Choreography HCE Requirements
Last Updated: 23rd August

Overview

This document sets out requirements that the Choreography layer has on the HCE (Hyades datacollection engine).

Requirements

There are multiple ways in which the Hyades Choreography layer could access the Hyades datacollection agents but the most common of these are:

1. Each datacollection agent exports its own WSDL interface definition and binding files, thus allowing the choreography layer to access it directly as an endpoint.

a. The agent here is defined as a complete endpoint (web service) in its own right.

2. Each datacollection agent implements certain functions or interfaces defined in the Hyades agent hierarchy (e.g. the functionality in HyadesBaseAgent). The Choreography layer can then use a standard WSDL interface definition and binding to speak to this agent through these standard interfaces.

a. The HyadesBaseAgent here is being described as an endpoint (web service) and it’s generic functionality is being automatically proxied to any agent implementation.

Both of these options have their pros and cons and ultimately Hyades will support both methods. However, to simplify things for the agent provider and for users of the choreography layer, it is better to have as much useful functionality as possible in the standard Hyades agent hierachy. This saves implementors of agents from having to define their own WSDL interface and binding just to export simple functionality in their agent.

The key addition to the HyadesBaseAgent is the concept of a basic control and configuration interface. This interface would allow an agent to export a number of typed variables which could be discovered, fetched, and stored at runtime.

An example interface would be:

 //complex type to represent a variable group

 class VariableGroup {

 String id;

 String name;

 String description;

 VariableGroup[] subgroups;

 String[] variables;
 }

 //complex type to represent a variable
 class Variable {

 String id;

 String name;

 String description;

 //type: int, long, double, boolean, String, xsd

 int type;

 // read-only, pre-run-only, during-run-only, paused-only, no-restrictions

 int access;

 //xsd information – null for non-xsd variables

 String xsdTypeNamespace;

 String xsdTypeNCName;

 //variable value

 Object value;

 NOTE: potential to have methods on this object that get/set different types of value – do we want this? Not essential but might be nice.

 }

 //get group structure

 VariableGroup getRootVariableGroup();

 VariableGroup getVariableGroup(String id);

 //get variables

 Variable[] getAllVariables();

 Variable getVariable(String varid);

 Variable[] getVariablesById(String[] varids);

 //atomically get/set multiple variables

 void getVariableValues(Variable[] variables);

 void setVariableValues(Variable[] variables) throws BadTypeException;

 //get/set single variable value

 void getVariableValue(Variable variable);

 void setVariableValue(Variable variable) throws BadTypeException;

Note: this suggested interface is defined in Java and all the types are expected to map to the Java representations of those types. Thus int is a 32 bit integer, long is a 64 bit integer, String is a unicode string and double is a 64 bit float.

This interface would act kind of like a typed version of a name-value pair registry, where the variables could be used to set configuration and runtime control parameters of the agent in a common way.

The variable ‘type’ field here would be an integer representing the type (int, boolean, string etc.) of the variable. The various possible values for this field would be stored as static values in the HyadesBaseAgent class.

The standard primitive types would allow easy export of simple values without any need for XML parsing. The XSD variable type would allow more rich variables at the cost of XML parsing.

Implementation

How this functionality is implemented in the HCE protocol is not important to the Choreography layer – only the interfaces it sees are important. However, there will likely need to be support for this in the HCE protocol so that all agents export their variables and are told to get/set them in the same way.

E.g. an agent might register a listener for variable SET and GET events or it might have a handler for variable SET and GET commands.

Generic UI Guidelines

The interface described allows the creation of a generic UI to access these variables. This section puts forward some guidelines for a generic UI to represent this interface:

· Some kind of hierarchical representation of the variables, as structured by the variable groups. (e.g. a treetable)

· Each entry in the representation could have the name,description and type of the variable, and an entry to display/set the variable value.

· The generic UI could have a series of standard editing controls for known types such as String, int, double, boolean etc.

· The UI could have expose an extension point allowing vendors to export editor UIs for particular XSD types.

· The UI could expose an extension point which would allow vendors to register buttons which, when pressed, sent a command to the agent.

· An alternative to sending a command here could be to set a variable value in the agent. The agent could then disregard the variable value but take the command purely as an event. (e.g. setting a boolean variable to ‘true’ means take a snapshot now)

Questions

Some questions raised about this proposal are:

1. Is the ID and Name a representation of the same property or variable?
a. The ID is a separate entity to the name. It is often useful to have a separation between the user-visible description of a something and its underlying identification. Having the ID separate means agents can have whatever variable names they like but manage the IDs of their variables in the easiest way for them (e.g. having them all be numbers which link to an array instead of strings which need to be indexed in a map).

2. How about other data types like Byte etc?

a. If other people feel other commonly understood datatypes like Byte would be useful then these could be included.

3. Do we want to support other complex data types like Custom or Standard Classes or blobs as Variable values?

a. It may be beneficial to support other data types such as Custom etc as variable values as this would encourage usage of the interface but in doing so we lose out on generic functionality. If everyone exports their variables as Custom then the interface becomes useless as a generic feature.

4. Should we define all these methods as part of a separate interface rather than as a part of HyadesBaseAgent so that the interface can be picked up optionally by agents?

a. The strength of the interface is in its universality. If all agents have a standard method of control and configuration, the Choreography layer can use them all (at least on a basic level) in the same way. Rather than making this a separate interface we should design the implementation in such a way that an agent has to do little or nothing if they have no variables to export. Thus all agents will implement the interface by default but they may choose not to export any variables.

5. The methods seem to be based on Java Data Types, what should we do for non-java agents?

a. All of the variable types above can commonly be represented in other languages. (Integer == 32 bit int, Double == 64 bit float...). If a language cannot support a particular type it can simply not export any variables of that type.

6. What are the variables actually FOR?
a. One example usage is the Perfmon agent has a runtime-modifiable control which is the frequency in milliseconds of the counter polling (i.e. gather data every N milliseconds). At the moment it exports variables in a proprietary way but it would be better if this were exported and accessible via a standard interface. If agents could export standard typed variables then they could also be presented to the user with a bunch of standard UI controls for setting the different types.
7. Why have String variable IDs instead of int variable IDs?
a. int variable IDs would potentially let the agent use indexes into an array to store variables but variables aren’t expected to be used to frequently as to cause performance degradation anyway. In addition, it is easier to reserve a range of IDs for Hyades variables using strings (e.g. anything starting with “org.eclipse.hyades”) and it is easier for agent writers to make sure their variables don’t conflict simply by prefixing them with their company domain (e.g. “com.mycompany”).

