Some Test-Related aspects of Hyades/TPTP
Scapa Technologies

Some Test-related aspects of Hyades/TPTP

Draft 0.1

Mike Norman, Friday, 17 September 2004

[image: image1.png]

Contents

1The Test Model

1Contents of the Test Model

2Structural elements of the model

2The Behavioural Piece of the Test Model

3Coarse Grained Integration with Existing Technologies

3Test Execution

4Restricting Behavioural Logic

The Test Model

At the core of Hyades is a model which is used to describe tests. It is anticipated that tools will share tests which conform to this test model so that tests generated by a hyades-compliant test tool can be executed by a hyades-compliant test execution tool. The Test model is a realization of a standard Profile (known as the UML 2 Test Profile) which has been presented to the OMG as a potential standard piece of the OMG’s model Driven Architecture.

Those unfamiliar with modelling should be aware that there is no need to deal with naked UML at any point in using or even, in principle in building, a hyades-compliant test tool. The UML descriptions of the test formats are passed through EMF to generate an API which can be used without reference to the underlying UML concepts and behaves much like an XML DOM representation. That said, the Hyades project team has a dangerous tendency towards UML-speak, and it is worthwhile getting a basic grounding in UML if you intend to implement tooling on top of Hyades.

At the time the project was started the UML 2 Test Profile suffered from two major problems. First, it was not yet confirmed as a standard, and second it was based upon UML 2 which itself is not confirmed as a standard. As a result, Hyades took the following approach

1) Take an active role in ensuring the U2TP gets adopted (suggesting changes where appropriate, but committing publicly to implementing whatever is finally agreed)

2) Work with a subset of the concepts which are being proposed for UML 2, structuring the project so that when UML 2 is finally adopted, the final versions of these concepts can be swapped into Hyades to replace those which Hyades uses in the mean time.

As at version 3.1, Hyades is slightly divergent from both the U2TP and UML 2, and it is not clear whether these changes can be fixed before 4.0 because they would break APIs.

Contents of the Test Model

The test model describes sequences of “messages” to be sent to various interfaces of a system under test, along with logic about how those messages are to be populated with data, the responses that should be received, and the way to validate the data contained within those responses.

To make this more concrete, in many cases a test is conceptually a sequence of API calls. An API call can be thought of as two messages: a calling message which defines the input of the API call, and a return message which contains the output of the API call.. The API call would thus be described in the test model as a pair of messages into and out of the system under test. The test would also contain the logic by which the input parameters to the call were populated, and the correctness was established of both the return values of the API function.

The Test Model also covers off things like the machine(s) where the test is to be executed, the machine(s) where the system under test resides, the environment that must be set up on those machines, as well as providing a standard hierarchical structure within which verdicts are reported and aggregated and which can be used to integrate through to test management systems, requirements etc.

There is a little conceptual problem hanging around here in that at the moment the model does not contain a description of the system under test, and we plan to fix this at some point.

Structural elements of the model

The structural elements of the model are, at least in the short term, the most important standardization point in the Hyades Test framework, and drive the structure of the user interface and its editors. The most important concepts are Test Suite (roughly-speaking a set of high-level things that have to be done in order for a system to be considered tested), a Test Case (roughly speaking something one would consider a test in the ordinary meaning of the word) and a Test Component (some tangible activity that forms part of a test). So, for example, in a Load Testing scenario, the Test Component is interpreted as a “virtual user”, the Test Case is a “scenario” and the Test Suite is a group of scenarios.

This structure and terminology is a little awkward in the context of either the Junit useage of these terms, and also the Eclipse Project structure, but reflects the industry consensus of the OMG U2TP initiative. (unfortunately not in its final version). There have also been views taken that in Version 3.x the useage of these terms is not consistent across all the Hyades sample tools.

On top of this there is a Deployment structure which defines where the various test components are executing and which is adequate for some purposes, but does not allow the test to re-deploy itself at runtime, and this is an area where work is required.

The Behavioural Piece of the Test Model

So far however, all we’ve done is define the structure of the tests we are running and the places where they run but we haven’t described what they do. In the simplest cases there are straight-through sequences of API calls. There is a requirement for handling conditionals and branching (particularly important in functional testing) and for defining and controlling concurrency (particularly important for load testing). These elements of a test are described as Behaviours, and are defined in a piece of the test model which borrows heavily from a set of concepts from UML 1.4 and which, at the point at which the model was first defined, were being proposed for UML 2.

The important point however, is that the UML model needs to be able to express the test logic that any test tool is capable of generating, and should not be constrained by the specific logic of particular methodologies, tools etc. It is for this reason that a broad set of the proposed UML 2 behavioural model has been included into the haydes test model. Over time this may be extended to include everything that is ratified in UML 2, although it may be a while before there are test tools capable of executing every possible UML 2 behavioural variant.

Coarse Grained Integration with Existing Technologies

In the early days there was a huge debate in Hyades about how prescriptive we need to be about the use of this model to define tests. If you look at the trace model there are very few significant points where you can insert a “binary large object” or a random piece of XML or a script or whatever, and the reason for this is that it precludes the basic goals of interoperability. However, there is always a balance and the test community is fragmented amongst different vendors with different formats and end-users have major test asset investments, so it was judged impractical to enforce use of all elements of the Test Model, and it was agreed that (as in the U2TP itself) the Behavioural Model can be replaced with a reference to something external.

Say, for example, a developer has built a number of Junit Test Cases and wishes to define a Hyades test which invokes these Test Cases in a particular order, and sets a verdict dependent on some property of the sequence of results (for example all test cases need to pass).

In this case, the Hyades test would consist not of a sequence of API calls to the System Under Test, but a sequence of invocations of Junit, and the result of the hyades test would be set not by considering the responses from individual API calls to the system under test, but by considering the set of outcomes of the Junit test cases.

The Hyades sample tools contain facilities to integrate with Junit (and HTTP and a manual test client) in the way we described. The approach is much more general, and can be applied to a raft of tools from third party vendors which can be invoked this way, for example GUI scripting tools, load testing tools, code coverage tools etc. The Test Suite, Test Case and Test Component all have behaviours which are replaceable in this way.

Test Execution

This takes us onto the all-important issue of test execution. So far we have described the contents of the model, but not the process of executing it. Start with the simplest case we have dealt with so far, a model which defines a sequence of Junit test cases or HTTP protocol interactions to be invoked on the tester’s workstation.

The Hyades reference implementation contains a tool which is invoked from the workbench user interface, which can read the model, identify that it contains a sequence of Junit Test Cases or HTTP protocol interactions, a code generator which takes the behavioural and verification logic etc. against Junit APIs or the protocol and turns them into an executable program.

The Hyades reference implementation UI tools also contain the facilities to invoke these programs on either local or remote machines. As mentioned above, the test model contains a description of the machine(s) on which the test is to be executed

The UI tool initiates and controls remote execution through the Hyades Execution API which is presented inside the Eclipse Workbench. Underneath the interface there is a plug-replaceable execution framework which actually causes things to happen on remote machines. In the reference implementation this layer is provided through a communication layer known as the Remote Agent Controller (RAC). The RAC provides general-purpose mechanisms for remote process deployment and invocation which are used to execute and control the generated test code.

Restricting Behavioural Logic

The Hyades Behvioural model, although only a subset of UML, is in itself more complex than is required for the set of sample tools. As a result a façade has been built which restricts access to the underlying APIs, and only allows certain behavioural concepts to be accessed by the User Interface. The same façade is used by the code generator to ensure consistency.

[image: image2.wmf]

�

� EMBED Word.Picture.8 ���

Scapa Technologies Limited

125 McDonald Road,

Edinburgh

EH7 4NW, Scotland

Tel: +44 131 652 3939

Fax: +44 131 652 3299

www.scapatech.com

contact@scapatech.com

Scapa is a registered trademark of Scapa Technologies Ltd. All other company, brand or product names are either trademarks or registered trademarks of their respective companies.

Part Number: insert here

©Copyright 2001 Scapa Technologies Limited

3

©Copyright 2004 Scapa Technologies Limited

_1069079841.doc
[image: image1.png]A

Scapa

