Object Management Group Final FTF Report

FTF Report

of the

UML 2.0 Testing Profile
Finalization Task Force

to the

Platform Technical Committee
of the

Object Management Group

Version: 19" April 2004

Document Number: ptc-2004-04-01

Accompanied by: ptC-2004-04-02 (revised spec)
ptC'2004'04'03 (revised spec with changebars)

Document ptc-2004-04-01 UML 2.0 Testing Profile FTF

F T REPORT ...ttt ettt sttt st ee ettt ettt et et e s et et e e esenseneesenseseeans 1
OF THE .ttt ettt ettt ettt ettt et et et e st e st eae e se e b en s es e esen s e s e sseseeb et et e esentes et eneaseneesenseneesanes 1
UML 2.0 TESTING PROFILE FINALIZATION TASK FORCE.......cccccetrieiiiiieiieeeeeee e 1
TO THE 1ttt ettt ettt et ettt et e e te st ete et estetesees et enees e s e st s eneese s eneese s ane s et esensentetenseseesenseneenns 1
PLATFORM TECHNICAL COMMITTEEccveiteteieiereieiessessessessessessessessessessessessessessensessens 1
OF THE .ttt ettt ettt et ettt ettt e st e st eaea e seebeases e esensesesseseeb et et e s entes et eneeseneesenseneesans 1
OBUECT MANAGEMENT GROUPcteiiiieiieeieiieienrestetestessessessessessessessessessessessessessessenss 1
VERSION: 19™ APRIL 2004ooovoooeeeeeeeeeeeeeeeeeeee e 1
DOCUMENT NUMBER: PTC-2004-04-01coiiiieieieeeeie e 1
ACCOMPANIED BY: PTC-2004-04-02 (REVISED SPEC) PTC-2004-04-03 (REVISED
SPEC WITH CHANGEBARS)......c.viititieteetieeteeteeteeeteeeaeeateeteeeaeeseeeseeaseessensseseeeseeseeneesseensens 1
TABLE OF CONTENTScuiitiietiteieierteetetetese et ese e seetensesesseneesesseseeseaeseesensesessensasenseneanan I
SUMMARY OF UML 2.0 TESTING PROFILE FTF ACTIVITIES 4
FORMATION ...ttt ettt ettt ettt sttt st ee et ettt et et e se e et se e esenseneesensesesens 4
REVISION / FINALIZATION TASK FORCE MEMBERSHIPc.cotetiieieieieieeeeeiee e 4
INITIAL ISSUES FROM ARCHITECTURE BOARD REVIEW:......coiiiiiiiieieeeieee e 5
AB ISSUE NO: 6290 5
TITLE: DETAILS OF THE STANDALONE MODELoeouiiiiiiiiiecieeeieiee e 5
AB ISSUE NO: 6291 6
TiITLE: XMI SCHEMA (PROFILE AND STANDALONE MODEL)cooviviireiiireiieeeeeeenn 6
ISSUE DISPOSITION:ciieieeteiteieietetestestessessessessessesessessessessessessessessessessessessessessensens 6
VOTING RECORD :.......coiiiiieiieiieiesietet ettt sttt st ebesbessesse s e esessesseesansessessnans 7
SUMMARY OF CHANGES MADEc.ccoiiiiiiiieieieieie sttt ere st sse s snessessaenas 9
DISPOSITION: RESOLVED 10
OMG ISSUE NO: 6293 10
TITLE: VERDICT IN TEST CASE (STANDALONE MODEL)....ccooveeiiiiiieeecieeieeie e 10
OMG ISSUE NO: 6297 11
TITLE: TRACES VS. LOG/JOURNAL/... (PROFILE AND STANDALONE MODEL)......... 11
OMG ISSUE NO: 6305 12
TITLE: EDITORIAL FOR FIG. 4 ...t 12
AB ISSUE NO: 6290 13
TITLE: DETAILS OF THE STANDALONE MODELoocvivieieieieiesieieeeee e 13
OMG ISSUE NO: 6292 18

TITLE:

Table of Contents

TEST SUITE / TEST CASE

UML 2.0 Testing Profile FTF Final Report

OMG ISSUE NO: 6295 21
TITLE: TRACES (STANDALONE MODEL).....ccvioiiiiiiiieiecieieieere ettt e 21
OMG ISSUE NO: 6300 22
TITLE: SIMPLIFICATION OF THE STANDALONE MODEL........c.ceviueueieeiiiiieiieieienenes 22
OMG ISSUE NO: 6951 23
TITLE: RELATIONSHIP BETWEEN ARBITER AND BEHAVIOR (STANDALONE MODEL) 23
OMG ISSUE NO: 6952 24
TITLE: DEFAULT REFINING FROM BEHAVIOR (STANDALONE MODEL)........ccccvneee. 24
AB ISSUE NO: 6291 25
TiTLE: XMI SCHEMA (PROFILE AND STANDALONE MODEL)vovvvvvevieieveeie e 25
OMG ISSUE NO: 6296 34
TITLE: TRACES FOR TEST CASES AND TEST SUITE (PROFILE).......cccooviriiiierernanes 34
OMG ISSUE NO: 6298 36
TITLE: DATA POOLS AND DATA PARTITIONS (PROFILE AND STANDALONE MODEL)
36
OMG ISSUE NO: 6299 48
TITLE: DATA PICKER/DATA SELECTION (PROFILE AND STANDALONE MODEL)...... 48
OMG ISSUE NO: 6301 49
TITLE: RELATION OF TEST SUITE AND ARBITER (PROFILE) ...ccvcovveevieiicreere e 49
OMG ISSUE NO: 6302 50
TITLE: LOAD TESTS (PROFILE) ...cuviuiiieieeiiieiecietee ettt vt sve e et eveeve v 50
OMG ISSUE NO: 6306 52
TITLE: ARBITER SEMANTICSooviviiiiiieiiieteieteieteseseesssssesesesesesesesesessssssssesesesesesenas 52
OMG ISSUE NO: 6307 53
TITLE: SYNCHRONIZATION/COORDINATION OF TEST COMPONENTSccveveneenee. 53
OMG ISSUE NO: 7193 59
TITLE: REFERENCE TO TTCN-3 ..ot 59
OMG ISSUE NO: 6303 60
TITLE: ACTIVITY DIAGRAMS (PROFILE)......couiiiiotieieeeeecteeeteeeeeee e 60
OMG ISSUE NO: 6304 63
TITLE: ISSUES WITH THE LOAD TESTING EXAMPLEocooveveiieieiciciccie e 63
OMG ISSUE NO: 6954 65

4/21/04 Page ii

UML 2.0 Testing Profile FTF Final Report

TITLE: CONSTRAINED SEMANTICS FOR UML CONSTRUCTS......cocuevivinieiiiiieieienees 65
OMG ISSUE NO: 7104 68
TITLE: DEFAULT/STATE MACHINE SYNTAXcvcuruiuieirieiiieresesesetesesesessssssesesesesesenas 63
OMG ISSUE NO: 7218 71
TITLE: EDITORIAL COMMENTScteiiienieerentesiesienressessessessessessessessensessessessessessessenses 71
DISPOSITION: UNRESOLVED 73
DISPOSITION: DEFERRED 74
OMG ISSUE NO: 6956 74
TITLE: GREY BOX TESTINGcucuiuiuiiieiiieieieteietetetessse s sssesesesesesesesesessssssssesesesesesanes 74
OMG ISSUE NO: 6955 75
TITLE: DATA GUARDS ON OBSERVATIONS.....c..erteietirierrererensestestensessessessessessessenss 75
OMG ISSUE NO: 7195 76
TITLE: UML 2.0 ALIGNMENT ...ttt ettt ettt st seese e neeseeeens 76
DISPOSITION: TRANSFERRED 77
OMG ISSUE NO: <NONE> 77
1 =5 OO SRS SRR SRR 77
DISPOSITION: CLOSED, NO CHANGE 78
OMG ISSUE NO: 6294 78

TITLE: COMMONALITIES BETWEEN TEST SUITE AND TEST CASE (STANDALONE
MODEL) 78

OMG ISSUE NO: 6953 79
TiITLE: TEST CASE EXECUTION IN A SUITE OR TEST CASE CONTEXT....cceevvrveneenee. 79
OMG ISSUE NO: 7194 80
TITLE: HYBRID DEFAULTS ...ovtiiitiiiiiieiieteie ettt s 80
DISPOSITION: DUPLICATE/MERGED 81
OMG ISSUE NO: <NONE> 81
L1 =5 OSSOSO 81

4/21/04 Page iii

UML 2.0 Testing Profile FTF

Disposition: Resolved
AB Issue No: 6290

Summary of UML 2.0 Testing Profile FTF Activities

Formation

e Chartered By: Platform Technology Committee

e On: June 6, 2003 in Paris, France

e Comments Due Date: September 8, 2003

e Report Due Date: April 30, 2004

Revision / Finalization Task Force Membership

Member Organization Status
DESFRAY, Philippe Softeam Charter, Veto
GERY, Eran ILogix Charter
SAMUELSSON, Eric Telelogic AB Charter, Veto
MANSUROV, Nikolai KLOCwork Inc. Charter
HAUGEN, Oystein Ericsson Charter

(Resigned Dec. 2003)

LUCIO, Serge International Business Charter, Co-chair,
Machines Veto
BAKER, Paul Motorola Charter

SCHIEFERDECKER,
Ina

Fraunhofer FOKUS

Charter Co-chair

4/21/04

Page 4

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6290

Initial Issues from Architecture Board Review:

AB Issue No: 6290
Title: Details of the Standalone Model

Source:
Pete Rivett, Adaptive Inc, pete.rivett@adaptive.com

Summary:

The standalone metamodel is not detailed enough to enable the implementation
of testing profile compliant tools. In particular, many of the classes are having no
attributes. Hence, a behavioural and further semantic foundation should be
added to the standalone metamodel.

Resolution:

We will include the Hyades standalone metamodel for the UML Testing Profile,
which is a real implementation and has to solve all the open issues of the current
standalone metamodel.

Basically, we add a name and a definition to all the concepts in the standalone
model.

Revised Text:

4/21/04 Page 5

UML 2.0 Testing Profile FTF

Disposition: Resolved
AB Issue No: 6291

AB Issue No: 6291
Title: XMI Schema (Profile and Standalone Model)

Source:

Pete Rivett, Adaptive Inc, pete.rivett@adaptive.com

Summary:

The UML Testing Profile lacks currently a definition of XMI schema for the profile
and the standalone model. These are needed to allow tool interchange of test
specifications. Here, the reference to an XML DTD in the compliance point
definition should be changed to a reference to the schema definitions.

Resolution:

Revised Text:

Issue Disposition:

Disposition

Resolved

Number of
Occurrences

8

Meaning of Disposition

The RTF/FTF agreed that there is a problem that

needs fixing, and has proposed a resolution
(which may or may not agree with any resolution
the issue submitter proposed)

Unresolved

14

The RTF/FTF agrees that there is a problem that
needs fixing, but could not agree on a resolution.

Deferred

The RTF/FTF agrees that there is a problem that
needs fixing, but decided to defer its resolution to
a future RTF working on this specification
(perhaps because of a lack of time or urgency).

Transferred

The RTF/FTF decided that the issue report
relates to another specification, and recommends
that it be transferred to the relevant RTF.

Closed, no
change

The RTF/FTF decided that the issue report does
not, in fact, identify a problem with this (or any
other) OMG specification.

4/21/04

Page 6

UML 2.0 Testing Profile FTF

Disposition: Resolved
AB Issue No: 6291

Duplicate or 0
merged

This issue is eitehr an exact duplicate of another
issue, or very closely related to another issue: see
that issue for disposition.

{enter the number of occurrences for each disposition. For example, if 10 total
issues were reported to the RTF / FTF and 6 were Resolved, 1 was Unresolved,
1 was Closed with no change, and 2 were Duplicate, then you would enter the
respective number in each of the rows above.}

Voting Record:

Poll No. Closing date
October 20, 2003

Issues included
OMG ISSUE NO: 6293
OMG ISSUE NO: 6297
OMG ISSUE NO: 6305

March 15, 2004

AB ISSUE NO: 6290

OMG ISSUE NO: 6292
OMG ISSUE NO: 6294
OMG ISSUE NO: 6295
OMG ISSUE NO: 6300
OMG ISSUE NO: 6951
OMG ISSUE NO: 6952
OMG ISSUE NO: 6953

April 5, 2004

AB ISSUE NO: 6291
OMG ISSUE NO: 6296
OMG ISSUE NO: 6298

4/21/04

Page 7

UML 2.0 Testing Profile FTF

Disposition: Resolved
AB Issue No: 6291

OMG ISSUE NO: 6299
OMG ISSUE NO: 6301
OMG ISSUE NO: 6956
OMG ISSUE NO: 6955
OMG ISSUE NO: 6302
OMG ISSUE NO: 6306
OMG ISSUE NO: 6307
OMG ISSUE NO: 7193
OMG ISSUE NO: 7194
OMG ISSUE NO: 6303
OMG ISSUE NO: 6304
OMG ISSUE NO: 6954
OMG ISSUE NO: 7104
OMG ISSUE NO: 7218

4 { Spell out date poll [{Issue numbers of all issues whose resolution was included
closed, e.g. 25 in this poll}
January 2003}
5 { Spell out date poll [{lssue numbers of all issues whose resolution was included
closed, e.g. 25 in this poll}
January 2003}
Voter Vote in poll 1 Vote in poll 2 Vote in poll 3
DESFRAY, Philippe Yes Did not vote Did not vote
GERY, Eran Did not vote Did not vote Did not vote

SAMUELSSON, Eric Yes

Abstain: 6290, Yes

4/21/04

Page 8

UML 2.0 Testing Profile FTF

Disposition: Resolved
AB Issue No: 6291

6300

Yes: all others

MANSUROV, Nikolai |Did not vote

Did not vote

Did not vote

HAUGEN, Oystein Yes (resigned Dec. 2003)

LUCIO, Serge Yes Yes Abstain: 6307
Yes: all others

BAKER, Paul Yes Yes Yes

SCHIEFERDECKER, | Yes Yes Yes

Ina

Summary of Changes Made

The UML 2.0 Testing Profile FTF made changes that:

o Corrected features that impeded implementation or did not serve the
original intent of the specification

e Provided additional convenience for implementers

¢ Increased the clarity of the specification

The following is a table that categorizes the issues as to the degree of changes
that were made in resolving them.

descriptive, explanatory, or
supporting material.

Extent of Change Number OMG Issue Numbers
of Issues

Significant - Fixed 6 6290, 6293, 6295, 6300, 6951, 6291,
problems with normative
parts of the specification
that raised concern about
implementability
Minor - Fixed minor 11 6292, 6297, 6305, 6952, 6296, 6298,
problems with normative 6299, 6301, 6307, 6303, 6954
parts of the specification
Support Text -Changes to 6 6302, 6306, 7193, 6304, 7104, 7218

4/21/04

Page 9

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6293

Disposition: Resolved

OMG Issue No: 6293
Title: Verdict in Test Case (Standalone Model)

Source:
IBM, Serge Lucio, slucio@us.ibm.com

Summary:

Verdicts are part of a test case specification; however, a test case specification
may contain several different verdicts — as different test sequences (all part of
that test case) may lead to different verdicts. Hence, there is not a single test
verdict and the attribute verdict of a test case should be deleted.

Resolution:
Delete the attribute from the test case stereotype

Revised Text:

A revised metamodel figure and a revised text:

Test Case

Semantics

A test case is a set of behavior performed against the SUT and owned by a test suite. Test cases have access
to all elements in a test suite, including the SUT elements and test components. A test case produces a trace
containing all log actions and the verdict.

Associations

* behavior:Behavior[1] The dynamic behavior of the test case.

« executions: Trace[0..*] Trace elements representing the logged information for each execution of a test
case.

« testObjective: TestObjective[1..*] A test objective is a description of the capability being validated by the
test case.

« testSuite: TestSuite[1] The test suite to which the test case belongs.

4/21/04 Page 10

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6297

OMG Issue No: 6297

Title: Traces vs. Log/Journal/... (Profile and Standalone Model)
Source:
IBM, Serge Lucio, slucio@us.ibm.com

Summary:

The notion trace could be confusing as it is used e.g. in UML 2.0 interactions to
define the interaction semantics. Hence, a renaming is proposed.

Resolution:
Rename trace to TestlLog.

Revised Text:

All occurrences of trace in figures and texts to be renamed to log.

4/21/04 Page 11

UML 2.0 Testing Profile FTF

Disposition: Resolved
OMG Issue No: 6305

OMG Issue No: 6305
Title: Editorial for Fig. 4

Source:
U2TP Consortium, u2tp@fokus.fraunhofer.de

Summary:
There is a “hanging” e top left of Fig. 4.

Resolution:
Simply delete it.

Revised Text:

The revised figure.

4/21/04

Page 12

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6290

AB Issue No: 6290
Title: Details of the Standalone Model

Source:
Pete Rivett, Adaptive Inc, pete.rivett@adaptive.com

Summary:

The standalone metamodel is not detailed enough to enable the implementation
of testing profile compliant tools. In particular, many of the classes are having no
attributes. Hence, a behavioural and further semantic foundation should be
added to the standalone metamodel.

Resolution:

The Eclipse/Hyades project has built a working implementation of the standalone
metamodel. The standalone model has been updated to reflect the
improvements and modifications done by the Hyades working groups, specifically
in the areas of attributes.

Primarily, every element becomes a “named element”, and for those requiring a
specification or definition, not captured in the standalone metamodel, they
include a reference to this specification, which might be proprietary to the tool.
The scope of the metamodel has been added to the text of the submission and
limits the interoperability of the standalone metamodel to architectural elements.
Behaviors are out of the scope of the MOF metamodel. The LogAction,
ValidationAction, Default, DefaultApplication are removed from the standalone
metamodel.

Revised Text:
The introduction is changed to reflect the scope of the MOF metamodel:

This section provides a standalone metamodel for the UML Testing Profile. This metamodel
is an instance of the MOF metamodel, providing the ability for MOF based tools to comply
with the Testing Profile standard. The compliance level that We present the MOF metamodel
basic diagrams and provide more detailed information as it pertains to the metamodel.
Primarily the structural elements of the Testing Profile are present in the metamodel, enabling
data interchange between MOF based testing tools. Specifically, the behavioral aspects of the
testing profile are not present in the metamodel as they would require a significant portion of
A majority of the concepts from the Testing Profile are also present in the metamodel.

This section provides a standalone metamodel for the UML Testing Profile. This metamodel
is an instance of the MOF metamodel, providing the ability for MOF based tools to comply
with the Testing Profile standard. The compliance provided by the MOF-based metamodel is
limited to the architecture elements of the Testing Profile enabling traceability and
management of tests assets across tools. Specifically, the behavioral aspects of the testing
profile are left out of the current metamodel as they would not provide any susbstantial
improvement over this goal, while requiring a significant portion of the UML 2.0 metamodel
to be included in the standalone metamodel.

4/21/04 Page 13

UML 2.0 Testing Profile FTF

Disposition: Resolved
AB Issue No: 6290

All behavioral aspects such as LogAction, ValidationAction, Default, DefaultApplication
are removed. The architecture diagram is updated:

<<enumeration>>
Trace 0.* 1| Deployment Acbiter Verdict
Sverdict: Verdct > ass
+testConfiguration gf]ail
+executions’] 0. +testConfiguration’|" 0..* '%ir}crgrnclusive
A 4
/ +arbiter
4 0.r o.x
[feature] - TestComponent
TestCase HtestCase TestSuite +component
&verdict : Verdict <
0.* 1 0.* 0.*
1 14 /K [
. 1
+sut_
i
— e
+behavior 0.1 /1’
Behavior 0. DefaultApplication
1 0.1 }
1.* |, +testObjective +behavior +behavior +defaultApp
TestObjecti i
estObjective +behavior 1 1] SBehavia W\ +defaultapp | 0.*
S
+logAction
oA - +validationAction 0. +default | 1

Default

LogAction a

ValidationAction

<<enumeration>>
Trace 0.* 1| Deployment Arbiter Verdict
Bverdict : Verdict +testConfiguration
+executions/)\ 0.* +testConfiguratiori* 0..*
1
+arbiter
1 0.5 0.x
[feature] TestComponent
TestCase l+testCase +testSuite TestSuite
[E5verdict : Verdict 0 p o 0.7
1 1 1
0.. 1
+behavi
+behavior|,0..1 1
Behavior
1
1..* |, +testObjective +behavior
TestObjective

The following te

Log Action

xt is removed:

Semantics
A log action is an element in a behavior that specifies that an entity should
be logged to the execution trace for further analysis. The target of a log
action is a logging mechanism in the run-time system. The representation of
this system is not specified.

4/21/04 Page 14

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6290

Associations

| behavior:Behavior[1] The behavior in which the log action is specified.

Validation Action

Semantics
When a validation action is specified, it indicates that at run-time, the
expression within the action will be evaluated. If the expression evaluates to
true, the verdict “pass” is sent to the arbiter using the setVerdict operation.
If the expression is false, the verdict “fail” is sent to the arbiter. Instead of
an expression, valid verdicts for the arbiter implementation may also be
used.
Associations
| behavior:Behavior[1] The behavior in which the validation action is specified.
Verdict
| Verdict is defined exactly as in profile section 2.3
Default
Semantics
A default is a behavior that is activated when an unexpected event occurs on
a test component.
Associations
defaultApp [0..*] The set of applications of the default to specific test
components.

Default Application

Semantics

A default application is the a reference which associates a particular default
with a particular behavior. This allows the default to be activated should an
unexpected event occur on a component.

Associations
behavior:Behavior[0..1] The behavior to which the default application is attached.

default:Default[1] The default being applied to the behavior.

4/21/04 Page 15

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6290

The Behavior associations are updated:

Behavior
Semantics
Behavior represents the dynamic behavior of a test suite, test case, or test
component in the testing system. In the MOF metamodel, it is a high level
concept that allows the programmed behavior of the aforementioned
elements to be explicitly referenced It is based explicitly on the behavior
concept from the U2 partners UML 2.0 submission.
Associations
defaultApp:DefaultApplication[0..*] The set of default applications which have been
associated with the behavior.
logAction:LogAction[0..*] The set of log actions that are performed when the
behavior is executed.
validationAction: ValidationAction[0..*] The set of validation actions that are performed
when the behavior is executed.
Behavior
Semantics

Behavior represents the dynamic behavior of a test suite, test case, or test
component in the testing system. In the MOF metamodel, it is a high level
concept that allows the programmed behavior of the aforementioned
elements to be explicitly referenced It is based explicitly on the behavior
concept from the U2 partners UML 2.0 submission.

New attributes are added to the meta-classes: all meta-classes get a name and a definition
attribute.

4/21/04 Page 16

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6290

0. Deployment Arbiter
name : String +testConfiguration |&2name : String Bname : String
stLogDefinition : String 9 B¥deploymentDefinition : String BarbiterDefinition : String
verdict : Verdict
I 1| +arbiter 1 ¢
" * 0.* arbiter
+executions | 0. +executions +testConfiguratior(|' 0..*
0.*
1
! TestSuite 0.*
1 Ename : String
TestC [feature]
+testCase +testSuit TestComponent
Bname : String o 1 +e Ename : String 3)
0.* 0_*|BtestComponentDefinition : String
1 " [
) 0- ’
1
B¥name : String
B¥SuTdefinition : String
+behavior|,0..1
- +behavior
Behavior
zname : String 1
+behavior BbehaviorDefinition : String +behavior

1. |, +testObjective 0.1
TestObjective

<<enumeration>>
Verdict

ame : String
wtestObjectiveDefinition : String

The attribute description section is updated to reflect that.

Also change the figure in the annex.

4/21/04 Page 17

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6292

OMG Issue No: 6292
Title: Test Suite / Test Case

Source:
IBM, Serge Lucio, slucio@us.ibm.com

Summary:

Users of the testing profile are confused with the containment relation of test
cases to test suites. Test cases are considered to be independent of test suites
(they are designed in the test planning phase), while test suites just denote one
possible execution of test cases.

Resolution:

Rename as follows:

Test suite to become test context.
Revised Text:

For the profile model:

The architecture diagram is updated:

“<<metac| lass>
Property

<zmetaclass>>
StructuredClassifier

A
o. / X 0.1
<<stereotyps

<=stereotype=>
suT

o
TestComponent TestContext
+ zone : Timezone [0.1]

<<<<<<<<

getVerdict() : Verdiot
setVerdict(v : Verdict)

All the text is updated

For the standalone model:

The architecture diagram is updated:

4/21/04 Page 18

Disposition: Resolved

UML 2.0 Testing Profile FTF
OMG Issue No: 6292
<<enumeration>>
Trace 0.* 1| Deployment Arbiter Verdict
Bverdict : Verdict +testConfiguration
+executions/)\ 0.* +testConfiguratiorl 0..* inconclusive
1 lsgzerror
+arbiter
1 0.* 0.*
[feature] TestComponent
TestCase +testCase +testSuite TestSuite +component
E8verdict : Verdict 0* 1 0. 0.%
1 1 ¢
0.* 1
+behavi
+behavior|,0..1 1
} Behavior 0.1 0.* DefaultApplication
1.% |, +testObjective +behavior +behavior +defaultApp)
TestObjective +behavior . 1] +behavior +defaultApp | 0.*
+logAction
9 +validationAction 0.* +default] 1
LogAction ValidationAction Default
——
1
<<enumeration>>
Trace 0.* 1 Deployment Arbiter Verdict
Bverdict : Verdict +testConfiguration
+executions/)\ 0. +estConfiguratior| 0.* inconclusive
1 &error
+arbiter
1 0.* 0.*
[feature] TestComponent
TestCase +testCase +testSuite TestContext +component
BSverdict : Verdict o p o 0F
1 K , ¢
. 1
+sut
SuUT WX
—— +behavi
1 +behavior|,0..1 1
; Behavior 0.1 0.* DefaultApplication
1.* |/ +testObjective +behavior +behavior +defaultApp)
TestObjective +behavior ; 1] +behavior +defaultApp | 0.*
+logAction
E +validationAction | 0. +default] 1
Default

0.*

ValidationAction

LogAction
1

The TestCase associations are updated:

Associations

| behavior:Behavior[1] The dynamic behavior of the test case.

4/21/04 Page 19

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6292

executions: Trace[0..*] Trace elements representing the logged information for
each execution of a test case.

testObjective:TestObjective[1..*¥] A test objective is a description of the capability being
validated by the test case.

testSuite: TestSuite[1] The test suite to which the test case belongs.
Associations

behavior:Behavior|[1] The dynamic behavior of the test case.

executions:Trace[0..*] Trace elements representing the logged information for

each execution of a test case.

testObjective: TestObjective[1..¥] A test objective is a description of the capability being
validated by the test case.

testContext: TestContext[1] The test context to which the test case belongs.

The remaining descriptive text is updated to reflect the renaming from test suite
to test context.

For the examples: all the figures and explanations are updated. Also, all further
text such as in the glossary is updated.

Also change the figures in the annex.

4/21/04 Page 20

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6295

OMG Issue No: 6295

Title: Traces (Standalone Model)
Source:
IBM, Serge Lucio, slucio@us.ibm.com

Summary:

Traces are currently related to test cases only, but a trace should be possible for
a test suite as well.

Resolution:
An association between test suite and trace should be added.
Revised Text:

The architecture diagram is updated:

Trace
BHverdict : Verdict

+execution 0.*

! [feature]
TestCase +testCase +estSuite TestSuite

8verdict : Verdict o]

Trace
E8verdict : Verdict

+executions/|* 0.* 0.*/)\ +executions

1 1
[feature]
TestCase +testCase +estSuite TestSuite

B8verdict : Verdict o]

s and text are
The TestSuite associations are updated with a new association:

executions:Trace[0..*] Traced elements representing the logged information for
each execution of a test suite.

Also change the figure in the annex.

4/21/04 Page 21

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6300

OMG Issue No: 6300
Title: Simplification of the Standalone Model

Source:
IBM, Serge Lucio, slucio@us.ibm.com

Summary:

There are certain concepts in the standalone model which are of no use to the
user: the default application, validation action and log action belong to behavior,
which is not described in the standalone model. Hence, a tool vendor cannot
really handle these concepts, e.g. a user could not really define a validation
action outside of a context of a concrete behavioral specification.

Another view on this: we need for a tool vendor a compliance level which is an
intermediate step from their existing tools to the standalone model. This
compliance level should exclude the behavior definition, i.e. it should be open to
any kind of test behaviors.

Resolution:

Remove behavior related concepts from the standalone model:
- logAction

Default

DefaultApplication

ValidationAction

Revised Text:
See Issue No 6290.

4/21/04 Page 22

UML 2.0 Testing Profile FTF

Disposition: Resolved
OMG Issue No: 6951

OMG Issue No: 6951

Title: Relationship between Arbiter and Behavior (Standalone

Model)

Source:

U2TP Consortium, u2tp@fokus.fraunhofer.de

Summary:

The current standalone model does not allow to define a behavior for an arbiter.

Resolution:

Add an aggregation from arbiter to behavior.

Revised Text:
An aggregation is added.

Behavior
E8behaviorDefinition : String
EHname : String +behavior

Arbiter

E8name : String

0.1

A new association is added to the Arbiter text:

Associations

behavior:Behavior[1] The behavior of the arbiter.

4/21/04

Page 23

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6952

OMG Issue No: 6952

Title: Default refining from Behavior (Standalone Model)
Source:
U2TP Consortium, u2tp@fokus.fraunhofer.de

Summary:

In the standalone model, default inherits from behavior, which would allow to
define a test case or a test suite as a default.

Resolution:

The resolution relates to the resolution of 6300: remove defaults from the
standalone model as anyhow behavioral concepts are not detailed in this model.

Revised Text:

See Issue 6290.

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6291

AB Issue No: 6291
Title: XMI Schema (Profile and Standalone Model)

Source:
Pete Rivett, Adaptive Inc, pete.rivett@adaptive.com

Summary:

The UML Testing Profile lacks currently a definition of XMI schema for the profile
and the standalone model. These are needed to allow tool interchange of test
specifications. Here, the reference to an XML DTD in the compliance point
definition should be changed to a reference to the schema definitions.

Resolution:

The XMI schema for the profile will follow the XMI schema definition of UML2.0
which includes also the schema definition for UML 2.0 profiles.

The XMI schema for the standalone model will be included.

The text for the compliance point definition will be updated accordingly.

Revised Text:
Add an annex to the document with the following content:

XMI Schema

The Profile

The XMI schema definition for the exchange of U2TP profile specifications follows the XMI schema
definition of UML 2.0 for UML 2.0 profiles. Please refer to the schema definition of UML 2.0

The MOF-based Metamodel

The XMI schema definition for the MOF-based metamodel is given below.

<?xml version="1.0"?>
<xsd:schema targetNamespace="http://www.omg.org/U2TPSA"
xmlns:u2tp="http://www.omg.org/U2TPSA"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:import namespace="http://www.omg.org/XMI"
schemalocation="XMI.xsd"/>
<xsd:simpleType name="Verdict">
<xsd:restriction base="xsd:NCName">
<xsd:enumeration value="pass"/>

4/21/04 Page 25

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6291

<xsd:enumeration value="fail"/>
<xsd:enumeration value="inconclusive"/>
<xsd:enumeration value="error"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="Arbiter">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="arbiterDefinition" type="xsd:string"/>
<xsd:element name="behavior" type="u2tp:Behavior"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="arbiterDefinition" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="Arbiter" type="u2tp:Arbiter"/>
<xsd:complexType name="Scheduler">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="schedulerDefinition" type="xsd:string"/>
<xsd:element name="behavior" type="u2tp:Behavior"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="schedulerDefinition" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="Scheduler" type="u2tp:Scheduler"/>
<xsd:complexType name="Deployment">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="deploymentDefinition" type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="deploymentDefinition" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="Deployment" type="u2tp:Deployment"/>
<xsd:complexType name="SUT">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>

4/21/04 Page 26

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6291

<xsd:element name="SUTdefinition" type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="SUTdefinition" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="SUT" type="u2tp:SUT"/>
<xsd:complexType name="TestComponent">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="testComponentDefinition"
type="xsd:string"/>
<xsd:element name="zone" type="xsd:string"/>
<xsd:element name="behavior" type="u2tp:Behavior"/>
<xsd:element name="dataPool" type="u2tp:DataPool"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="testComponentDefinition"
type="xsd:string"/>
<xsd:attribute name="zone" type="xsd:string"/>
<xsd:attribute name="dataPool" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="TestComponent" type="u2tp:TestComponent"/>
<xsd:complexType name="TestContext">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="testContextDefinition"
type="xsd:string"/>
<xsd:element name="sut" type="u2tp:SUT"/>
<xsd:element name="component" type="u2tp:TestComponent"/>
<xsd:element name="arbiter" type="ul2tp:Arbiter"/>
<xsd:element name="scheduler" type="u2tp:Scheduler"/>
<xsd:element name="behavior" type="u2tp:Behavior"/>
<xsd:element name="testConfiguration"
type="u2tp:Deployment"/>
<xsd:element name="testCase" type="u2tp:TestCase"/>
<xsd:element name="executions" type="u2tp:TestLog"/>
<xsd:element name="dataPool" type="u2tp:DataPool"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>

4/21/04 Page 27

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6291

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="testContextDefinition" type="xsd:string"/>
<xsd:attribute name="sut" type="xsd:string"/>
<xsd:attribute name="component" type="xsd:string"/>
<xsd:attribute name="arbiter" type="xsd:string"/>
<xsd:element name="scheduler" type="u2tp:Scheduler"/>
<xsd:attribute name="testConfiguration" type="xsd:string"/>
<xsd:attribute name="executions" type="xsd:string"/>
<xsd:attribute name="dataPool" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="TestContext" type="ul2tp:TestContext"/>
<xsd:complexType name="TestLog">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="testLogDefinition" type="xsd:string"/>
<xsd:element name="verdict" type="u2tp:Verdict"/>
<xsd:element name="testConfiguration"
type="u2tp:Deployment" />
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="testLogDefinition" type="xsd:string"/>
<xsd:attribute name="verdict" type="u2tp:Verdict"/>
<xsd:attribute name="testConfiguration" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="TestLog" type="u2tp:TestLog"/>
<xsd:complexType name="BaseDefault">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>
<xsd:element name="BaseDefault" type="u2tp:BaseDefault"/>
<xsd:complexType name="Behavior">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="behaviorDefinition" type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>

4/21/04 Page 28

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6291

<xsd:attribute name="behaviorDefinition" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="Behavior" type="u2tp:Behavior"/>
<xsd:complexType name="TestCase">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="testCaseDefinition" type="xsd:string"/>
<xsd:element name="behavior" type="u2tp:Behavior"/>
<xsd:element name="executions" type="u2tp:TestLog"/>
<xsd:element name="testObjective"
type="u2tp:TestObjective"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="testCaseDefinition" type="xsd:string"/>
<xsd:attribute name="executions" type="xsd:string"/>
<xsd:attribute name="testObjective" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="TestCase" type="u2tp:TestCase"/>
<xsd:complexType name="TestObjective">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="testObjectiveDefinition"
type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="testObjectiveDefinition"
type="xsd:string"/>
</xsd:complexType>
<xsd:element name="TestObjective" type="u2tp:TestObjective"/>
<xsd:complexType name="CodingRule">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="coding" type="xsd:string"/>
<xsd:element name="value" type="u2tp:InstanceValue"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="coding" type="xsd:string"/>
<xsd:attribute name="value" type="xsd:string"/>
</xsd:complexType>

4/21/04 Page 29

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6291

<xsd:element name="CodingRule" type="u2tp:CodingRule"/>
<xsd:complexType name="InstanceValue">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="literalAny" type="u2tp:LiteralAny"/>
<xsd:element name="literalAnyOrNull"
type="u2tp:LiteralAnyorNull"/>
<xsd:element name="literalNull" type="u2tp:LiteralNull"/>
<xsd:element name="coding" type="u2tp:CodingRule"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="literalAny" type="xsd:string"/>
<xsd:attribute name="literalAnyOrNull" type="xsd:string"/>
<xsd:attribute name="literalNull" type="xsd:string"/>
<xsd:attribute name="coding" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="InstanceValue" type="u2tp:InstanceValue"/>
<xsd:complexType name="LiteralAny">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="value" type="u2tp:InstanceValue"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="value" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="LiteralAny" type="u2tp:LiteralAny"/>
<xsd:complexType name="LiteralAnyorNull">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="value" type="u2tp:InstanceValue"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="value" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="LiteralAnyorNull" type="u2tp:LiteralAnyorNull"/>
<xsd:complexType name="LiteralNull">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="value" type="u2tp:InstanceValue"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="value" type="xsd:string"/>

4/21/04 Page 30

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6291

</xsd:complexType>
<xsd:element name="LiteralNull" type="u2tp:LiteralNull"/>
<xsd:complexType name="ITimer">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="isRunning" type="xsd:boolean"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="isRunning" type="xsd:boolean"/>
</xsd:complexType>
<xsd:element name="ITimer" type="u2tp:ITimer"/>
<xsd:complexType name="Timer">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>
<xsd:element name="Timer" type="u2tp:Timer"/>
<xsd:complexType name="IArbiter">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>
<xsd:element name="IArbiter" type="u2tp:IArbiter"/>
<xsd:complexType name="DataPool">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="dataPoolDefinition" type="xsd:string"/>
<xsd:element name="selector" type="u2tp:DataSelector"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="dataPoolDefinition" type="xsd:string"/>
<xsd:attribute name="selector" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="DataPool" type="u2tp:DataPool"/>
<xsd:complexType name="DataSelector">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>

4/21/04 Page 31

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6291

<xsd:element name="dataSelectorDefinition"
type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="dataSelectorDefinition" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="DataSelector" type="u2tp:DataSelector"/>
<xsd:complexType name="DataPartition">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="dataPartitionDefinition"
type="xsd:string"/>
<xsd:element name="selector" type="u2tp:DataSelector"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="dataPartitionDefinition"
type="xsd:string"/>
<xsd:attribute name="selector" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="DataPartition" type="u2tp:DataPartition"/>
<xsd:complexType name="IScheduler">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>
<xsd:element name="IScheduler" type="u2tp:IScheduler"/>
</xsd:schema>

Change the statement of compliance from

Proposed compliance points
The compliance points are as follows:

1. UML Profile for Testing: a compliant implementation supports the UML profiling mechanism, the UML
entities extended by the Testing Profile, and the stereotyped entities of the UML Testing Profile.

2. MOF-based Metamodel for Testing: the compliant implementation supports all of the entities in the
MOF-based metamodel.

4/21/04 Page 32

UML 2.0 Testing Profile FTF Disposition: Resolved
AB Issue No: 6291

3. Notation: If graphical notation is used, the compliant implementation recognizably supports the notation
defined by the Testing Profile specification.

4. XMI/DTD: An XMI compliant implementation of the Testing Profile and/or MOF metamodel provides
the UML XMI exchange mechanism.

5. Static Requirements: The compliant implementation checks the specified constraints automatically.

To

Proposed compliance points
The compliance points are as follows:

1. UML Profile for Testing: a compliant implementation supports the UML profiling mechanism, the UML
entities extended by the Testing Profile, and the stereotyped entities of the UML Testing Profile.

2. MOF-based Metamodel for Testing: the compliant implementation supports all of the entities in the
MOF-based metamodel.

3. Notation: If graphical notation is used, the compliant implementation recognizably supports the notation
defined by the Testing Profile specification.

[Geldscht: /DTD

XMI exchange mechanism using the Testing Profile XMI schema definitions. [Geléscht: UML

5. Static Requirements: The compliant implementation checks the specified constraints automatically.

4/21/04 Page 33

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6296

OMG Issue No: 6296

Title: Traces for test cases and test suite (Profile)
Source:
FOKUS, Ina Schieferdecker, schieferdecker@fokus.fraunhofer.de

Summary:

It should be possible to have traces for test suites and test cases. These traces
should be defined comparable to the standalone metamodel traces.

Resolution:

Add test logs (formerly traces) to the profile definition by defining a test log to be
a behavior and attaching it to a test context (formerly test suite) or a test case.

Revised Text:
Add the following text to the behavior part of U2TP:

At the beginning:

TestLog

Both a test context and a test case may trace their executions. These traces are behaviors in general. They
can be recorded as test logs and become part of the test specification. A test log has to be attaced to a test
context or a test case such that it is specified from which test context or test case that test log has been
taken.

Add the figure to the profile metamodel figures:

<<metaclass=> <<metaclass>>
Behavior Dependency
0. I 0 I
<=stereotype=> <<stereotype=>
TestLog TestLogApplication

Figure xxx: Test Logs

Within the metaclass definitions:

4/21/04 Page 34

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6296

TestLog

Description
Extends behavior. A test log represents the behavior resulting from the
execution of a test case or a test context. Also, it helps to understand
potential actions and validations performed by the test context behavior
which might impact the test case verdict. A test case or a test context may
have any number of test logs.

Constraints
No constraints for TestLog defined.

Notation
A test log is a behavior and has no special notation.

TestLogApplication

Description
A dependency to a test case or a test context.

Constraints

The client of a test log application must be a named element with a test case or test context
stereotype applied.

The supplier of a test log must be a named element with a test log stereotype applied.

Notation

The notation for a test log is identical to a comment, i.e. a rectangle with a
bent corner, with the keyword testlog.

Examples

See example in Figure 2-8. ATMSuite log is a test log of the test context ATMSuite. invalidPIN log is a
test log of the test case invalidPIN.

<<testcontext>>

ATMSuite testlog
—

[<<testcase>>

+invalidPIN(): Verdict

<<testcase>> testlog
invalidPIN - invalidPIN_lo

Figure xxx: Example on TestLog

4/21/04 Page 35

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6298

OMG Issue No: 6298

Title: Data Pools and Data Partitions (Profile and Standalone
Model)

Source:
IBM, Serge Lucio, slucio@us.ibm.com

Summary:

The notions of data pool and data partition are used throughout the document but
explained only in the terminology section. In the profile, it is argued that data
pools and data partitions are modeled by use of standard UML 2.0 concepts, but
it is not explained how. In the standalone model, both are missing completely.
Hence, data pool and data partition should be added to the standalone model. In
addition, a standard way of representing data pools and data partitions should be
defined for the profile (by defining stereotypes for data pools and data partitions).

Resolution:

Data pools and data partitions are to be added to the profile and the standalone
model.

Revised Text:

Modify the glossary section from

Data Pool

A data pool is a collection of values. It is used by test components as a
source of values for the execution of test cases. Data pools can be
represented by utility parts or be logically described by constraints.

Data Partition

A logical value for a parameter used in a stimulus or in an observation. It
typically defines an equivalence class of values (e.g. valid user names.)

To

Data Pool

A data pool is a collection of data partitions or explicit values that are used
by a test context, or test components, during the evaluation of test contexts
and test cases. In doing so, a data pool provides a means for providing
values or data partitions for repeated tests.

4/21/04 Page 36

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6298

Data Partition

A logical value for a parameter used in a stimulus or in an observation. It
typically defines an equivalence class for a set of values, e.g. valid user
names etc,.

Data Selector

An operation that defines how data values or equivalence classes are
selected from a data pool or data partition.

Modify the Test Data section from

The Test Data section contains concepts additional to UML data concepts needed to describe test data. It
covers wildcards for a flexible specification of test data and coding rules for the specification of test data
transmission.

Coding Rules

Coding rules are shown as strings referencing coding rules defined outside the Testing Profile such as by

ASN.1, CORBA or XML. Coding rules are basically applied to value specification to denote the concrete
encoding and decoding for these values during test execution. They can also be applied to properties and

namespaces in order to cover all involved values of the property and/or namespace at once.

Wildcards

Wildcards are literals and denote an omitted value, any value or any value or omit. These literals can be
used wherever value specifications can be used. They are typically used for a loose specification of data to
be expected from the SUT or provided to the SUT.

UML 2.0 provides LiteralNull, which is used by the Testing Profile for the representation of omitted
values. Wildcards for any value (LiteralAny) and any value or omit (LiteralAnyOrNull) are extensions to
UML 2.0.

To

The Test Data section contains concepts additional to UML data concepts needed to describe test data. It
covers: wildcards for a flexible specification of test data, data pools, data partitions, data selection, and
coding rules for the specification of test data transmission.

Wildcards

Wildcards are literals and denote an omitted value, any value or any value or omit. These literals can be
used wherever value specifications can be used. They are typically used for a loose specification of data to
be expected from the SUT or provided to the SUT.

UML 2.0 provides LiteralNull, which is used by the Testing Profile for the representation of omitted
values. Wildcards for any value (LiteralAny) and any value or omit (Literal AnyOrNull) are extensions to
UML 2.0.

4/21/04 Page 37

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6298

Data Pool

Test cases are often executed repeatly with different data values to stimulate the SUT in various ways. Also
when observing data, abstract equivalence classes are used to defined sets of allowable values. Typically
these values are taken from data partitions, or lists of explicit values. For this purpose a data pool provides
a means for associating data sets with test contexts and test cases. A data pool is a classifier containing
either data partitions (equivalence classes), or explict values; and can only be associated with either a test
context or test components.

Data Partition

A data partition is used to defined an equivalence class for a given type e.g. “ValidUserNames” etc. By
denoting the partitioning of data explicitly we provide a more visible differentiation of data. A data
partition is a stereotyped classifier that must be associated with a data pool.

Data Selector

To facilitate the different data selection strategies and data checking one or more data selectors can be
associated with either a data pool or data partition. Typically, these data selectors are operations that
operate over the contained values or value sets.

Coding Rules

Coding rules are shown as strings referencing coding rules defined outside the Testing Profile such as by
ASN.1, CORBA or XML. Coding rules are basically applied to value specification to denote the concrete
encoding and decoding for these values during test execution. They can also be applied to properties and
namespaces in order to cover all involved values of the property and/or namespace at once.

Extend the Test Data figure with the new metaclasses

<<metaclass>> <<metaclass>>
Classifier Property
<<stereotype>>
DataPool

<<metaclass>>
Classifier

k.

<<stereotype>>
DataPartition

4/21/04 Page 38

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6298

<<metaclass>>
Operation

i

<<stereotype>>
DataSelector

Add the stereotype definitions

DataPool

Description

The data pool stereotype extends a classifier or property to specify a container for explicit values or data
partitions that are used by test contexts or test cases. A data pool provides an explicit means for associating
data values for repeated tests (e.g. values from a database etc.), and equivalence classes that can be used to
defined abstract data sets for test evaluation.
Constraints

A data pool stereotyped classifier can only be referenced by a test context or test component.

A data pool stereotyped property can only be applied to a property associated connected with
a test component within the context of a test context stereotyped classifier.

A datapool stereotyped classifier cannot be associated with both a test context and a test
component.

Semantics

The semantics of a data pool are given by the classifier, and contained data partitions, that realises it.

Notation

The notation for data pool is a classifier with stereotype <<DataPool>>

Examples

A data pool example is given in XXX.

DataPartition

Description

The data partition stereotype extends a classifier to specify a container for a set of values. These data sets
are used as abstract equivalence classes during test context and test case evaluation.

Constraints

A data partition stereotyped classifier can only be associated with a data pool or another data
partition.

4/21/04 Page 39

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6298

Semantics

The semantics of a data partition are given by the classifier that realises it.

Notation

The notation for data partition is a classifier with stereotype <<DataPartition>>

Examples

A data partition example is given in XXX

DataSelector

Description

The data selector stereotype extends an operation to allow the implementation of different data selection
strategies.

Constraints

If a data selector stereotype is applied to an operation, the featuring classifier must have either
a data pool or data partition stereotype applied.

Semantics

The semantics of a data selector are given by the behaviour that realises it.

Notation

The notation for data selector is an operation with stereotype <<DataSelector>>

Examples

A data selector example is given in XXX

Add an example to the example section.

4/21/04 Page 40

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6298

TestData
TrxnData :EUTrxnData[1]
account : String account = "Fred Bloggs”
balance: Integer balance = 10,000
amount: IMoney amount =E’500
cardData: CardData cardData = Card1
Z% :EUTrxnData[2?]
account = "Dr Watson”
<<<DataPartition>> <<<DataPartition>> balance = 10,000
EUTrxnData USTrxnData amount = 20
cardData = Card2
<<DataSelector>> <<DataSelector=> :USTrxnData[1]
getEUTrxnData(): TrxnData getUSTrxnData(): TrxnData
5 > account = "Joe Senior”
balance = 10,000
amount = 3500
1 cardData = Card3
«I:E)Jzttgsggll» :USTrxnData[2]
account = "Barbara Wall”
balance = 10,000
<<De_1ta_8ele_ctor>> amount = 20
getDistributionInterval ():Integer cardData = Card4

Figure xxx is a package illustrating the data pool, data partition and data selector
concepts. The TestData package defines for TrxnData the data pool DataPool and the
data partitions EUTrxnData and USTrxnData. The data partitions have two data samples
defined each. Data selectors getEUTrxnData, getUSTrxnData and getDistributionInterval
are used for the access to the data pool and the data partitions.

Modify the load test package (Figure 36)

4/21/04 Page 41

UML 2.0 Testing Profile FTF

Disposition: Resolved
OMG Issue No: 6298

Modify the Main Test Behavior (Figure 39) to

SWIFTTest
«testContext» 0 «mport»
SWIFTSuite «testComponent» THardware SwiftNetwork
TransactionController
-numUsers:Integer =0
-pc:Float -initUsbal: IMoney -
ctestCase» -runUSTrxn(p:USTrxnData): Verdict ainit EGbal dIMorey)
«testCase» -runEUTxn(p:EUTrxnData): \Verdict . 1Account
«testCase» -Wiring();Verdict i «mporb>
«testCase» +loadTest | m————— Bank
(maxUsers:Integer,p:Float): Verdict :
default
A EED TransactionController::tcDefault
Arbiter
«import»
Z'\l ATM
|
LoadArbiter «testComponent» ﬁ
-numPass:Integer loadManager
-numOther:Integer <<imP0r1>>) TestDat
"""" esibata
completed()

4/21/04

Page 42

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6298

sd loadTest(int maxUsers, float p))

«estComponent»
Im

Im.T1{testduration)
X

LL\ﬁring(dp)

Imil?(dp.getDistribution Interval(})

loop J

Im.T.

Im.T

«validationAction» finished ‘

et Arbitration

é

Change the explanatory text from

Figure 39 and Figure 41 illustrate the behavior of the loadTest method of the TestContext element. The test
is invoked with three parameters: the maximum number of virtual users that are simulated at any one time,
the percentage of wiring transactions that should be successful, and the data pool reference. Given these
parameters, the system launches the appropriate number and types of test cases and monitors their
outcomes. When the load test has been running for the defined duration the load arbiter is informed (via the
arbitration reference) that the test is completed and that the final test case verdict should be calculated

To

Figure 39 and Figure 40 illustrate the behavior of the loadTest method of the TestContext element. The test
is invoked with two parameters: the maximum number of virtual users that are simulated at any one time
and the data pool reference. Given these parameters, the system launches the appropriate number and types
of test cases and monitors their outcomes. The load manager Im is used as a gneration. At first, the total test
duration is set by a timer. Then, the first Wiring is started. Following the start of the Wiring test scenario,
another timer is started which is used to set the duration between generations when the second timer
expires. This will loop as long as the test duration expires. Then, the loop is left. The load manager applies
a special validation action value and the arbitration is entered to calculate the final test case verdict (see
Figure 41).

Modify the US initiated wiring transaction figure (figure 40):

4/21/04 Page 43

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6298

sd Wiring(DataPool p))

«testComponent» «sut» «sut» «sut»
Im usATM usBank euBank

_____________ < fp_rg_qt_q2_>> «testComponent»
tc

runEUTrxn{p.getEUTrxnData(}))

i
O S I S S i ittt S

ref J runUSTrxn{p.getUSTrxnData(}))

«validationAction» pass ‘

Change the explanatory text from

Figure 40 illustrates how an individual US wiring transaction is executed. Firstly the test case variable
numUsers is incremented then an instance of the transaction controller is created and started. The timing
constraint stipulates that the execution of the transaction should take less than 4 seconds, otherwise the
default handler will inform the Load Arbiter that the transaction has failed. If the transaction is successful
the numUsers variable is decremented, the Load arbiter is informed that the transaction was successful, and
the transaction controller is terminated.

To

Figure 40 illustrates how an individual US wiring transaction is executed. The behavior is parameterized
with the data pool dp. Firstly, an instance of the transaction controller is created and started. The the test is
started and a transation is started using either data taken from the getEUTrxnData data partition or from the
getUSTrxnData partition. The timing constraint stipulates that the execution of the transaction should take
less than 4 seconds, otherwise the default handler will inform the Load Arbiter that the transaction has
failed.

Modify the Transaction detail (figure 42):

Modify the standalone model.
Add the data pool to the architecture:

4/21/04 Page 44

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6298

DataPool

Riname : String
BJdataPoolDefinition : String

TestContext

Bname : String
[BtestContextDefinition : String

TestComponent

[Bname : String
[E5testComponentDefinition : String

Add the dataPool association to the TestContext and TestComponent stereotypes:

Associations in TestContext

dataPool:DataPool[0..*] Data pools associated to the test context.
Associations in TestComponent

dataPool:DataPool[0..*] Data pools associated to the test component.

Add the data pool, data partition and data selector to the data part:

4/21/04 Page 45

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6298

DataPartition
Bname : String 0.*
BldataPartitionDefinition : String
+partition
1
+selector 1
0.* ‘

DataSelector

B¥name : String +selector
BldataSelectorDefinition : String

DataPool

&name : String
&SdataPoolDefinition : String

0.* 1

Add the data pool, data partition and data selector stereotype definitions

DataPool

Semantics

Zero or more data pools can be associated to test contexts or test components. Data pools specify a
container for explicit values or data partitions. They provide an explicit means for associating data values
for repeated tests (e.g. values from a database etc.), and equivalence classes that can be used to defined
abstract data sets for test evaluation

Associations
partition:DataPartition[0..*] A set of data partitions defined for this data pool.
selector:DataSelector[0..*] A set of data selectors defined for this data pool.
Attributes
name: String [1] The name of the data pool.
dataPoolDefinition: String [1] The definition of the data pool.
DataPartition
Semantics

Zero or more data partition can be defined for a data pool. A data partition is a container for a set of values.
These data sets are used as abstract equivalence classes within test context and test case behaviors.

4/21/04 Page 46

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6298

Associations

selector:DataSelector[0..*] A set of data selectors defined for this data partition.
Attributes

name: String [1] The name of the data partition.

dataPartitionDefinition: String [1] The definition of the data partition.

DataSelector

Semantics

Zero or more data selectors can be defined for data pools or data partitions. Data selectors allow the
definition of different data selection strategies.

Attributes
name: String [1] The name of the data selector.

dataSelectorDefinition: String [1] The definition of the data selector.

Add to the JUnit Mapping

Data pool A class together with operations to get access to the data pool.

Data partition A class (inheriting from a data pool) together with operations to
get access to the data partition.

Data selector An operation of a data pool or a data partition.

Add to the TTCN-3 Mapping

Data pool An external constant (referring to the data in the data pool) or
external functions to get access to the data pool.
Data partition TTCN-3 matching mechanisms can be used to handle data

partitions for observations. For stimuli however, user defined
functions are needed to realize the test case execution with
different data to be sent to the SUT.

Data selector An external function to get access to the data of a data pool or
data partition.

4/21/04 Page 47

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6299

OMG Issue No: 6299
Title: Data Picker/Data Selection (Profile and Standalone Model)

Source:
IBM, Serge Lucio, slucio@us.ibm.com

Summary:

In testing, typically test cases are executed with different test data. For that,
testdata is selected along different selection strategies. However, currently test
data selection is not a separate concept in the UML testing profile.

The central point is the separation of test data specification and test selection for
test execution. An additional interface to plug in different test selection strategies
could be a solution.

Resolution:
Add data selectors to the U2TP profile and standalone model.
Revised Text:

See 6298.

4/21/04 Page 48

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6301

OMG Issue No: 6301
Title: Relation of Test Suite and Arbiter (Profile)

Source:
IBM, Serge Lucio, slucio@us.ibm.com

Summary:

The definition for a test suite in the profile has a condition: “A test suite must
contain exactly one property realizing the Arbiter interface.” This gives a
constraint on the metamodel. The property is not named.

Resolution:
Add an arbiter attribute to test context.
Revised Text:

Revise Figure 1 to

<<metaiass>>
StructuredClassifier

A

<<sterectype>> << tereotype 5>
TestComponent TestContext
+ zone : Timezone [0..1] + arbiter : Arbiter

<<interface>>

Arbiter

getVerdict() : Verdict
setVerdict(v : Verdict)

Add the definition for the arbiter attribute to the TestContext stereotype.

Attributes

arbiter : Arbiter [1] Realizes the arbiter interface.

4/21/04 Page 49

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6302

OMG Issue No: 6302
Title: Load Tests (Profile)

Source:
Motorola, Paul Baker, paul.baker@motorola.com

Summary:

The definition of load tests is cumbersome. There are no high-level operators to
enable the parallel and quasi-simultaneous execution of test components —
following a certain distribution function and realizing different test behaviors.
Currently, one has to define e.g. a separate interaction to spawn the test
components like in the example given in the U2TP specification.

Resolution:

An explicit scheduling component is added — this component coordinates the
creation/termination of test components. It is a mean to integrate also generation
aspects into a U2TP specification.

Revised Text:
Modify the Main Test Behavior (Figure 39) to

4/21/04 Page 50

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6302

sd loadTest(int maxUsers, float p))

«estComponent»
Im

Im.T1{testduration)
X

LL\ﬁring(dp)

Imil?(dp.getDistribution Interval(})

loop J

Im.T.

Im.T

«validationAction» finished ‘

et Arbitration

é

Change the explanatory text from

Figure 39 and Figure 41 illustrate the behavior of the loadTest method of the TestContext element. The test
is invoked with three parameters: the maximum number of virtual users that are simulated at any one time,
the percentage of wiring transactions that should be successful, and the data pool reference. Given these
parameters, the system launches the appropriate number and types of test cases and monitors their
outcomes. When the load test has been running for the defined duration the load arbiter is informed (via the
arbitration reference) that the test is completed and that the final test case verdict should be calculated

To

Figure 39 and Figure 40 illustrate the behavior of the loadTest method of the TestContext element. The test
is invoked with two parameters: the maximum number of virtual users that are simulated at any one time
and the data pool reference. Given these parameters, the system launches the appropriate number and types
of test cases and monitors their outcomes. The load manager Im is used as a gneration. At first, the total test
duration is set by a timer. Then, the first Wiring is started. Following the start of the Wiring test scenario,
another timer is started which is used to set the duration between generations when the second timer
expires. This will loop as long as the test duration expires. Then, the loop is left. The load manager applies
a special validation action value and the arbitration is entered to calculate the final test case verdict (see
Figure 41).

See also issue 6298.

4/21/04 Page 51

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6306

OMG Issue No: 6306

Title: Arbiter Semantics
Source:
U2TP Consortium, u2tp@fokus.fraunhofer.de

Summary:

The current specification says nothing about the semantics of an arbiter for
example how the arbiter gets to know that a test case finished and that the
arbiter has to calculate the final verdict.

Resolution:

Explicit arbiter protocols will be added. They show how the arbiter works in
combination with the scheduler.

Revised Text:
See 6302.

4/21/04 Page 52

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6307

OMG Issue No: 6307

Title: Synchronization/Coordination of Test Components
Source:
U2TP Consortium, u2tp@fokus.fraunhofer.de

Summary:

The current specification does not offer high-level concepts for functional
synchronization and coordination between test components like rendezvous, joint
start and joint termination.

Resolution:

A scheduling component is to be added. It allows to control the coordination for
test component creation and termination. Other high-level concepts for functional
synchronization will not be provided.

Revised Text:

Add to the terminology:

Scheduler: A property of a test context used to control the execution of the different test
components. The scheduler will keep information about which test components exist at any
point in time, and it will collaborate with the arbiter to inform it when it is time to issue the
final verdict. It keeps control over the creation and destruction of test components and it
knows which test components take part in each test case.

Add to the architectural section of the profile:

Scheduler

Scheduler is a predefined interface provided with the Testing Profile. The purpose of a scheduler
implementation is to control the execution of the different test components. The scheduler will keep
information about which test components exist at any point in time, and it will collaborate with the arbiter
to inform it when it is time to issue the final verdict. It keeps control over the creation and destruction of
test components and it knows which test components take part in each test case.

Every test context must have an implementation of a scheduler. Any tool must provide such an
implementation which will be used if there are no explicit realization defined in the test context.

Add to the architecture figure (Figure 1):

4/21/04 Page 53

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6307

==Interface=>>

Scheduler

startTestCase()
finishTestCase(t : TestComponent)
createTestComponent(t : TestComponent)

Scheduler (a predefined interface)

Description
Scheduler is a predefined interface defining operations used for controlling the tests and the test
components. None of the operations of the Scheduler is available to the UML specifier.
Operations
Scheduler() : ~ The constructor of Scheduler. It will start the SUT and the Arbiter.
startTestCase() : The scheduler will start the test case by notifying all involved test components.

finishTestCase(t: TestComponent) : Records that the test component t has finished its
execution of this test case. When all test components involved in the current test case have
finished, the arbiter will be notified.

createTestComponent(t: TestComponent) : Records that the test component t has been created by
some other test component.
Semantics

The implementation of the predefined interface will determine the detailed semantics. The implementation
must make sure that the scheduler has enough information to keep track of the existence and participation
of the test compoenents in every test case. The test context itself will ensure the creation of a scheduler.

Examples

Example protocols for how the scheduler could work is found in annex XXX.

Add a scheduler attribute to the test context:

<< stereotype >=

TestContext

+ arbiter : Arbiter

+ scheduler: Scheduler

Attributes
arbiter : Arbiter [1] Realizes the arbiter interface.

scheduler : Scheduler [1] Realizes the scheduler interface.

Constraints

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6307

A test context must contain exactly one property realizing the Arbiter interface.

A test context must contain exactly one property realizing the Scheduler interface.

Add to the standalone model

TestContext

&iname : String
BjtestContextDefinition : String

Behavior

Bfname : String
BbehaviorDefinition : String

0.1 1

Scheduler

B¥name : String
1 B&schedulerDefinition : String

Scheduler

Semantics

A scheduler is an entity within a test context which controls the running of the test cases. It will keep track
of the creation and destruction of test components and give instructions to the existing test components
when to start executing a given test case. It will communicate with the arbiter when the time is right to
produce the verdict for a test case.

Associations

behavior:Behavior|[1] The behavior of the scheduler.
Attributes

name: String [1] The name of the scheduler.

schedulerDefinition: String [1] The definition of the scheduler (in addition to the
behavior definition of the scheduler).

Add the scheduler interface to the standalone model (figure 16):

4/21/04 Page 55

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6307

<<Interface>>
ITi <<|nterface>>
i i o SlEIEEEe 1Scheduler
- isRunning : Boolean IArbiter
+ start(expire : Time) o] + startTestCase()
+ stop() + getVerdict() : Verdict +finishTestCase(t:TestComponent)
+read() : Time + setVerdict(v : Verdict) + createTestComponent(t TestComponent)

Add an annex with the scheduler and arbiter protocols.

Arbiter and Scheduler protocols

This annex shows how the Scheduler and the Arbiter should work together with the test components and
the SUT such that the execution of the test cases are performed properly and the verdict delivered at the
right time. Itis not necessary that a valid implementation conforms in detail to these sequence diagrams, but
the net effect should be the same.

In the diagrams we have in addition to standard notation also applied a special kind of continuations that
we have called synchronous continuations denoted by the prefixing “synch” keyword. This is a shorthand
for introducing a number of general ordering relations such that all events above the synchronous
continuation precedes all events below the synchronous continuation. This holds for all events on those
lifelines that are covered by the continuation.

sd Arbiter1

s:Scheduler

‘ testcomponent

I I start I
[T T start

The Arbiterand 1>
SUT are started

synch All_static_oomponents. exist_Arbiter_and_SUT_staried

star(Tes(Case1),

explicit start of each =
start TestCase(TestCase 1) testcase for each test
component
starTesiCase(TestCase 1) —

synch all_lest_components_starled_for_tesicase

acynebvanut verdiet

\
}
}

finishTestCase{TestCaset)|

synch all_test_components_finished_for_testcase

finishTestCase{TesiCase1)
setVardict(x)

Scheduler/Arbiter protocol #1

4/21/04 Page 56

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6307

The protocol scenario in Figure 55 shows the normal situation when the test components are static. Notice
that the Scheduler starts the SUT and the Arbiter explicitly before any test case can be started. When a test
case is initiated the Scheduler will give notice to the test components that are involved in it. They will in
turn notify the Scheduler when they are at the end of executing that test case. None of this is seen explicitly
in the user specifications. Finally when the Scheduler has recorded that no test components have pending
results, the Arbiter will be asked to produce the final verdict for the test case.

sd Arbiter2

s:Scheduler ’ alcamponant ’ Atrbiter ‘ ’ mfn”;m ‘
‘ | sar | |
‘ start I 4:4
[I 1 |
\ | | |
C synch fil_siatc_comporents_exist Arbter_and_SUT_arted D
\

start{TestCase1
| startTesiCase(TesiCase1)

synch all test_components_started_for_lestase

testcomponent
tZ:A

h
reports the creation of

- a new lest component
Invariant: foes not overtake=y 7

the createTesiComponent

mesee|

setVerdict(x)

Scheduler/Arbiter protocol #2

The scenario in Figure 56 shows what should happen when test components are created dynamically within
the execution of the test case. The test component that creates another test component will notify the
Scheduler about the creation. Notice that the later notification from that test component that it is finished
with the test case must go along the same communication channel as the creation notification. This is to
avoid possible race conditions between the creation notification and the finishing notifications. Such race
ondition would have made it theoretically possible to create a situation where the Scheduler knows about
no pending test components, while the newly created test component is still running. The Arbiter could
therefore have been instructed to give final verdict before it should.

In case of test component termination (destruction) this must also be notified to the Scheduler by the test
component. It is assumed that the test component being destroyed is able to transmit its last verdict to the
Arbiter before it is deleted.

In some test cases not all eisting test components will take part. It is assumed that the Scheduler has proper
information about this from its description of the test case such that it will not initiate more test components
than necessary for a particular test case.

4/21/04 Page 57

UML 2.0 Testing Profile FTF Disposition: Resolved

OMG Issue No: 6307

Add to the JUnit Mapping

Scheduler

The scheduler can be realized as a property of Test Context. There
should be a default scheduler along the protocol defined in
Appendix C.

Add to the TTCN-3 Mapping

Scheduler

There is a default scheduler built in TTCN-3. User defined
schedulers can be realized by the MTC.

4/21/04

Page 58

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 7193

OMG Issue No: 7193
Title: Reference to TTCN-3

Source:

University of Géttingen, Jens Grabowski, grabowski@informatik.uni-
goettingen.de

Summary:
Technical references to TTCN-3 should not be part of the U2TP specification
Resolution:

Remove footnote

The Testing Profile therefore has a different approach to defaults than TTCN-3 where the
defaults are dynamically included and excluded.

Remove also the mentioning of MSC in the main text: remove

The notations are based on the MSC timer notation.

4/21/04 Page 59

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6303

OMG Issue No: 6303

Title: Activity Diagrams (Profile)
Source:

U2TP Consortium, u2tp@fokus.fraunhofer.de

Summary:

The current specification of the UML Testing Profile does not address the
specification of test behaviors with activity diagrams, although users see a need
to have also activity diagrams been supported by the testing profile.

Resolution:

Accommodate the testing profile specific behavioral concepts in activity diagrams
being

- Defaults and default applications

- Validation action

- Finish action

- Timers

Revised Text:
Change in the profile behavior from

The Testing Profile has chosen to associate the default applications to static behavioral structures. In
Interactions we may apply defaults to interaction fragments, and in State Machines to StateMachines,
States or Regions. Since each default applies only to one test component, we attach the defaults on
interaction fragments to the intersection between the fragment and the test component.

We said above that default behavior is invoked when the main description cannot describe the observed
behavior. More precisely the default mechanism is invoked when a trigger (or message reception) is not
defined by the main description or an explicit runtime constraint is violated. The point of default invocation
will be well-defined as an event occurrence in Interactions or a State (-stack) in State Machines.

To

The Testing Profile has chosen to associate the default applications to static behavioral structures. In
Interactions we may apply defaults to interaction fragments, in State Machines to StateMachines, States or
Regions, and in Activties to Actions and Activities. Since each default in an Interaction applies only to one
test component, we attach the defaults on interaction fragments to the intersection between the fragment
and the test component.

We said above that default behavior is invoked when the main description cannot describe the observed
behavior. More precisely the default mechanism is invoked when a trigger in a State Machine or message
reception in an Interaction or an action in an Activity is not defined by the main description or an explicit
runtime constraint is violated. The point of default invocation will be well-defined as an event occurrence
in Interactions or a State (-stack) in State Machines or an accept event action in Activities.

4/21/04 Page 60

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6303

Change Default Semantics from

Semantics

We describe the semantics of defaults differently for Interaction and State Machines since UML itself
describes the semantics of these concept in different terms.

To

Semantics

We describe the semantics of defaults differently for Interaction, Activities and State Machines since UML
itself describes the semantics of these concepts in different terms.

Add to the default semantics section

For defaults that are described on Activities, we consider the actions of the Activity together with the
actions of the Default. The simple rule to combine the default with the main description is that the result is
the union of all actions, but such that initial actions being part of the Default can only occur (and by doing
so triggering the execution of that default) if there are no equal initial accept event in the Activity where the
default is attached to.

Change default semantics from

We may have hybrid defaults where a default may be applied within an Interaction, but defined as a State
Machine. In such cases the default State Machine is considered equivalent to the set of traces that it can
produce (or said differently, the strings that the automata may accept).

If there is no user-defined default that applies, what happens is a Semantic Variation Point.

To

We may have hybrid defaults where a default may be applied within an Interaction, but defined as a State
Machine. In such cases the default State Machine is considered equivalent to the set of traces that it can
produce (or said differently, the strings that the automata may accept). We may have also hybrid defaults
where a default may be applied within an Interaction or State Machine, but defined as an Activity. In such
cases the default Activity is considered equivalent to the set of traces the Activity can produce (along the
Petri-net like semantics of Activities).

If there is no user-defined default that applies, what happens is a Semantic Variation Point.

Add

The Semantic Variation Point may have the following interpretations or other interpretations decided by the
tool vendors.

The activity may conclude.

4/21/04 Page 61

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6303

Define notation for FinishAction in Activity diagrams:

In Activity diagrams, the FinishAction is shown as a black quadrat.

Add TimeOutAction to the time section

<<metaclass »»

AcceplEventAction

0.1

<<stereotype==
TimeQutAction

TimeOutAction

Description

Extends AcceptEventAction. A timeout is enabled by a timer when it expires. An activity having the
TimeOutAction as input condition occurs, when the timeout is enabled (and when all further input
conditions are satisified).

Notation

The notation for the TimeOutAction is an empty hourglass (it reuses the syntax for the accept time event
action in activities). An arrow with an unfilled head connects the hourglass and the activity to which the
timeout is an input condition.

Semantics

A timeout is enabled when the timer expires. It may trigger an associated activity. The TimeOutAction
occurs, when all input conditions for that activity are satisfied (including the TimeOutAction).

4/21/04 Page 62

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 6304

OMG Issue No: 6304

Title: Issues with the Load Testing Example
Source:
U2TP Consortium, u2tp@fokus.fraunhofer.de

Summary:

The arbitration interaction referenced in Fig. 36 is not shown.
The diagram in Fig. 39 defines a state machines and not an interaction. Hence,
the sd in the header should be deleted.

Resolution:
Just remove sd from the diagram as proposed.
Revised Text:

Add an arbitration figure

sd Arbitration

<<test component>>
LoadArbiter

self

[numPassed/{numPassed+numOthers)>=pc]

&

pass

qm————

___ e ——————

[num Passed/(numPassed-+num Others)<pc]

T

an explanatory text

4/21/04 Page 63

UML 2.0 Testing Profile FTF

Disposition: Resolved
OMG Issue No: 6304

The Arbitration behavior is given in Figure 41. A pass verdict is assigned if the number of successful tests

exceeds the given threshold pc which is an attribute of the test context. Otherwise fail is assigned.

Update the LoadArbiter figure to

LoadArbiter

setverdict(result)

[result I= pass)/numOther++

numPassed =0
numOther =0

Running

completed()

setverdict(result)
[result == pass] /
numPassed++

[numPassed/{numPassed+numOthers) < pc]

[numPassed/{numPassed+numOthers) >= pc]

«validationAction»
pass

«validationAction»
fail

4/21/04

Page 64

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6954

OMG Issue No: 6954

Title: Constrained semantics for UML constructs
Source:
Motorola, Paul Baker, paul.baker@motorola.com

Summary:
Introduction of an ordered alt operator (“if-then-else”) operator.
Resolution:

Add the Deterministic Alternative as a new operator of CombinedFragment in
Interactions.

<<enumeration=>
InteractionOperator
seq
alt
opt
break
par
strict
loop
region
neg
assett
ignore
consider
determAlt

Add to Utilities in the Behavior section of the profile:

Utilities
The Testing Profile has defined a few action utilities that may come in handy when defining test behavior.

determAlt is an interaction operator and is a shorthand for an Alternative where the operands are evaluated
in sequence such that it is deterministic which operand is chosen given the value of the guards, regardless
of the fact that the guard for more than one operand may be true.

Add

determAlt (an interaction operator)

Description

The deterministic alternative is a shorthand for an Alternative where the operands are evaluated in sequence
such that it is deterministic which operand is chosen given the value of the guards, regardless of the fact
that the guard for more than one operand may be true

4/21/04 Page 65

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6954

Semantics

Textually in prefix notation the definition is as follows:

determAlt([guardl]opl) = alt([guard1]op1)

determAlt([guard]]opl, [guard2]op2) = alt([guard1]opl, [else] determAlt([guard2]op2))
In general

determAlt([guardl]opl, [guard2]op2, ..., [guardn]opn) =

alt([guardl]opl, [else]determAlt([guard2]op2,...,[guardn]opn))

Notation

The determAlt uses the notation for combined fragments in interactions: the determAlt keyword is used in
the small compartment in the upper left corner of the CombinedFragment frame.

Examples

An example determAlt operator can be found in Figure 29.

Change the example in Figure 29 to

sd DisplayDefault)

self

T
|
determAlt | o
J | display(*)
|
|

«validationAction»
inconc

«walidationAction»
fail

1
|

Change the explanatory text from

Figure 29 specifies the DisplayDefault, a default for the reception of the display(“‘Transaction accepted”)
message in the validWiring test case. The DisplayDefault describes what happens when a different message
is received.

To

4/21/04 Page 66

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 6954

Figure 29 specifies the DisplayDefault, a default for the reception of the display(“Transaction accepted”)
message in the validWiring test case. The DisplayDefault describes what happens when a different message
is received. An inconc verdict is assigned if a display message is received with a parameter different to the
expected one. Otherwise, fail is assigned and the test component finishes.

4/21/04 Page 67

UML 2.0 Testing Profile FTF

Disposition: Resolved
OMG Issue No: 7104

OMG Issue No: 7104

Title: Default/state machine syntax

Source:

FOKUS, Ina Schieferdecker, schieferdecker@fokus.fraunhofer.de

Summary:

Wrong syntax in some figures: Fig. 28 and Fig. 29 use a syntax that have not

been defined by U2TP

The special comment declares a default - its behavior is given in a

behavioral diagram.

Hence the right rectangular box in Fig. 28 is superfluous. Also, the
definition of the statemachine for the default (in Fig. 28 and Fig. 29)
should simply contain the default identifier - i.e. hweDefault - and not

<<default>> statemachine hweDefault - both <<default>> and statemachine

are superfluous?!

Resolution:

Change the figure on “A statemachine default applied to a test component” to

«testComponent»
HWEmulator

IHardware

default
HWEMulator::hweDefault

-pinOk : Boolean
-enteredPIN : String
-message @ String
-t1: Timer

O
D<F
hwCom
IATM

hweDefault

t1 / setverdict(fail);

ej .
setverdict(fail)

else

display(msg) /
if (msg =="Connection lost”) then
setverdict(inconc);

setverdict(fail);

Change the figure on Package level default to

4/21/04

Page 68

UML 2.0 Testing Profile FTF

Disposition: Resolved

OMG lIssue No: 7104

[

statemachine ATMTestDefault J

default
ATMTestDefault ------ ATMTest
* { defer

*

Change the figure on Package level default to

]

ATMTestDefault

default

ATMTestDefault ATMTest

Change the figure on test component behavior to

statemachine HWEmuIatorJ

[message

.\

storeCardData()

WaitMessage

displayMessage(message)

=="Enter PIN'] [else]

" -
coding
"PIN is Encrypted” P-__

pinOk := isPinCorrect(enteredPIN);

{

inOK ==true
[PinOK == false]l [P]
«validationAction» «validationAction»
pass fail

o

4/21/04

Page 69

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG lIssue No: 7104

Clarify also the notation for all other stereotypes of U2TP — even if it is the standard
UML stereotype syntax by adding a notation section to all stereotypes in U2TP.

4/21/04 Page 70

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 7218

OMG Issue No: 7218

Title: Editorial comments
Source:
FOKUS, Ina Schieferdecker, schieferdecker@fokus.fraunhofer.de

Summary:

In the editing process for U2TP several editorial comments to be solved by the
FTF have been made. These have to be addressed.

Resolution:

In Scope:

Remove

This proposed UML Testing Profile is in response to the Object Management Group Request For Proposal
ad/01-07-08 on a UML Testing Profile.

Add

The UML Testing Profile extends UML with test specific concepts like test components, verdicts, defaults,
etc. These concepts are grouped into concepts for test architecture, test data, test behavior and time. Being a
profile, the UML testing profile seamlessly integrates into UML.: it is based on the UML metamodel and
reuses UML syntax.

In Normative References change to

The following normative documents contain provisions which, through reference in this text, constitute
provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of
these publications do not apply.

UML 2.0 Infrastructure Specification
UML 2.0 Superstructure Specification
UML 2.0 OCL Specification

MOF 2.0 Specification
In Terms and Definitions: nothing to be changed

In References: change from Superstructure/Infrastructure final submission to final
adopted specification.

Remove:

4/21/04 Page 71

UML 2.0 Testing Profile FTF Disposition: Resolved
OMG Issue No: 7218

The following list identifies issues that could not be concluded by the consortium and will be considered in
the FTF work:

the use of activity diagrams for test behavior specifications. The consortium did not conclucde
this work because of the late consolidation of activity diagrams within the UML 2.0.

aspects of synchronization and coordination between test components such as the finish action.
The consortium did not conclucde this work because of problems in the UML2.0 profiling
mechanisms related to the definition of actions.

aspects of test deployment and logs. The consortium did not conclucde this work because of the
late consolidation of deployment concepts within the UML 2.0 specification.

4/21/04 Page 72

UML 2.0 Testing Profile FTF Disposition: Unresolved
OMG Issue No: 7218

Disposition: Unresolved

4/21/04 Page 73

UML 2.0 Testing Profile FTF Disposition: Deferred
OMG lIssue No: 6956

Disposition: Deferred

OMG Issue No: 6956
Title: Grey box testing

Source:
Motorola, Paul Baker, paul.baker@motorola.com

Summary:
Monitoring of interfaces between components within the SUT.
Discussion:

The suggestion is to add a stereotype <<Monitor>> that is a specialization of a
port and to add a stereotype <<MonitorConnection>> that is a specialization of a
connection. By these two it will be possible to seamlessly “tee” all events via the
monitored port into an “observing” test component.
Although this concept is needed, it was felt to be rather complex and was
therefore deferred to the second version of U2TP.

Disposition: Deferred

4/21/04 Page 74

UML 2.0 Testing Profile FTF Disposition: Deferred
OMG Issue No: 6955

OMG Issue No: 6955

Title: Data guards on observations
Source:
Motorola, Paul Baker, paul.baker@motorola.com

Summary:

For each operand the guard has to be on each leading event within an
alternative.

Discussion:

Although data guards on observations are needed in testing, the resolution within
UML would impose major changes to the underlying semantics of interactions.
Therefore, it is proposed to reconsider this issue in the second version of U2TP.

Disposition: Deferred

4/21/04 Page 75

UML 2.0 Testing Profile FTF OMG Issue No: 7195
OMG lIssue No: 6955

OMG Issue No: 7195
Title: UML 2.0 Alignment

Source:

FOKUS, Ina Schieferdecker, schieferdecker@fokus.fraunhofer.de
Summary:

U2TP has to be aligned with the finalized UML 2.0

Discussion:

The UML 2.0 FTF is not yet ready, but a final aligment of the testing profile with
UML 2.0 will be needed. In discussion with the UML 2.0 FTF: no substantial
changes are to be expected from the UML 2.0 FTF related to U2TP but just
renamings. Hence, the alignment is proposed to be done in an U2TP RTF.

Disposition: Deferred

4/21/04 Page 76

UML 2.0 Testing Profile FTF Disposition: Transferred
OMG Issue No: <none>

Disposition: Transferred

OMG Issue No: <none>
Title:

Source:

Summary:
Discussion:

Disposition: Transferred to {name of RTF/FTF}

4/21/04 Page 77

UML 2.0 Testing Profile FTF Disposition: Closed, no change
OMG Issue No: 6294

Disposition: Closed, no change
OMG Issue No: 6294

Title: Commonalities between test suite and test case
(Standalone model)

Source:
IBM, Serge Lucio, slucio@us.ibm.com

Summary:

Test suites and test cases share certain characteristics, i.e. a behavior, test
objective, and trace. Hence, a common superclass should be introduced.

Discussion:

The decision is made not to introduce a common superclass to avoid confusion
between Test Case and Test Suites.

Disposition: Closed, no change

4/21/04 Page 78

UML 2.0 Testing Profile FTF Disposition: Closed, no change
OMG Issue No: 6953

OMG Issue No: 6953

Title: Test Case execution in a Suite or Test Case Context
Source:

IBM, Serge Lucio, slucio@us.ibm.com

Summary:

In some contexts where a Test Case (B) is reused (i.e. invoked) from another
Test Case (A), there is an ambiguity to the actual intent of the tester

“A” needs to assess that “B” passes to set its own verdict

“A” is reusing the behavior of “B”. The verdict set for “B” by the arbiter is
not relevant for either “A” or “B”

Proposal: A Test Case has a mandatory argument, which decides if its verdict
should be logged in the Test Log. If the boolean is true, the verdict is logged,
otherwise it is not

Discussion:

This issue is tool vendor specific and should not be resolved on test specification
level.

Disposition: Closed, no change

4/21/04 Page 79

UML 2.0 Testing Profile FTF Disposition: Closed, no change
OMG Issue No: 7194

OMG Issue No: 7194
Title: Hybrid Defaults

Source:

University of Géttingen, Jens Grabowski, grabowski@informatik.uni-
goettingen.de

Summary:

Hybrid defaults (i.e. defaults in state machines for test cases defined in
interactions) cause the problem of defining the semantics for a hybrid behavior
definition. In particular, the interworking of diagrams of different types is in
general is not well defined in UML 2.0.

Hence, hybrid defaults should be removed from the U2TP specification

Discussion:

The integrated use of different behavioral diagrams is one objectives of UML 2.0.
Even if this has not yet been completely defined, the testing profile should not
exclude it but rather await the solutions coming up within UML 2.0.

Disposition: Closed, no change

4/21/04 Page 80

UML 2.0 Testing Profile FTF Disposition: Duplicate/merged
OMG Issue No: <none>

Disposition: Duplicate/merged

OMG Issue No: <none>
Title:

Source:

Summary:
Discussion:

Disposition: Closed, no change

4/21/04 Page 81

