Formatter and use Import to
open the file:

Applying the rules

In order to manually format a file in Eclipse, press Ctrl+shift+F on Windows or Linux and
Cmd+Shift+F on Mac.

In order to apply formatting to the code you have changed since last commit automatically,
enable automatic formatting under Java > Editor > Save Actions:

Automatic formatting is not removing trailing spaces reliably (especially in non-Java files). In or-
der to overcome this problem, install AnyEdit plugin from the Eclipse Marketplace and configure
it to remove all trailing writespace and enforce spaces.

Settings for XML are located under XML > XML Files > Editor.

static/codestyle/formatter.xml

type filter text Q)

> General
> Acceleo
> Alf
> Ant
Checkstyle
» Code Recommenders
»Css
> EMF Facet
» Help
P Install/Update
VJava
» Appearance
» Build Path
¥ Code Style
Clean Up
Code Templates
Formatter
Organize Imports
» Compiler
» Debug
» Editor
P Installed JREs
JUnit
Properties Files Editor
> Java EE
» JavaScript
» Maven
Model Editor
» Model Validation

Preferences

Formatter v 4
Configure Project Specific Settings...

Active profile:

Eclipse [built-in] Edit...
New... Import... Export All...
Preview:
/%%

* A sample source file for the code formatter preview
*/

package mypackage;
import java.util.lLinkedList;

public class MyIntStack {
private final LinkedList fStack;

public MyIntStack() {
fStack = new LinkedList();

Restore Defaults Apply

@®

Cancel

Figure 1: Eclipse Preferences dialog for code formatting

¥ Java

Preferences

Save Actions HOvivw

» Appearance

» Build Path

¥ Code Style
Clean Up
Code Templates
Formatter
Organize Imports

» Compiler

» Debug

v Editor

P Content Assist

Folding
Hovers
Mark Occurrences
Syntax Coloring
Templates
Typing

» Installed JREs

JUnit
Properties Files Editor
> Java EE
» JavaScript

Configure Project Specific Settings...

Perform the selected actions on save
Format source code
Format all lines

© Format edited lines

Configure the formatter settings on the Formatter page.
" Organize imports

Configure the organize imports settings on the Organize Imports page.
Additional actions

Remove 'this' qualifier for non static field accesses
Remove 'this' qualifier for non static method accesses
Convert control statement bodies to block

Remove unnecessary '$NON-NLS$' tags

Remove trailing white spaces on all lines

Correct indentation

Configure...

Restore Defaults Apply

@@

T

Cancel

Figure 2: Eclipse Preferences dialog for formatting on save

¥ General
» Appearance
Compare/Patch
Content Types
V Editors

AnyEdit Tools

File Associations

P> Structured Text Editor

P Text Editors

Error Reporting
Globalization
Keys

> Network Connections
Notifications
Perspectives
Search

» Security
Service Policies

» Startup and Shutdown
Tracing

Ul Responsiveness Monit

User Storage Service
Web Browser
» Workspace
» Acceleo
> Alf
» Ant
Checkstyle
» Code Recommenders
»CSss
> EMF Facet
» Help
» Install/Update
Vv Java

Preferences

AnyEdit Tools Sv v w

Lol Saa] Convert... Open... Save to... Misc.
Before editor buffer will be saved...

Remove trailing whitespace ~ Ignore empty lines

Create new line at the end of the file ' Fix line delimiters (CRLF to LF etc)

Convert tabs <-> spaces

Default convert mode on save

° Tabs to spaces Spaces to tabs

Warn me before perform "tabs <-> spaces" action on folders
Auto - Convert EXCLUSION file list
Here you can define file filters (matched files will be NOT changed).

Wildcards are allowed either for file name or for file suffix.
Path wildcards are not supported yet.

Makefile.* Add filter
*Makefile

*makefile

*mk

Enable all
Makefile Disable all
|Z| makefile

@®

Figure 3: Eclipse Preferences dialog for AnyEdit

> Java
P Java EE
» JavaScript
> Maven
Model Editor
» Model Validation
» Mylyn
»OoCL
» Oomph
P Papyrus
P Plug-in Development
» ProR
» Run/Debug
> Server
P Sirius
SWTBot Preferences
> Team
Validation
» Web
> Web Services
» WindowBuilder
VXML
> DTD Files
XML Catalog
VXML Files
) Editor
Validation
> XML Schema Files

Preferences

Editor Sv v w

XML editing preferences. Note that some preferences may be set on the Structured Text
Editors preference page.

Formatting
Line width: 72
Split multiple attributes each on a new line
Align final bracket in multi-line element tags
Preserve whitespace in tags with PCDATA content
Clear all blank lines
Format comments
Join lines
Insert whitespace before closing empty end-tags
_ Indent using tabs
° Indent using spaces

Indentation size: |2

Grammar Constraints

Use inferred grammar in absence of DTD/Schema

@

Figure

4: Eclipse Preferences dialog for XML

Settings for JSP are by default controlled by HTML settings under Web > HTML Files > Editor.

eCe Preferences
Editor vy w

> Java
» Java EE HTML editing preferences. Note that some preferences may be set on the Structured
» JavaScript Text Editors preference page.
» Maven

Model Editor Formatting
» Model Validation
» Mylyn Line width: 72
»OocCL .) .)
» Oomph Split multiple attributes each on a new line
» Papyrus Align final bracket in multi-line element tags

» Plug-in Development
» ProR
» Run/Debug
> Server
P Sirius
SWTBot Preferences
> Team
Validation
¥ Web
> CSS Files
VHTML Files
Validation
VISP Files
b Editor
Validation
> Web Services

Clear all blank lines

Indent using tabs
° Indent using spaces
Indentation size: 2 [
Inline Elements:
a Add...
abbr
acronym
b
basefont
big
br
cite

Remove

em
» WindowBuilder P

A\ (&)
@ @ Cancel RT—
o/ —/

Figure 5: Eclipse Preferences dialog for HTML

Space delimiter motivation

Project code is viewed in different tools, such as IDEs, IDE and online diff tools, text-based
documentation like this one.

Different programming languages have different preferred delimiter sizes and many tools do
not allow setting a delimiter size based on the file type, use the default of 8 spaces, and are not
intuitive to configure.

Therefore, spaces are preferred over tabs in order to maintain compatibility over many tools.
Tab delimiter sizes:

* JavaScript, HTML, CSS, XML: 2 spaces.
* Java and other files: 4 spaces.

State of the art

For further improvement of the code quality, look into the following resources:

* Google Java Style Guide

* Checkstyle for enforcing the aforementioned style

* Cobertura for testing code coverage

* Qulice for using multiple static analysis tools

* SonarQube for continuous monitoring of the code quality
* Working Effectively with Legacy Code

* Refactoring: Improving the Design of Existing Code

* Clean Code: A Handbook of Agile Software Craftsmanship

https://google.github.io/styleguide/javaguide.html
http://www.vogella.com/tutorials/Checkstyle/article.html
http://www.qulice.com/
https://www.goodreads.com/book/show/44919.Working_Effectively_with_Legacy_Code
https://www.goodreads.com/book/show/44936.Refactoring
https://www.goodreads.com/book/show/3735293-clean-code

	Motivation
	Test code style
	Formatting rules
	Applying the rules
	Space delimiter motivation

	State of the art

