Revision History

	Rev.
	Date
	Author
	Summary of Changes

	0.1
	May 19, 2004
	Vishnu Naikawadi
	First draft

	0.2
	June 8, 2004
	Vishnu Naikawadi
	Separate definition of Base Agent and Collector interfaces

	0.3
	June 14, 2004
	Vishnu Naikawadi
	Revised draft

	
	
	
	

1.1.1 Hyades Collection Engine Protocol Layer 2 - Agent Interface

The current Hyades implementation does not have any published API for common agent framework based on which the agents can be built upon. There is a set of operations that are similar in behavior for any agent though the implementation could be different. This is applicable for the existing and future agents. So, it makes sense to define a common base agent interface that consists of the basic operations. There are several benefits for having such interface hierarchy.

· Agents can have a uniform interface

· Default implementation could be provided for the base agent interface

· Agents can be categorized to give it an identity based on the agent type (see below in section 1.1.1.1).

· Code re-use is possible across the agents in the hierarchy

· Agent developers can extend this interface to add

The operations that could be part of the base agent interface are listed in the coming sections.

1.1.1.1 Agent hierarchy

The preliminary UML diagram below shows the hyades agent hierarchy. The HyadesBaseAgent class is the top most in the hierarchy and defines the operations for the base agent. Every Hyades agent will inherit the operations defined by this class. Extending from this base agent are the other next level classes that define the operations specifically for e.g. agents that perform data collection, agents that monitor or manage, agents that control, etc. The current Hyades Java Profile agent and Logging agent fall under the Hyades Collector category. The hierarchy can be extended to cover the broader set of agents based on their type, characteristics and behavior. The agent developers can create the actual agents by extending from one of the classes of the hierarchy and either use the provided default implementation or re-implementing the interface.

Note: This document at present covers only the command or protocol interface for Base Agent and Collector Agent. The actually object oriented class hierarchy along with its interfaces and methods will be defined later.

[image: image1.wmf]HyadesBaseAgent

HyadesCollectorAgent

HyadesMonitorAgent

IntelVTuneCollector

HyadesJavaProfiler

HyadesLoggingAgent

HyadesTestingAgent

Hyades<SomeOtherType>Agent

<SomeOtherType>Collector

The next sections will describe the Base Agent and Collector interfaces. The definition includes the following

· Interface Name

· The Command interface – Since the agents run in a separate process, any action to be taken on the agent will be communicated to the agent by sending a prescribed command along with the required data. The command interface defines the equivalent command for each of the agent’s interfaces. These commands will be received by the agent process and are parsed and processed by the agent instance.

1.1.1.2 Base Agent Interface

The Hyades Collection Engine or another agent requiring such services from any agent will invoke these interfaces. Some of these activities will trigger the events that will be communicated to the source to indicate the status of an issued command.

Note: All the commands for an agent need to be issued specifically for that agent by including Agent ID in the command. This Agent ID will be part of the “Command Header” and is not part of the “Command Data”.

1.1.1.2.1 Initialize

Command:

CID_AGENT_INIT

Data:

None
Response:

CID_AGENT_INIT_SUCCESS

Response Data:

 No Data

Alternate Response:

CID_AGENT_INIT_ERROR

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This interface initializes the agent to a state, which can allow the agent to start the collection. The agent can implement this method to perform any required initialization like resource initialization though not all agents will need such activity.

1.1.1.2.2 De-register Agent (Is this required?)

Command:

CID_AGENT_DEREGISTER

Data:

None

Response:

CID_AGENT_DEREGISTER_SUCCESS

Response Data:

None

Alternate Response:

CID_AGENT_DEREGISTER_ERROR

Alternate Response Data:

	Bytes 0-3
	Reason Code

Description:

This command de-registers a previously registered agent from the HCE. This command would be effective only for the agents, which were registered and are active.

1.1.1.2.3 Get Agent Name

Command:

CID_GET_AGENT_NAME

Data:

None

Response:

CID_AGENT_NAME

Response Data:

	Bytes 0-3
	Length of agent name string to follow

	Bytes 4-(4+str length)
	Agent Name string

Description:

This command returns the agent name specified in the agent metadata. Agent Name is like a class name. Agent metadata is the static data about the agent and is defined in the agent configuration file. This data can’t be changed during runtime.

1.1.1.2.4 Get Agent Property Bag

Command:

CID_GET_AGENT_PROPERTY_BAG

Data:

None

Response:

CID_AGENT_PROPERTY_BAG

Response Data:

	Bytes 0-3
	Number of name-value pairs to follow

	Bytes 4-7
	Length of the Property Name string to follow

	Bytes 8-(8+str length)
	Property Name string

	Next four bytes
	Length of the Property Value string to follow

	Next (str length) bytes
	Property Value string

	Remaining bytes
	Additional name-value pairs as above

Description:

This interface returns the list of agent properties and their values. This command allows clients to obtain agent-specific properties. The data returned will be the name-value pairs (in UTF-8 format) of the agent properties. If the agent has no properties other than metadata, the response will return zero as the number of name-value pairs, but a response will still be issued.

1.1.1.2.5 Set Agent Property Bag

Command:

CID_SET_AGENT_PROPERTY_BAG

Data:

	Bytes 0-3
	Number of name-value pairs to follow

	Bytes 4-7
	Length of the Property Name string to follow

	Bytes 8-(8+str length)
	Property Name string

	Next four bytes
	Length of the Property Value string to follow

	Next (str length) bytes
	Property Value string

	Remaining bytes
	Additional name-value pairs as above

Response:

CID_AGENT_SET_PROPERTY_BAG_SUCCESS

Response Data:

None

Alternate Response:

CID_AGENT_SET_PROPERTY_BAG_ERROR

Alternate Response Data:

	Bytes 0-3
	Return Error Code

Description:

This command allows clients to set agent-specific user defined properties. The command data includes the Agent ID and the set of property name-value pairs. This command will set the agent property values during runtime. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.2.6 Get Property

Command:

CID_AGENT_GET_PROPERTY

Data:

	Bytes 0-3
	Length of the value name string to follow

	Bytes 3-(3+str length)
	Property Name string

Response:

CID_AGENT_PROPERTY

Response Data:

	Bytes 0-3
	Length of the Property Name string to follow

	Bytes 3-(3+str length)
	Property Name string

	Next four bytes
	Length of the Property Value string to follow

	Next (str length) bytes
	Property Value string

Description:

This command allows clients to get value of a specific property of an agent. The command data includes the Agent Property Name. And the command returns a property name-value pair.

1.1.1.2.7 Set Property

Command:

CID_AGENT_SET_PROPERTY

Data:

	Bytes 0-3
	Length of the Property Name string to follow

	Bytes 4-(4+str length)
	Property Name string

	Next four bytes
	Length of the Property Value string to follow

	Next (str length) bytes
	Property Value string

Response:

CID_AGENT_SET_PROPERTY_SUCCESS

Response Data:

None

Response:

CID_AGENT_SET_PROPERTY_ERROR

Response Data:

	Bytes 0-3
	Return Error Code

Description:

This command allows clients to set value for a specific property of an agent. The command data includes the set of property name-value pair. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.2.8 Add Property

Command:

CID_AGENT_ADD_PROPERTY

Data:

	Bytes 0-3
	Length of the Property Name string to follow

	Bytes 4-(4+str length)
	Property Name string

	Next four bytes
	Length of the Property Value string to follow

	Next (str length) bytes
	Property Value string

Response:

CID_AGENT_ADD_PROPERTY_SUCCESS

Response Data:

None

Response:

CID_AGENT_ADD_PROPERTY_ERROR

Response Data:

	Bytes 0-3
	Return Error Code

Description:

This command allows clients to add a new property to an agent during runtime and set its value. The command data includes the set of property name-value pair. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.2.9 Remove Property

Command:

CID_AGENT_REMOVE_PROPERTY

Data:

	Bytes 0-3
	Length of the Property Name string to follow

	Bytes 4-(4+str length)
	Property Name string

Response:

CID_AGENT_REMOVE_PROPERTY_SUCCESS

Response Data:

None

Response:

CID_AGENT_REMOVE_PROPERTY_ERROR

Response Data:

	Bytes 0-3
	Return Error Code

Description:

This command allows clients to remove a property during runtime from the agent property list. The command data consists of the property string name along with its length. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.2.10 Get Agent ID

Returns the unique identification ID of the Agent. This ID represents the agent uniquely within the machine in which it is running.

Command:

None. This interface is for agent’s internal use.

1.1.1.2.11 Get Supported Interfaces

Command:

CID_AGENT_GET_INTERFACES

Data:

None

Response:

CID_AGENT_INTERFACES_LIST

Response Data:

	Bytes 0-3
	Number of interfaces supported

	Remaining Bytes
	Interface IDs

Description:

This returns the list of interface IDs supported by the agent in the form of an integer array. If this command is sent to an agent instance of sub-class type like a collector agent, the response includes the Interface IDs of all the classes in the hierarchy up to the base class.

1.1.1.2.12 Check Supported Interfaces

Command:

CID_AGENT_CHECK_INTERFACES

Data:

	Bytes 0-3
	Number of interfaces to be checked for support by the agent

	Remaining Bytes
	List of Interface IDs

Response:

CID_AGENT_INTERFACES_SUPPORTED

Response Data:

	Bytes 0-3
	Number of interfaces

	Remaining Bytes
	Interface ID + Flag to indicate the support for each Interface ID

Description:

This command can be used check if a specific interface list is supported by the agent. The command takes the Number of interfaces to be checked and the list of Interface IDs. The response returns each of the Interface IDs along with a flag to denote if that interface is supported by the agent or not. Support for a single Interface ID can be checked, passing only one Interface ID as the command data.

1.1.1.2.13 Get WSDL Definition

Command:

CID_AGENT_GET_WSDL_DEFINITION

Data:

None

Response:

CID_AGENT_WSDL_DEFINITION

Response Data:

	Bytes 0-3
	Length of message string

	Bytes 4-(4+str length)
	Agent definition message possibly in WSDL format.

Description:

This method returns the agent definition in WSDL format. The definition describes the agent giving its name, configuration, interfaces and their definition, etc. The format of the returned definition could be in text message and is in WSDL format (XML format).

1.1.1.2.14 Add Agent Event Listener

Command:

CID_AGENT_ADD_EVENT_LISTENER

Data:

	Bytes 0-3
	Server ID

	Bytes 4-7
	Listener ID

	Bytes 8-11
	Listener Context ID

	Bytes 12-15
	Number of Events

	Remaining Bytes
	Event ID list

Response:

CID_AGENT_ADD_EVENT_LISTENER_SUCCESS

Response Data:

None

Alternate Response:

CID_AGENT_ADD_EVENT_LISTENER_ERROR

Alternate Response Data:

	Bytes 0-3
	 Error Code

Description:

This interface registers an interested listener to a specific event. The command takes the parameters, List of Event IDs – Event IDs to be registered for, Server ID – this is the ID of the Hyades server to which the agent is attached to, Listener ID – this is the ID of Client or another Agent, Listener Context ID – the actual object on the Client/Agent that will wait for and process the event. The agent instance maintains a table of events (that can be generated by the agent) and the interested event listeners registered. When an event is triggered, this information is sent only to the interested listeners by routing via Hyades Collection Engine (HCE). The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.2.15 Remove Agent Event Listener

Command:

CID_REMOVE_AGENT_EVENT_LISTENER

Data:

	Bytes 0-3
	Server ID

	Bytes 4-7
	Listener ID

	Bytes 8-11
	Listener Context ID

	Bytes 12-15
	Number of Events

	Remaining Bytes
	Event ID list

Response:

CID_AGENT_REM_EVENT_LISTENER_SUCCESS

Response Data:

None

Alternate Response:

CID_AGENT_REM_EVENT_LISTENER_ERROR

Alternate Response Data:

	Bytes 0-3
	 Error Code

Description:

This interface removes a registered event listener indicating that the listener no longer wishes to receive a notification when event is triggered. The command data for this command is same as that for “Add Agent Event Listener”. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.2.16 Reset Configuration

Command:

CID_AGENT_RESET

Data:

None
Response:

CID_AGENT_RESET_SUCCESS

Response Data:

 No Data

Alternate Response:

CID_AGENT_RESET_ERROR

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This interface can be used to reset the agent configuration to bring it back to the initialized state. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.2.17 Un-Initialize

Command:

CID_AGENT_UN_INITIALIZE

Data:

None
Response:

CID_AGENT_UN_INITIALIZE_SUCCESS

Response Data:

 No Data

Alternate Response:

CID_AGENT_UN_INITIALIZE_ERROR

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This interface un-initializes the agent. This is an equivalent reversal step to initialize. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.2.18 Terminate or Shutdown

Command:

CID_AGENT_TERMINATE

Data:

None

Response:

CID_AGENT_TERMINATE_SUCCESS

Response Data:

 No Data

Alternate Response:

CID_AGENT_TERMINATE_ERROR

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This interface allows the client/HCE to shut down or terminate the agent. After this action, the agent instance will be deleted and will not be available for service. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.3 Base Collector Interface

This section describes the base interface definition of the agents that specifically carry out the performance or other types data collection of an application under observation. This interface has to be implemented by every collector though it can extend the interface by adding other methods.

1.1.1.3.1 Run

Command:

CID_AGENT_RUN

Data:

None

Response:

CID_AGENT_RUN_SUCCESS

Response Data:

 No Data

Alternate Response:

CID_AGENT_RUN_ERROR

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This interface runs the agent and it will be in active state. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.3.2 Start Monitoring

Command:

CID_AGENT_START_MONITORING

Data:

	Bytes 0-3
	Length of IP Address or Pipe Name string

	Bytes 4-(4+str length)
	IP Address or shared pipe name

	Next Four Bytes
	Port Number

Response:

CID_AGENT_START_SUCCESS

Response Data:

 No Data

Alternate Response:

CID_AGENT_START_ERROR

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This interface starts the data collection of a configured agent. The command data includes the data stream information that should be used to transfer any data collected by the agent. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.3.3 Pause

Command:

CID_AGENT_PAUSE

Data:

None

Response:

CID_AGENT_PAUSE_SUCCESS

Response Data:

 No Data

Alternate Response:

CID_AGENT_PAUSE_ERROR

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This interface can be used to move the status of the agent that is running into a pause mode. During the pause mode the agent is active but is in idle state without performing any collection. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.3.4 Resume

Command:

CID_AGENT_RESUME

Data:

None

Response:

CID_AGENT_RESUME_SUCCESS

Response Data:

 No Data

Alternate Response:

CID_AGENT_RESUME_ERROR

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This interface can be used to change the agent state back to running mode from a previously paused state. When this operation is performed, the agent will resume the collection it has started before. One usage case for the Pause/Resume sequence could be to perform a periodic data collection. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.3.5 Cancel

Command:

CID_AGENT_CANCEL

Data:

None

Response:

CID_AGENT_CANCEL_SUCCESS

Response Data:

 No Data

Alternate Response:

CID_AGENT_CANCEL_ERROR

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

When this interface is called, the agent will cancel any currently running data collection. This moves the agent to initialized or configured state so that another collection can be configured and run. After this action, the agent will be still active and can provide services again. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.3.6 Stop

Command:

CID_AGENT_STOP

Data:

None

Response:

CID_AGENT_STOP_SUCCESS

Response Data:

 No Data

Alternate Response:

CID_AGENT_STOP_ERROR

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This will stop the currently running data collection and the collected data can be transferred to the client. The response will be either success or failure. If it is error, will also return an error code as response data.

1.1.1.3.7 Snapshot

Command:

CID_AGENT_SNAPSHOT

Data:

None

Response:

CID_AGENT_SNAPSHOT_SUCCESS

Response Data:

 No Data

Alternate Response:

CID_AGENT_SNAPSHOT_ERROR

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This interface allows a client to request the snapshot of the data collected until the point of request. The agent will initiate a data transfer after it receives this command. The data transfer could be the delta of the data collected since the last data transfer. The response will be either success or failure. If it is error, will also return an error code as response data.

Note: This command may not be meant for the agents that transfer real-time data (send data regularly as they collect) since they have been sending the data anyway.

1.1.1.3.8 Get Agent State

Command:

CID_AGENT_GET_STATE

Data:

None

Response:

CID_AGENT_STATE

Response Data:

	Bytes 0-3
	 Agent State ID

Description:

Returns the state of the agent. The agent could be in one of the states illustrated in the agent state machine in section 1.1.1.5.

1.1.1.3.9 Is Attached

Command:

CID_AGENT_IS_ATTACHED

Data:

None

Response:

CID_AGENT_ATTACHED

Response Data:

None.

Alternate Response:

CID_AGENT_NOT_ATTACHED

Alternate Response Data:

None.

Description:

This command responds by indicating if the agent is attached to a process or not.

1.1.1.4 Events

As a result of a command from a client, an agent will perform a specific activity and if that activity is asynchronous and occupies certain time span, the client can’t wait until the completion of the command. And the client will not get the response within in the same synchronous call. So, the agent should necessarily send an asynchronous notification to the client after successful completion of the command. This notification is called “Event”. Such an event notification will include the event id and other information related to the event. Not all the clients may be interested in listening to the events generated by the agent. The clients will create listeners and indicate the interest by registering with agents for a specific event(s). And the listeners created by the client will wait for the event notification from agent.

This section lists the events that will be generated by the collector agents during their state transition.

Note: The Event Commands for each of the events are defined with separate Command IDs. It is possible to use the same Command ID for all the events and distinguish the events with event information in the command data.

1.1.1.4.1 Initialized

Triggered after an agent is initialized.

Command:

CID_AGENT_EVENT_INIT

Data:

	Bytes 0-3
	Server ID

	Bytes 4-7
	Listener ID

	Bytes 8-11
	Listener Context ID

	Bytes 12-15
	Event ID

	Remaining Bytes
	Event Information

1.1.1.4.2 Configured

This event is triggered after the agent configuration is completed.

Command:

CID_AGENT_EVENT_CONFIGURED

Data:

	Bytes 0-3
	Server ID

	Bytes 4-7
	Listener ID

	Bytes 8-11
	Listener Context ID

	Bytes 12-15
	Event ID

	Remaining Bytes
	Event Information

1.1.1.4.3 Started

This event is triggered after the successful completion of the agent Start action.

Command:

CID_AGENT_EVENT_STARTED

Data:

	Bytes 0-3
	Server ID

	Bytes 4-7
	Listener ID

	Bytes 8-11
	Listener Context ID

	Bytes 12-15
	Event ID

	Remaining Bytes
	Event Information

1.1.1.4.4 Paused

This event is triggered when a Pause command is issued and the agent completes a successful pause of the data collection.

Command:

CID_AGENT_EVENT_PAUSED

Data:

	Bytes 0-3
	Server ID

	Bytes 4-7
	Listener ID

	Bytes 8-11
	Listener Context ID

	Bytes 12-15
	Event ID

	Remaining Bytes
	Event Information

1.1.1.4.5 Resumed

This event is triggered when a Resume command is issued and the agent restarts the collection.

Command:

CID_AGENT_EVENT_RESUMED

Data:

	Bytes 0-3
	Server ID

	Bytes 4-7
	Listener ID

	Bytes 8-11
	Listener Context ID

	Bytes 12-15
	Event ID

	Remaining Bytes
	Event Information

1.1.1.4.6 Data Ready

This event indicates that the data collection is done and the data is created and ready to be transferred upon a client’s request.

Command:

CID_AGENT_EVENT_DATA_READY

Data:

	Bytes 0-3
	Server ID

	Bytes 4-7
	Listener ID

	Bytes 8-11
	Listener Context ID

	Bytes 12-15
	Event ID

	Remaining Bytes
	Event Information

1.1.1.4.7 Cancelled

This event is triggered when a Cancel command is issued and the data collection is cancelled.

Command:

CID_AGENT_EVENT_CANCELLED

Data:

	Bytes 0-3
	Server ID

	Bytes 4-7
	Listener ID

	Bytes 8-11
	Listener Context ID

	Bytes 12-15
	Event ID

	Remaining Bytes
	Event Information

1.1.1.5 Agent State Machine

[image: image2.png]Teminated O

The diagram illustrates the collector agent state transition during its life cycle. The state transition occurs due to a command from a client, HCE or another agent. Every collector agent will maintain it’s own state and will control the state transitions. At any particular state, it can accept only certain set of commands as indicated by the state machine. And there are only few valid state transitions that can occur from a particular state. The collector agent state machine diagram shows the valid states and all the possible transitions that can occur. An error will be returned if the client sends a command that is not allowed and invalid.

_1148207961.vsd
�

�

�

�

�

�

HyadesBaseAgent�

�

Static Structure�

�

�

HyadesCollectorAgent�

�

�

�

HyadesMonitorAgent�

�

�

�

HyadesJavaProfiler�

�

�

�

IntelVTuneCollector�

�

�

�

�

�

�

�

�

�

HyadesLoggingAgent�

�

�

�

�

�

�

�

HyadesTestingAgent�

�

�

�

�

�

Hyades<SomeOtherType>Agent�

�

�

�

�

�

<SomeOtherType>Collector�

�

�

�

_1148730396.bin

