HCE Agent Variable Interface
Last Updated: 27th August

Overview

This document describes an interface intended for the Hyades Base Agent which would allow an agent to generically export a set of typed variables.

Requirements

Choreography Layer Requirements

The requirements for this interface originally came from the choreography layer.

There are multiple ways in which the Hyades Choreography layer could access the Hyades datacollection agents but the most common of these are:

1. Each datacollection agent exports its own WSDL interface definition and binding files, thus allowing the choreography layer to access it directly as an endpoint.

a. The agent here is defined as a complete endpoint (web service) in its own right.

2. Each datacollection agent implements certain functions or interfaces defined in the Hyades agent hierarchy (e.g. the functionality in HyadesBaseAgent). The Choreography layer can then use a standard WSDL interface definition and binding to speak to this agent through these standard interfaces.

a. The HyadesBaseAgent here is being described as an endpoint (web service) and it’s generic functionality is being automatically proxied to any agent implementation.

Both of these options have their pros and cons and ultimately Hyades will support both methods. However, to simplify things for the agent provider and for users of the choreography layer, it is better to have as much useful functionality as possible in the standard Hyades agent hierachy. This saves implementors of agents from having to define their own WSDL interface and binding just to export simple functionality in their agent.

The key addition to the HyadesBaseAgent is the concept of a basic control and configuration interface. This interface would allow an agent to export a number of typed variables which could be discovered, fetched, and stored at runtime.

Other Requirements

A further requirement for this interface has been identified as the need for a generic UI to control agents. If the HyadesBaseAgent had an interface which allowed all agents to generically export typed variables then a generic control and configuration UI could be created over this interface. This generic UI would be able to display the variables exported by any agent along with their user-visible names and descriptions.

Suggested Interface

 //complex type to represent a variable group

 class VariableGroup {

 int id;

 String name;

 String description;

 VariableGroup[] subgroups;

 Variable[] variables;
 }

 //complex type to represent a variable
 class Variable {

 int id;

 String name;

 String description;

 //type: int, long, double, boolean, String, xsd etc.

 int type;

 //pre-run-only, during-run-only, paused-only, no-restrictions, never

 int read_access;

 int write_access;

 //normal (not event based), single-state, value based

 int event_based;

 //xsd information – null for non-xsd variables

 String xsdTypeNamespace;

 String xsdTypeNCName;

 //variable value – must be one of

 //Integer, Long, Double, String, Boolean

 //intially set to null, populated by getVariableValue method

 Object value;

 }

 //get group structure

 VariableGroup getRootVariableGroup();

 VariableGroup getVariableGroup(int id);

 //get variables

 Variable[] getAllVariables();

 Variable getVariable(int varid);

 Variable[] getVariablesById(int[] varids);

 //atomically get/set multiple variables

 void getVariableValues(Variable[] variables) throws AccessException;

 void setVariableValues(Variable[] variables) throws BadTypeException, BadValueException, AccessException;

 //get/set single variable value

 void getVariableValue(Variable variable) throws AccessException;

 void setVariableValue(Variable variable) throws BadTypeException, BadValueException, AccessException;

This interface would act kind of like a typed version of a name-value pair registry, where the variables could be used to set configuration and runtime control parameters of the agent in a common way.

The variable ‘type’ field here would be an integer representing the type (int, boolean, string etc.) of the variable. The various possible values for this field would be stored as static values in the HyadesBaseAgent class. The ‘event_based’ field described in more detail below would operate in the same way, with possible values taken from static values in the HyadesBaseAgent class.

The standard primitive types would allow easy export of simple values without any need for XML parsing. The XSD variable type would allow more rich variables at the cost of XML parsing.

Exceptions

BadTypeException

A BadTypeException is thrown whenever a client tries to set a variable in the agent and the type sent to the agent is incorrect

BadValueException

An agent may throw a BadValueException whenever a variable is set by the client with the correct variable type but an incorrect value (e.g. a negative integer when a positive integer is required). The agent will decide when to throw these and what error information to provide.

AccessException

An agent may throw an AccessException when a variable is accessed outwith its specified read and write access (e.g. writing to a variable before the agent is started when the variable field ‘write_access’ is set to ‘during-run-only’)

Interface Implementation

VariableGroup Structures

When a VariableGroup is returned, all its children groups and variables are returned as well. It is not necessary to use the method getVariableGroup(int id) to poll for the structure of the VariableGroups.

Variable ID Vs Variable Name

The ID of a variable is a separate entity to the name. It is often useful to have a separation between the user-visible description of a something and its underlying identification. Having the ID separate means agents can have whatever variable names they like but manage the IDs of their variables in the easiest way for them (e.g. having them all be numbers which link to an array instead of strings which need to be indexed in a map).

Hyades Reserved ID Ranges

Although IDs are unique within each agent, Hyades may reserve a range of IDs to represent certain known values. E.g. Hyades might reserve the range of IDs from 1000000 to 2000000 and then define ID 1000000 as being the variable ID to represent the frequency of a datacollection agent’s polling. All datacollection agents which require a frequency control could then use this variable ID to represent it and Hyades could potentially present a more informed, more specific UI for this variable.

Initial Variable Value

When a variable is first returned (e.g. by fetching a VariableGroup or by fetching it directly), its value is null. In order to get the value of a variable, getVariableValue() or getVariableValues() must be called.

Variable Object Sharing

All Variable objects returned as a result of a call to an interface method are always new instances. Clients never share a Variable object. This means that any client that receives a Variable object has exclusive access to that object. The Variable value is considered to be a snapshot of the variable inside the actual agent, taken at the last time the client called getVariableValue.

Types

The interface is defined in Java and all the types are expected to map to the Java representations of those types. Thus int is a 32 bit integer, long is a 64 bit integer, String is a unicode string and double is a 64 bit float.

The types that are used in this interface are:

· Integer – (32 bit int) represented as Integer object in Variable.value

· Long – (64 bit int) represented as Long object in Variable.value

· Double – (64 bit float) represented as Double object in Variable.value

· Float – (32 bit float) represented as Float object in Variable.value

· String – (HCE String) represented as String object in Variable.value

· Boolean – represented as Boolean object in Variable.value

· XSD – (HCE String) represented as String object in Variable.value

Access

The access fields of the Variable object gives some hint as to when it is possible to access the Variable.

The possible values for the access fields are:

· Pre Run Only – the variable may only be fetched/set before the agent is running

· During Run Only – the variable may only be fetched/set while the agent is running

· Paused Only – the variable may only be fetched/set while the agent is paused

· No Restrictions – the variable may be fetched/set at any time

· Never – the variable my not be fetched/set at any time (e.g. write_access=never would mean read-only)

An agent may have different values for the fields ‘read_access’ and ‘write_access’.

Get/Set Variable Value Protocol Optimisation

Although the entire Variable object is passed into the methods setVariableValue() and getVariableValue(), the entire structure need not be used in the protocol. The implementation under these methods would probably just use the variable ID to get and set the variable value. Passing in the entire Variable object makes the interface simpler and saves the user from maintaining a link between a variable handle (Variable object) and its associated value.

SetVariableValue function behaviour (single Variable)

When an agent receives a setVariableValue request it can:

· Accept the variable set and send back a success message.

· Intelligently bounds-check (or otherwise make valid) the variable and return the new variable value along with a success message.

· Leave the variable as-is and throw an error

An agent should NOT modify a variable to make it valid, AND throw an error.

SetVariableValues function behaviour (multiple variables)

A multiple variable set is considered atomic. If the agent throws an exception during a SetVariableValues command it is expected to roll-back and make no changes to any of the variables in the multiple-set command, event if the set command was valid for those variables.

An agent may, if it so chooses, intelligently modify any of the variables instead of throwing an error. An agent should NOT modify any variables in a multiple variable set AND throw an error.

Event Based Variables

The ‘event_based’ variable field specifies whether this is a normal get/set variable or whether it is used as an event to send to the agent. This field is mainly for UI interpretation.

The possible values for ‘event_based’ are:

· Normal (not event based) – the variable would operate as normal and be interpreted by the UI as normal.

· Single State – indicates that the UI should show a push button for this variable. The value of the variable and its type is immaterial – the UI is using it purely as an ‘act now’ event.

· Value Based – indicates that the value of this variable is meaningful but the UI should display it as some kind of button.

· The UI could interpret a boolean type variable here as a toggle button, where pressed = true and raised = false, sending ‘true’ or ‘false’ as the button was pressed or released.

· The UI could interpret any other normally interpreted value here as normal (e.g. a text field for an integer) but have a button beside it which would act as a ‘send event now’ button.

Non-Java Agents

All of the variable types can commonly be represented in other languages. (Integer == 32 bit int, Double == 64 bit float...). If a language cannot support a particular type it need not export any variables of that type.

HCE Protocol Implementation

How this functionality is implemented in the HCE protocol is not specified in this document. However, there will likely need to be support for this in the HCE protocol so that all agents export their variables and are told to get/set them in the same way.

E.g. an agent might register a listener for variable SET and GET events or it might have a handler for variable SET and GET commands.

Example Protocol Interaction

The following example protocol interactions are to make any assumptions about the underlying protocol implementing this interface more clear.

Some terms and conventions:

· Interface Client – this is the code that is using the interface, e.g. the generic UI

· Interface Impl – this is the client side code that implements the interface

· Agent – this is the agent that deals with messages from the Interface Impl. It is the remote implementation of the interface.

· It is assumed the exchanges work as transactions.

Example Underlying Protocol Interaction 1 – Client gets VariableGroup structures

1. Interface Client calls ‘getRootVariableGroup()’

2. Interface Impl sends message to remote agent:

· GET_VARIABLE_GROUP (no ID)

3. Agent sends back message with hierarchical list of structures:

a. GET_VARIABLE_GROUP_OK
b. VARIABLE_GROUP A (id,name,description,variable count, subgroup count)
i. (begin group A variables – variable count=2)

ii. VARIABLE A-1 (id, name, description…)

iii. VARIABLE A-2 (id, name, description…)

iv. (end of group A variables)

v. (begin group A subgroups – subgroup count=2)

vi. VARIABLE_GROUP B (id,name …)

1. (group B variables…)

2. (group B subgroups…)

vii. VARIABLE_GROUP C (id,name …)

1. (group C variables…)

2. (group C subgroups…)

viii. (end group A subgroups)

4. Interface Impl converts this returned message into VariableGroup and Variable objects and returns the top level VariableGroup.

Example Underlying Protocol Interaction 2 – Client gets specific VariableGroup (e.g. for update)

1. Interface Client calls ‘getVariableGroup(int id)’

2. Interface Impl sends message to remote agent:

a. GET_VARIABLE_GROUP (id=<requested id>)

3. Agent sends back message with hierarchical list of structures:

a. GET_VARIABLE_GROUP_OK

b. GROUP A (id=<requested id>, name, description …)

i. (same structure described above)
4. Interface Impl converts the list of structures into VariableGroup and Variable objects and returns the requested VariableGroup

Example Underlying Protocol Interaction 3 – Client successfully sets a variable

1. Interface Client calls ‘setVariableValue(Variable var)’

2. Interface Impl gets variable ID and value.

3. Interface Impl sends message to remote agent:

a. SET_VARIABLE_VALUE (id=<requested id>)

i. INTEGER (variable type)
ii. (data representing value)

4. Agent accepts the value and changes its variable accordingly

5. Agent sends back a simple success message

a. SET_VARIABLE_VALUE_OK (modify count = 0)
6. Interface Impl returns without error

Example Underlying Protocol Interaction 4 – Agent intelligently modifies a variable set

1. Interface Client calls ‘setVariableValue(Variable var)’

2. Interface Impl gets variable ID and value (e.g. 110%).

3. Interface Impl sends message to remote agent:

a. SET_VARIABLE_VALUE (id=<requested id>)

i. INTEGER (variable type)

ii. (data representing value)

4. Agent modifies the variable according to some internal logic (e.g. 100%)
5. Agent sends back a success message including the new value

b. SET_VARIABLE_VALUE_OK (modify count = 1)
i. SET_VARIABLE_VALUE (id=<requested id>)
ii. INTEGER (variable type)
iii. 100 (data representing value)
7. Interface Impl modifies var.value accordingly (var.value=100) and returns without error

Example Underlying Protocol Interaction 5 – Agent rejects variable set

1. Interface Client calls ‘setVariableValue(Variable var)’

2. Interface Impl gets variable ID and value

3. Interface Impl sends message to remote agent:

a. SET_VARIABLE_VALUE (id=<requested id>)

i. (variable type)

i. (data representing value)
4. Agent has some problem with the variable set (e.g. incorrect type)

5. Agent sends back an error message describing the problem

a. SET_VARIABLE_VALUE_FAILED
i. BAD_TYPE (failure type)
ii. “Variable <name> is of type <type>” (human-readable string error message)

6. Interface Impl interprets this and throws the corresponding exception (BadTypeException) with the specified message as the exception message

Example Underlying Protocol Interaction 6 – Agent rejects multiple variable get

1. Interface Client calls ‘getVariableValues(Variable[] vars)’

2. Interface Impl gets relevant Ids and values

3. Interface Impl sends message to remote agent:

a. GET_VARIABLE_VALUES (id count = 4)

i. Id = 1

ii. Id = 2

iii. Id = 3

iv. Id = 4

4. Agent refuses the get because of access reasons for some of the variables (e.g. variables 2 and 4 can only be accessed when paused and variable 3 is the wrong type)

5. Agent sends back an error message describing the problem

a. GET_VARIABLE_VALUE_FAILED

i. BAD_ACCESS (failure type)
ii. “Variables <2 name> and <4 name> may only be accessed while paused, Variable <3 name> is of type <3 type>.” (human-readable string error message)
6. Interface Impl interprets this and throws the corresponding exception (BadAccessException) with the specified message as the exception message

Generic UI Guidelines

The interface described allows the creation of a generic UI to access these variables. This section puts forward some guidelines for a generic UI to represent this interface:

· Some kind of hierarchical representation of the variables, as structured by the variable groups. (e.g. a treetable)

· Each entry in the representation could have the name,description and type of the variable, and an entry to display/set the variable value.

· The generic UI could have a series of standard editing controls for known types such as String, int, double, boolean etc.

· The generic UI should default to allowing the user to modify any values, and then apply the changes upon the request of the user via an ‘Apply’ button (this allows the user to set any values the want to atomically).

· In addition to this, the generic UI could allow the user to specify whether to send variable changes right away or to batch them and send them when the Apply button is pressed.

· The UI should have a series of standard editing controls for known event based types such as single-event based boolean (push button) and value-event based boolean (toggle button).

· The UI could have expose an extension point allowing vendors to export editor UIs for particular XSD types.

Questions

Some questions raised about this proposal are:

1. How about other data types like Byte etc?

a. If other people feel other commonly understood datatypes like Byte would be useful then these could be included.

2. Do we want to support other complex data types like Custom or Standard Classes or blobs as Variable values?

a. It may be beneficial to support other data types such as Custom etc as variable values as this would encourage usage of the interface but in doing so we lose out on generic functionality. If everyone exports their variables as Custom then the interface becomes useless as a generic feature.

3. Should we define all these methods as part of a separate interface rather than as a part of HyadesBaseAgent so that the interface can be picked up optionally by agents?

a. The strength of the interface is in its universality. If all agents have a standard method of control and configuration, the Choreography layer can use them all (at least on a basic level) in the same way. Rather than making this a separate interface we should design the implementation in such a way that an agent has to do little or nothing if they have no variables to export. Thus all agents will implement the interface by default but they may choose not to export any variables.

4. What are the variables actually FOR?
a. One example usage is the Perfmon agent has a runtime-modifiable control which is the frequency in milliseconds of the counter polling (i.e. gather data every N milliseconds). At the moment it exports variables in a proprietary way but it would be better if this were exported and accessible via a standard interface. If agents could export standard typed variables then they could also be presented to the user with a bunch of standard UI controls for setting the different types.

