

Mentor Graphics
 Changes to the

 Eclipse Tracing and Monitoring
Framework (TMF)

Document Version: 1.0
Creation Date: September 17, 2010

Embedded Systems Division Austria

This document contains information that is confidential and proprietary to Mentor Graphics Corporation. This information is
supplied for identification, maintenance, evaluation, engineering, and inspection purposes only, and shall not be duplicated or
disclosed without prior written permission from an authorized representative of Mentor Graphics. This document and any other
confidential information shall not be released to any third party without a valid Confidential Information Exchange agreement

signed by the third party and an authorized Mentor Graphics representative. In accepting this document, the recipient agrees to
make every reasonable effort to prevent the unauthorized use of this information.

Mentor Graphics Changes to the Eclipse Tracing and Monitoring Framework (TMF)

COMPANY CONFIDENTIAL 2

Table Of Contents

Overview ... 4

Event skipping ... 4

ITmfTrace / TmfTrace ... 4

Indexing ... 4

TmfTrace .. 4

TmfExperiment ... 5

Searching and filtering... 5

TmfTrace .. 5

TmfExperiment / TmfDataRequest .. 5

New public interfaces .. 6

TmfTimeRange TmfTimeRange#getIntersection(TmfTimeRange other) ... 6

boolean TmfDataRequest<V>#waitForCompletion(long timeout) .. 6

long ITmfTrace#skipEvents(TmfTraceContext context, long number, TmfTimestamp time, Object

filter, TmfTimestamp[] skipped) .. 6

FindResult ITmfTrace#findNextEvent(TmfTraceContext context, Object filter) 6

boolean ITmfTrace#testEvent(TmfEvent event, Object filter) ... 6

boolean TmfExperiment#getIndexing() ... 6

void TmfExperiment#processRequest(TmfFilteringDataRequest<TmfEvent> request, boolean

waitForCompletion) ... 6

long TmfTrace#skipEvents(TmfTraceContext context, long number, TmfTimestamp time, Object

filter, TmfTimestamp[] skippedTS) ... 6

void TmfTrace#reindexStream() .. 7

boolean TmfTrace#isIndexingStream() .. 7

void TmfTrace#stopIndexingStream() .. 7

FindResult TmfTrace#findNextEvent(TmfTraceContext context, Object filter) 7

boolean TmfTrace#testEvent(TmfEvent event, Object filter) .. 7

void TmfTraceContext#set(TmfTraceContext other) ... 7

New public classes ... 7

class TmfFilteringDataRequest<V> extends TmfDataRequest<V>... 7

class TmfFilteredExperiment extends TmfExperiment .. 7

Mentor Graphics Changes to the Eclipse Tracing and Monitoring Framework (TMF)

COMPANY CONFIDENTIAL 4

Mentor Graphics Changes to the Eclipse Tracing and

Monitoring Framework (TMF)

Overview

The following document lists our major changes to the TMF framework. A good understanding of the

behavior and concept of the original TMF framework is recommended.

The base version of these changes is the public repository

http://dev.eclipse.org/svnroot/technology/org.eclipse.linuxtools/lttng/trunk revision 24106.

Event skipping

Event skipping means to advance a TmfTraceContext – a pointer into an event trace – over any

desired numbers of events at the TmfTrace level. Thus a custom implementation derived from the

TmfTrace class can support more efficient implementations that just repeatedly single stepping

events.

ITmfTrace / TmfTrace

The method skipEvents is added to advance a TmfTraceContext over a number of events at once.

This is similar to repeatedly call getNextEvent for a given number of events or until a specific stop

condition is reached, but has the following advantages:

• For fixed size events the skip operation is simple and can be implemented to be very fast.

• An additional stop condition can be used to move the TmfTraceContext to a required time

stamp or to the first event that matches a given condition.

• The custom implementation derived from the TmfTrace class can prevent creation of

TmfEvent objects that are skipped and thus improve performance.

The TmfTrace#seekEvent methods are changed to use the new skip feature to improve their

performance.

Indexing

TmfTrace

The indexing operation of TmfTrace objects is changed to use the new skip feature. As such, indexing

performance is vastly improved, and indexing of fixed size event streams is now very fast.

Some methods to control indexing are added. Beside the existing method indexStream the new

methods reindexStream, isIndexingStream and stopIndexingStream are added.

Mentor Graphics Changes to the Eclipse Tracing and Monitoring Framework (TMF)

COMPANY CONFIDENTIAL 5

TmfExperiment

The indexing operation of TmfExperiment objects is completely rewritten to improve performance. A

heuristic is used to employ the new skip feature as much as possible, even when multiple traces are

in the experiment.

An EventIterator class is added that provides significantly better performance than the getNextEvent

method. When the getNextEvent method had an effort of o(n) where n is the number of traces in

the experiment, the new class has an effort of o(1) – in the case when multiple traces in the

experiment do not overlap in time – to o(log n) – in the case when multiple traces in the experiment

overlap in time.

The getNextEvent, positionTraces and processDataRequest methods are changed to use the new

EventIterator class.

Searching and filtering

The searching and filtering extension to TMF is based on a set of methods and classes that

complement the unfiltered access methods available in original TMF. The actual operation of testing

if an event matches the filter criteria or not is implemented in the custom implementation derived

from the TmfTrace class, thus no custom or event specific behavior is part of the TMF framework

itself. Filter parameter are passed as a verbatim Object to the underlying TmfTrace implementation.

TmfTrace

The newly introduced TmfTrace#skipEvents method supports a filter parameter, and will stop

skipping events when an event matches the filter. Because custom implementation derived from the

TmfTrace class can implement filtering at a low level, TmfEvent objects that do not match are not

even created for performance reasons.

Another new method TmfTrace#testEvent tests if TmfEvent objects match a given filter criteria. It

must be implemented by custom implementations derived from the TmfTrace class. The default

implementation matches every event.

It is possible to share the work between TmfTrace#skipEvents and TmfTrace#testEvent by

skipEvents performing pre-filtering, thus reducing the amount of event objects that are created, and

testEvent will perform the full featured filtering.

TmfExperiment / TmfDataRequest

The TmfDataRequest class is complemented with a new TmfFilteringDataRequest class that includes

the additional filter criteria object. It is used with a new TmfExperiment#processRequest method

that takes a TmfFilteringDataRequest object as parameter. The events returned by this request all

match the filter criteria object as tested by the TmfTrace#testEvent method as described above.

Mentor Graphics Changes to the Eclipse Tracing and Monitoring Framework (TMF)

COMPANY CONFIDENTIAL 6

A new experiment class is derived from TmfExperiment, TmfFilteredExperiment, that accepts a filter

criteria object in the constructor. It provides all standard TmfExperiment interfaces, but returns only

event data that match the filter criteria.

In other words, the TmfFilteringDataRequest is typically used in find / search scenarios, whereas the

TmfFilteredExperiment is typically used where existing components like views shall be fed with

filtered event data.

New public interfaces

TmfTimeRange TmfTimeRange#getIntersection(TmfTimeRange other)

Get intersection of two time ranges

boolean TmfDataRequest<V>#waitForCompletion(long timeout)

To suspend the client thread until the request completes (or is canceled).

long ITmfTrace#skipEvents(TmfTraceContext context, long number,
TmfTimestamp time, Object filter, TmfTimestamp[] skipped)

Skips the given number of events or until the given time stamp is reached, updates the context to the

next event, and returns the number of events that have been skipped.

If filter is not null, processing stops when the filter condition is fulfilled.

FindResult ITmfTrace#findNextEvent(TmfTraceContext context, Object filter)

Find the next event that matches the filter condition. Returns the event and the index of that event

in this trace file.

The context is incremented after the result match - but not necessarily to the next match!

boolean ITmfTrace#testEvent(TmfEvent event, Object filter)

Test if the event matches the filter condition.

boolean TmfExperiment#getIndexing()

Indicates that an indexing job is already running

void TmfExperiment#processRequest(TmfFilteringDataRequest<TmfEvent>
request, boolean waitForCompletion)

Process a data request for filtered data.

long TmfTrace#skipEvents(TmfTraceContext context, long number,
TmfTimestamp time, Object filter, TmfTimestamp[] skippedTS)

See ITmfTrace#skipEvents

Mentor Graphics Changes to the Eclipse Tracing and Monitoring Framework (TMF)

COMPANY CONFIDENTIAL 7

void TmfTrace#reindexStream()

Restart indexing the stream from the beginning. When another indexing operation is currently in

progress, it is aborted first.

boolean TmfTrace#isIndexingStream()

Returns if an indexing operation is currently in progress.

void TmfTrace#stopIndexingStream()

Stop an indexing operation when one is currently in progress.

FindResult TmfTrace#findNextEvent(TmfTraceContext context, Object filter)

See ITmfTrace#findNextEvent

boolean TmfTrace#testEvent(TmfEvent event, Object filter)

See ITmfTrace#testEvent

void TmfTraceContext#set(TmfTraceContext other)

Set trace context from other context.

New public classes

class TmfFilteringDataRequest<V> extends TmfDataRequest<V>

Data request class that supports filtered results.

class TmfFilteredExperiment extends TmfExperiment

A TmfExperiment that supports filtered results.

