The Hyades Platform

Background

At Version 3.0, Hyades

1) a set of data models for trace, test, log, execution history and statistical data

2) agents for generating trace, log and statistical data, and some SUT-specific agents for executing tests and generating execution histories

3) a plumbing layer which allows the agents to communicate back into the models, or the test agents to be invoked

4) a set of user interface components for viewing the models

However, there are some major deficiencies in the architecture in term of

1) the test runtimes and test editors are not universal over the set of possible test models because

a. the SUT is not modelled (which makes the model incomplete)

b. the test profile allows arbitrary UML behaviours which are not practical for execution

2) the trace model is non-generic (leading to proprietary variations when non-java interfaces are being traced) and doesn’t map onto any model of the SUT present in the test model (which makes it difficult to leverage the test/trace duality)

3) there is an unnatural separation between the process of testing and the process of monitoring since the process of monitoring cannot be modelled (only the outcome of monitoring).

The Hyades Platform Architecture

At version 3.x, Hyades will provide a Platform, that is an additional set of defined interfaces and extensions to its models and user interfaces, and a choreography engine to address the above deficiencies. How this works is shown in the diagram below.

[image: image1.wmf]BPEL

Generated Java

WSDL/XSD Bindings

Actuator

SUT

Trace, Log,

Statistical Agent

Workbench

Runtime

Models

Aggregator

Behavioural

Templates

EMF

Legacy

Test Engine

Textual

BPEL

User Interface

BPEL

Generated Java

WSDL/XSD Bindings

Actuator

SUT

Trace, Log,

Statistical Agent

Workbench

Runtime

Models

Aggregator

Behavioural

Templates

EMF

Legacy

Test Engine

Textual

BPEL

User Interface

The Hyades Behavioural Model is defined as the subset of UML2 that corresponds to BPEL, or more precisely to a concrete representation of BPEL concepts provided in EMF.

The SUT is modelled as a WSDL interface – if the SUT does not provide a WSDL interface a “wrapper” can be built around the actual interface of the SUT. The WSDL binding may be via XML/SOAP or directly into Java, or possibly other routes. There is also some value to identifying a set of re-useable transformations between WSDL data types and native SUT data types (to do marshalling etc). This is known as a codec. They will be external to the Test Model.

Hyades then provides a universal choreography engine for BPEL programs (or more specifically a Java code generator from EMF models referring to BPEL concepts) which can bind to the WSDL interfaces either natively or via HTTP/SOAP and provides an extension point for other bindings. The runtime user interface then interacts with the running BPEL to set variables and again is universal over any BPEL program.

One subtlety to all of this is that the concept of a set of test agents running specific locations seems to have disappeared, the test runs inside the choreography engine, the interfaces of which are loosely bound (via http/soap etc.) or tightly bound (via Java) to the SUTs’ WSDL interfaces. The deployment refers to the entity referred to as the SUT in the model (which is actually the binding point of the WSDL interface wrapped around the SUT).

So far we have solved points 1) a. and b. We have modelled the SUT and thus made the test model complete, and we have restricted the set of UML2 concepts available within the behaviour to a set which is both sufficient and practically implementable, and we have then provided an implementation.

Beyond that, we can resolve problem 2) by defining the BPEL mapping to EMF as a Hyades Trace Model which is universal across any SUT that can be tested by the Platform. At some point it will be necessary to align the BPEL concepts with those in use in the richer Java-specific trace models.

Finally to resolve problem 3), we simply bring the trace and log agents into the test model as Test Components, which we model as having WSDL-based control interfaces. These agents can then pick up the configuration and deployment elements of the model in the same way as current test components. The BPEL which defines the choreography over the SUT’s BPEL interfaces can also choreograph the various agents used to trace and log the SUT during the test.

Clearly the BPEL can usefully choreograph trace and log agents even if there isn’t actually a test running, so it may be useful to rename TestSuite, TestCase and TestComponent as HyadesSuite etc. to handle the use-case of tracing without testing.

Additionally, two new types of BPEL-choreographed WSDL-speaking agents are envisaged: Actuators which change the state of the target environment, and Legacy Test Engines which execute proprietary behaviours but which can benefit from being choreographed alongside monitoring agents etc. and possibly other choreographed interactions with SUTs.

Finally it is envisaged that the elements of computation being performed within the workbench (such as aggregating trace data into statistical data, or further aggregating statistical data) will also provide a WSDL control interface that can be choreographed by the BPEL engine, and that the same will apply to the configuration logic for the user’s view on the models which is provided through the GUI. This, together with the ability of the runtime UI to modify variables in the BPEL, defines a new runtime control and monitoring UI which replaces statcon (and probably won’t look that different).

Deliverables

The next set of steps are

1) Writing the choreography engine (BPEL->Java converter). Note that there appears to be a dependency on the existence of a EMF model of BPEL, and this is not in the scope of Hyades. However we are assured that one will be provided in due course, and in the meanwhile we will use textual BPEL as if it was an external behaviour.

2) Wrapping the current set of agents in WSDL control interfaces. Note there are two problems

a. There isn’t an interface discovery mechanism and an API needs to be defined here somehow.

b. It isn’t obvious how to propagate the output of an interface discovery API call across the RAC and up through the standard loaders.

3) Build a generic runtime UI (by extending statcon)

4) There should probably be a link between the trace, statistical models etc and the agent modelled as a “Hyades Component”. (Stating basically that this trace or log or statistical model was created by an instance of this Hyades Component (agent) in the context of this Hyades Case and this Deployment).

5) Build a generic behaviour editor (this will slot in where the current test editors sit and be SUT-aware and agent-aware i.e. it will use the WSDL to scope the set of available interactions).

6) At some point it will be useful to have a directory of instances of available WSDL interfaces (to SUTs, agents, legacy test engines, actuators etc.). One instance of this directory might be the Eclipse extension point mechanism, and we should probably also have an LDAP bridge.

7) We should implement some of the wrapped up agents and SUTs, plumb it all together and watch it hum.

