Hyades Protocol Specification

Page 14 of 14

Hyades Protocol Specification
Revision History

	Rev.
	Date
	Author
	Summary of Changes

	0.1
	April 27, 2004
	A. Kaylor
	First draft

	0.2
	May 5, 2004
	A. Kaylor
	Completely revised to reflect new understand of Layer Zero

	0.3
	May 24, 2004
	A. Kaylor
	Incorporated feedback on Layer Zero, added Layer One specification

	0.4
	May 28, 2004
	A. Kaylor
	Added Agent Manager specification

Introduction

This document will provide a description of the base protocol for the Hyades Collector Engine (HCE). The document provides details of the data format for messages as they are directed from a Hyades client through to an agent. Figure 1 below shows a basic diagram of the layers involved and how the data is modified as it is passed through the component stack. Data shown in gray is treated as opaque for the component receiving the data.
[image: image1.png]HCE

Gient r > Lajer0 Loyt . > Agent

Figure 1 – Data Flow Across Layers

Layer Zero
The protocol stack begins with a very basic implementation to manage the connections between components. The goal of Layer Zero is to provide a base layer of communications upon which other layers can be built. This layer will be kept as simple as possible so that it can be kept stable even if changes are introduced at higher levels.

Message Envelope

All messages coming in to the Hyades Collector Engine will have the following basic format:
	Bytes 0-4
	Magic number

	Bytes 5-8
	Flags

	Bytes 9-12
	Payload size

	All remaining bytes
	Payload

This message envelope will be used both by messages sent to the Hyades Collector Engine and to messages sent to other objects from the engine.

The “magic number” will be used to identify the incoming data as a Hyades Collector protocol stream. If an error occurs while the incoming data is being read, the server will be able to look for this number as an identifier of the beginning of a new message envelope and thus achieve some recovery from an error condition.
The “flags” entry will be used to identify special messages, such as the connection handshake described below. This entry will also give us some flexibility to expand this layer of the protocol in the future.
The payload size value indicates the number of bytes that comprise the message payload. For special messages, such as the connection handshake, this may be processed by a layer zero component, but for the majority of messages, the entire payload will be forwarded to the next layer for processing.

When the value of the magic number and the bit masks for the flag value are specified, the exact byte locations will be detailed, so byte ordering is not an issue for those entries. The payload size and data will be specified as a Big Endian unsigned 32-bit integer for any connect call and the HCE response to the connect call. All data in other calls will use the byte ordering specified by the response to the connect call.
Connection Handshake

When a client or agent connects to the Hyades Collector Engine, a basic handshake will take place to establish and verify the connection. Until this handshake has taken place, no other commands will be accepted.
The handshake will be performed by the connecting component sending a special message with a flag set to indicate the command intended, and payload data set as necessary.

Flag Value:

SOCKET_CONNECT (bit 0 of byte 5 [first flag byte])

Payload Data:

	Bytes 0-4
	Protocol major version number

	Bytes 5-8
	Protocol minor version number

	Bytes 9-12
	Object type (client, agent, engine, etc)

	Bytes 13-20
	Object ID (for engines or agents)

Description:

This command would be sent to initiate a handshake from any object that was connecting to the server via a socket connection. The object type field in the data block will identify the connecting object as a client, an agent or another Collector Engine (or possibly some other type in the future). Initially, only clients are expected to connect in this way, but the protocol should be capable of handling connections from other object types. The object ID field is not used for clients. For agents this field would give the agent’s process ID (assuming a local agent). For Collector Engines this field would give the engine ID.

Flag Value:

PIPE_CONNECT (bit 1 of byte 5 [first flag byte])
Payload Data:

	Bytes 0-4
	Protocol major version number

	Bytes 5-8
	Protocol minor version number

	Bytes 9-12
	Object type (client, agent, engine, etc)

	Bytes 13-20
	Object ID (for engines or agents)

	Bytes 21-24
	Pipe name string length

	Bytes 25-(25+str length)
	Return pipe name

Description:

This command would be sent to initiate a handshake from any object that was connecting to the server via a named pipe connection. The object type field in the data block will identify the connection object as a client, an agent or another Collector Engine (or possibly some other type in the future). Only agents are expected to connect in this way, but the specification does not prevent other objects from doing so should it prove useful. The object ID field gives the process ID of the connecting object. The return pipe name is the identifier of a named pipe that the object connecting would like the server to use for return communications.

Flag Value:

DISCONNECT (Bit 3 of Byte 5 [first flag byte])
Payload Data:

	Bytes 0-4
	Reason code

	Bytes 5-8
	Message string length

	Bytes 9-(9+msg length)
	Reason message

Description:

This command will be sent when an object is ready to disconnect from the HCE. It may also be sent by the HCE if the HCE has some reason to terminate the connection (e.g. the HCE is being shutdown). The HCE will notify any objects that are associated with the object being disconnected and free any associated resources. If the HCE initiated the disconnection, the associated objects will be notified and released immediately after the message is sent. Otherwise, this will happen immediately after the message is received.
The reason code and message indicate why the connection is being terminated. This field is meant for HCE-initiated disconnections. The HCE will ignore these fields when it is the recipient of the message.

In addition, the following will be sent in response to the above commands.
Command:

CONNECTTION_COMPLETE (Bit 4 of Byte 5 [first flag byte])
Data:

	Bytes 0-4
	Connection ID

	Bytes 5-12
	Server ID

	Bytes 13-16
	Byte ordering flag

Description:

This command will be sent in reply to either SOCKET_CONNECT or PIPE_CONNECT if the connection is accepted. The connection ID is a value that the server to which a connection has been made will use to identify the object that is receiving the command. The server ID is a value that the server itself generates as a unique identification. The object receiving this command will use these two values in the replyToID and replyToServerID fields in the command header for any commands it sends after receiving this message. The byte ordering flag specifies the byte ordering that should be used for all subsequent messages (except in the case where it is necessary to re-issue the connect call).
Command:

CONNECTTION_REFUSED (Bit 5 of Byte 5 [first flag byte])
Data:

	Bytes 0-4
	Number of reasons

	Bytes 5-8
	First reason code

	Bytes 9-12
	First message string length

	Bytes 13-(13+msg length)
	First reason message

	Remaining bytes
	Additional reason codes, lengths and messages

Description:

This command will be sent in reply to either SOCKET_CONNECT or PIPE_CONNECT if the server refuses the connection for any reason. The reason code is a value that the HCE provides to give some indication of why the connection was refused. It will be a value defined in Hyades header files. The reason message will be a string that describes, in user-appropriate, language the reason the connection was refused. If the connection is refused for multiple reasons, additional reasons will be appended to the end of the data block.
Command:

DISCONNECT_ACK (Bit 6 of Byte 5 [first flag byte])
Data:

None (payload size = 0)

Description:

This command will be sent in reply to the DISCONNECT command. The connection will be terminated after this command is sent.

Layer One

All messages which are not handled at layer zero will be forwarded (via a function call internal to the HCE) to another layer for processing. The magic number, flags, and payload size will be stripped off by Layer Zero. The payload size will be passed as a parameter to the forwarding function, but otherwise the payload itself will be forwarded to Layer One as an independent block. The format of the payload for these messages is dictated by the Layer One design.

Standard Message Payload

The standard message payload will contain a sequence of one or more command blocks. The message payload will begin with a 32-bit number indicating the number of command blocks to follow, followed immediately by the command blocks, packaged sequentially.
Command Block

The all commands will use the following format:

	Bytes 0-4
	Command block size

	Bytes 5-8
	Header ID

	Bytes 9-12
	Target ID

	Bytes 13-20
	Target server ID

	Bytes 21-24
	Reply to ID

	Bytes 25-32
	Reply to server ID

	Bytes 33-36
	Interface ID

	Bytes 37-40
	Command ID

	Bytes 41-44
	Context

	Bytes 45-48
	Data size

	All remaining bytes
	Data

Command Block Size and Header ID

The header block begins with a value indicating the size of the entire command block. This will be computed as the size, in bytes of the standard header block entries (through dataSize [= 48]) plus the size of the data. This is the size of the block as transmitted, not necessarily the size of the data structure into which it is read.

The header ID is an arbitrary value which the server will use to verify that the header is in the expected format. In the future, the server will also use this value to identify new structures, as required. See below for more discussion of future changes to the command block. The upper 16-bytes of the header ID should be a fixed value so that even if the HCE encounters a header ID that it doesn’t recognize it can verify that it is a header ID. This will allow us to distinguish unrecognized headers from other types of errors.
Target, Server and Reply IDs

The target ID and target server ID together form a unique identifier. The target ID alone is not intended to be globally unique, but is only unique within a single instance of the server. However, the server ID is intended to be globally unique. Therefore the two together form a globally unique pair. The same is true of the “reply to” ID and the “reply to” server ID. In this context, “server” is meant to refer to an instance of the Hyades Collector Engine.

The target ID and target server ID together specify the object that is the intended recipient of the command. This may be a static ID that identifies the HCE itself (HYADES_SERVER_ID) or it may be the ID that the server assigned to a client or agent when that object connected to the server (see CID_CONNECT_COMPLETE above).

The server ID is generated by the instance of the HCE itself. The server ID is a 64-bit value. The upper 32-bits are derived from the server host machine’s IP address. The lower 16-bits are the port by which the server is accessed. The remaining 16 bits are reserved for future use. Important: Although other component implementers may have the above information, all components other than the HCE itself should treat the server ID as an opaque value. It is subject to change as needed, and it not intended as a means of communicating IP address and port information.

The “reply to” ID and the “reply to” server ID together specify the object that is sending the command. When the target object replies to a command, it will move the “reply to” ID and “reply to” server ID to the target ID and target server ID.

There may be some inherent confusion involved when the HCE itself is sending a command (or reply) to a client which is located on a different computer. Following the description above, the target ID will be the value that the HCE uses to identify the client, and the server ID will be the ID of the HCE itself (that is, the ID of the server to which the client is attached). Even in this case, the target server ID has nothing to do with the computer on which the client is running. This may be better understood from the perspective of an agent (which has no knowledge of the client locale) sending a command to a client through the HCE.

The current design is intended only to support routing of commands to objects which are directly connected to the HCE processing the command. The HCE will use the server ID value only to verify that the command was intended for one of its clients or agents. In the future, it will be desirable to be able to route a command across multiple HCEs. This will probably require an expansion of the command block.
Interface and Command IDs

The interface ID and command ID together uniquely identify the command that is being sent. The interface ID tells the object receiving the command what the command ID means. If the interface is not supported by the object, the command will be rejected.

In order to obtain a unique ID for interfaces, the interface ID will be created by combining a 16-bit group (i.e. company/developer) mask with a 16-bit group-specific interface identifier. The group mask will be stored in a common header file which will be part of the public Hyades source code. The group-specific interface identifier will be defined at the discretion of the developer.

For instance, the public file (“HIIMasks.h”) may contain the following entries:

#define HII_ECLIPSE_HYADES_MASK 0x010000

#define HII_IBM_WEBSPHERE_MASK 0x020000

#define HII_IBM_RATIONAL_MASK 0x030000

#define HII_SCAPA_MASK 0x040000

#define HII_INTEL_VPE_MASK 0x050000

Then a proprietary source file may define its interfaces as follows:

#define HII_VTCOLLECTOR HII_INTEL_VPE_MASK | 0x0001

#define HII_VTSAMPLING HII_INTEL_VPE_MASK | 0x0002

Additions to the public interface ID mask list will be managed in the same way as other contributions to the Hyades source. Developers who do not have commit access will need to request the addition of a new interface ID mask before developing new interfaces for Hyades-based products.
Context

The context is an arbitrary number assigned by the sender of a command. This context is used to correlate reply messages to the originating message. The usage of this element is unchanged from the previous protocol.
Command Data

The command data is an opaque field for the purposes of command routing. The size and contents of the data are determined by the interface ID and command ID, which determine the precise command to which the data corresponds. The specification for an interface will describe exact details of the command data for each command.
Issue: Expansion of this header

One of the goals of the current protocol design is flexibility for future needs. In the case of the header block, the header ID is intended to provide for future expansion. For instance, if in a future revision we need to add a new field, we would change the header ID and define a new structure which includes the new field. However, Hoang Nguyen has suggested that instead we add a new opaque field to the current definition with a size field and a pointer to a block of data that would be identified as server data. For the current implementation, this field would not be used. In the future it might include such data as routing information for commands sent across multiple servers or security tokens.

Layer Two

Unlike Layer Zero and Layer One, Layer Two is neither monolithic nor homogeneous. Layer two consists of the various components that are the targets of messages, including agents, clients and even an internal component within the HCE itself. Layer One will manage the process of determining the correct mechanism to use when communicating with these various components. However, the Layer Two components themselves make do the actual work for which the Hyades infrastructure was created.
Agent Manager Interface

The Agent Manager interface is a standard interface provided by the HCE that manages access to agents and maintains agent lifecycles. The intent of the Agent Manager interface is to abstract details such as when and how an agent is launched. However, there are cases where agents are loaded by bootstrap mechanisms attached to other processes. In other cases agents may be launched independent of the HCE by an external mechanism. The Agent Manager provides commands to find agents launched in these ways, but the Agent Manager will not attempt to manage the life cycle of such agents. The precise way this is handled is described below.
General Vision

Before going into the details of the interface commands, it is probably worth discussing the general vision for agent management that lies behind these commands.

One of the requirements for this redesign is to support a mechanism whereby clients could discover agents and agent capabilities without actually instantiating the agents. In order to support that requirement, the HCE will need access to a registry of some sort containing metadata for the agents, with a format something like the following:

Agents

org.eclipse.hyades.envinfo

Interfaces

HII_HYADES_AGENT

HII_ENVINFO

Server Data

Single instance = true

Max clients = unlimited

Command = <command to launch agent>

Path = <path to agent>

Options = <command line options>

Client Data

<agent specific metadata goes here>

Interfaces

HII_HYADES_AGENT

org.eclipse.hyades.envinfo

<etc>

HII_ENVINFO

org.eclipse.hyades.envinfo

The Hyades DCE will use the entries under the server data to determine when and how to launch a new instance of an agent to meet requests. When a product is installed, it will add its agents to this registry.

The “Agents” section will contain entries for all available agents. Each agent will have an “Interfaces” subsection which lists all of the interfaces it supports, and a “Server Data” subsection which contains information the Hyades DCE needs to manage the lifecycle of the agent. In addition, the agent could optionally provide a “Client Data” subsection which provides proprietary metadata.

The “Interfaces” section will contain entries for all interfaces supported by any agent. These interfaces will be identified by 32-bit unsigned integers, just as they are in the command header. Under each interface, there will be an entry for every agent that supports that interface.

The HCE will use the information in this registry to provide clients and agents with lists of available.
Reference Counting

The HCE will use a system of reference counting to manage agent lifecycles. In general, the HCE will not create an instance of an agent until it is needed by a client or another agent. When the HCE creates the agent, it gives the client (or agent) that requested use of the agent a reference to the new agent. If the agent supports multiple clients, each subsequent client will also get a reference to the agent, and the HCE will maintain a reference count for the agent.

The HCE supports distinct concepts of having a reference to an agent vs. being attached to an agent. A client (or another agent) may “get” a reference to an agent that it is not actively using. Other clients or agents may reference or attach to this same agent, but as long as the client keeps its reference, the agent will be running. When a client (or agent) is ready to actively use an agent, it should “attach” to the agent. When a client is finished actively using an agent it should “detach” from the agent, and when it is completely finished with the agent, it must “release” its reference to the agent.
Whether or not multiple clients can attach to an agent will vary from one agent to the next, but it is always possible for multiple clients to get a reference to the same agent. When working with an agent that only allows a single client to be attached, a client may wish to attach immediately to claim exclusive use of the agent.

When a client (or agent) releases its reference, the HCE will decrement the reference count. When the reference count for an agent reaches zero, the HCE will shut down that agent.

In the case where the agent is started by some external mechanism, the HCE will count an implicit reference when the agent connects, and the HCE will never attempt to shut it down. The case of an agent that is started in response to the client launching a process fits this category. Because the agent has a reference to itself, the HCE will never attempt to shut down this type of agent.
Finally, there are cases where the HCE itself spawns agents (system agents) when it starts up (depending on how the HCE is configured). In this case, the HCE will hold a reference to the agent and not shut down the agent until the HCE is shutdown.

Commands

The following commands are supported through the Hyades Agent Manager interface (HII_AGENT_MANAGER). Clients and agents use these commands to locate agents, get references to those agents and attach to those agents. More specific interaction with the agents will be managed through interfaces provided by the agents themselves.
Command:

CID_QUERY_AVAILABLE_AGENTS

Data:

	Bytes 0-4
	Number of interface IDs to follow

	Remaining Bytes
	Interface IDs as unsigned 32-bit integers

Response:

CID_AVAILABLE_AGENTS

Response Data:

	Bytes 0-4
	Number of agents found

	Bytes 5-8
	String length of first agent

	Bytes 9-(13+str length)
	Name of first agent

	Remaining bytes
	Additional pairs of the previous two items

Description:

Clients (or agents) may use this command to obtain a list of agent available (either running or not running) through the HCE. The client may specify zero or more interface IDs. If interface IDs are specified, the list returned will be only agents that support all of the specified IDs. If no interface IDs are specified, the list returned will be all available agents. The HCE does not create instances of these agents at this time. It also does not distinguish single-instance, single-client agents that are already in use (and thus are only potentially available). The idea is that clients can use this method to allow the user to select an agent for future use, although the agents listed can generally be used immediately.
Command:

CID_QUERY_RUNNING_AGENTS

Data:

	Bytes 0-4
	Number of interface IDs to follow

	Remaining Bytes
	Interface IDs as unsigned 32-bit integers

Response:

CID_RUNNING_AGENTS

Response Data:

	Bytes 0-4
	Number of agents found

	Remaining Bytes
	Agent IDs as unsigned 32-bit integers

Description:

Clients (or agents) may use this command to request a list of agents that are currently active and running. The list may be filtered by interface IDs as in the previous command. However, unlike the previous command, this command returns a list of identifiers of specific instances of agents. Also, if an instance of an agent cannot be attached to, it will not be returned in this list. This command is expected to be used to access agents for immediate use.
Command:

CID_QUERY_PROCESS_AGENTS

Data:

	Bytes 0-8
	Process ID

	Bytes 9-12
	Number of interface IDs to follow

	Bytes 13-16
	Interface IDs as unsigned 32-bit integers

Response:

CID_PROCESS_AGENTS
Response Data:

	Bytes 0-4
	Number of agents found

	Remaining Bytes
	Agent IDs as unsigned 32-bit integers

Description:

Clients may use this command to request a list of agents that are associated with a particular process. The command behaves exactly like the QUERY_RUNNING_AGENTS command except that it only returns agents that belong to the specified process. Typically, clients will use this command to locate agents that are launched as a side-effect of the client having launched a process using the process controller agent.
Command:

CID_GET_AGENT_METADATA

Data:

	Bytes 0-4
	Length of the agent name to follow

	Bytes 5-(5+str length)
	Name of the agent for which metadata is being requested

Response:

CID_AGENT_METADATA
Response Data:

	Bytes 0-4
	Number of named pairs to follow

	Bytes 5-8
	Length of the value name string to follow

	Bytes 9-(9+str length)
	Value name string

	Next four bytes
	Length of the value string to follow

	Next (str length) bytes
	Value string

	Remaining bytes
	Addition named pairs as above

Description:

This command allows clients to obtain agent-specific metadata. The data returned will be the name-value pairs (in UTF-8 format) of the “Client Data” subsection in the agent registry (see “General Vision” above). If the agent has no such metadata, the response will return zero as the number of name-value pairs, but a response will still be issued.
Command:

CID_GET_AGENT

Data:

	Bytes 0-4
	Length of agent name string to follow

	Bytes 5-(5+str length)
	Agent name string

	Next four bytes
	Flags

Response:

CID_AGENT_REFERENCE
Response Data:

	Bytes 0-4
	Agent ID

Alternate Response:

CID_AGENT_UNAVAILABLE

Alternate Response Data:

	Bytes 0-4
	Reason code

Description:

Clients (or agents) should use this command to obtain a reference to an agent. Unless the client requests otherwise (via the flags field), the HCE may fulfill this request by returning a reference to an already running or by spawning a new instance of the agent. Alternatively, the client may use the flags field to specifically request a new instance. It is possible that the requested agent will not be available when requested. In that case, a different response command will indicate the reason.
Command:

CID_GET_SPECIFIC_AGENT

Data:

	Bytes 0-4
	Agent ID

Response:

CID_AGENT_REFERENCE
Response Data:

	Bytes 0-4
	Agent ID

Alternate Response:

CID_AGENT_UNAVAILABLE

Alternate Response Data:

	Bytes 0-4
	Reason code

Description:

This command allows a client or agent to get a reference to a specific instance of an agent. This command assumes that the component issuing the command has found out about an instance of an agent by some other means. For example, a client may create two agents and then issue a proprietary command to them asking them to work together. In this case, one agent may request a reference to the other agent and the client can release its reference.
Command:

CID_RELEASE_AGENT

Data:

	Bytes 0-4
	Agent ID

Description:

A client (or agent) uses this command to release its reference to an agent that it is no longer interested in working with. The client should not attempt to use the agent after it has made this call as the agent may be shut down. No response will be sent to this command. The client should assume that the release has taken place immediately.
Command:

CID_ATTACH_TO_AGENT

Data:

	Bytes 0-4
	Agent ID

	Bytes 5-8
	Flags

Response:

CID_AGENT_ATTACHED_SUCCESSFUL
Response Data:

No data

Alternate Response:

CID_AGENT_ATTACH_DENIED

Alternate Response Data:

	Bytes 0-4
	Reason code

Description:

This command allows a client (or agent) to request active access to an agent to which it has previously obtained a reference. Depending on the agent implementation or the value of the flags field, this may grant the client exclusive access to the agent until the client detaches from the agent. If another client (or agent) has already obtained exclusive access to the agent, this request may be denied. It is possible for a client to be denied attachment to an agent to which it has a reference, even if it has previously attached and subsequently detached. Clients must attach to an agent before they will be able to send commands to that agent.
Command:

CID_DETACH_FROM_AGENT

Data:

	Bytes 0-4
	Agent ID

Description:

This command allows a client (or agent) to end its active attachment to an agent. No response will be sent to this command.
Revision 0.4

May 28, 2004

