Hyades Data Collection and Communications Protocol Proposal
As of Hyades 3.0, the mechanism by which Hyades clients communicate with data collectors is based on a very simple protocol whereby commands are sent in a simple packet based on a union of data structures that are interpreted and distributed by the Hyades Data Collection Engine.  In order to increase the flexibility and the extensibility of Hyades, as well as to introduce some specific enhancements, we would like to propose the development of a new communications protocol.

The proposed protocol would provide a communications mechanism that is in some way self-describing, allowing for more complex communications between Hyades clients and local or remote components, which may be data collectors but also may be general services or some other type of component.
Although we would like the protocol to be self-describing, it is also very important that the Data Collection engine be kept as lightweight and efficient as possible.  Both execution time and memory footprint are important considerations.  For that reason, we would like to avoid any implementation which would require an extensive XML parsing mechanism to be integral to the Data Collection Engine.  Other mechanisms may be layered on top of this protocol as necessary for specific implementations.
It appears that there is some overlap between this and some design goals for current activity in other areas of the Hyades project. 
As part of this development effort, we would like to add the following capabilities to the Data Collection and Communication subsystem:
Dynamic Discovery of Agent Capabilities
As of 3.0, Hyades allows clients to query for a list of available agents.  However, this list consists solely of agents that are running and have registered with the collection engine.  In order to configure a test, the client system must have specific (hard-coded) knowledge of what agents are needed on a given remote system and how to start them.
We would like to add the ability for agents of various types to be entered into a registry of some sort such that clients would be able to request a list of all available agents on a given system and determine some basic information about the capabilities and requirements of each agent without actually loading the corresponding agent process.

General Service Agents

In the past, some consideration has been given to the concept of general services being made available through the collection engine.  As part of the current proposal, we would like to introduce the concept of “service agents” – agents that exist for the sole purpose of providing services to clients or other agents.  Such service agents may be singletons shared among all requestors on a given host, or they may be multiple instance agents.
In order to provide this capability, it will be necessary to add a mechanism by which agents may discover the availability of other agents and query for capabilities as described above.  It will also be necessary to develop a means of managing the lifetime of these agents.

Agent to Agent Communications

One implication of the service agent capability is that a facility must be added to allow for communications between agents.  At a minimum, it will be necessary for agents on the same machine to be able to communicate, but it may also be desirable to provide the ability for agents to communicate with agents running on a different host.
Although the service agent case provides a clear example of how this capability will be used, the facility should be generic enough to allow communications between agents of any type.

Process Execution Control

One particular class of service agent that we would like to introduce is a process execution control agent.  Such an agent should allow for any executable component to be run, pending security concerns.
While it will be natural to provide a reference implementation of this service to provide general process launching capability, this should be designed as a category of service provider rather than a single instance.  The intention is that for any given data collection scenario the client or a specific agent may request a custom process control agent in order to provide extended capabilities, such as binary instrumentation.

The introduction of a general process execution service has security implications which are addressed below.

Environment Information Collection

Another desirable class of service agent is an agent that provides detailed static information about the system under test.  Such information would include hardware architecture, number of processors, processor speed, total physical memory, operating system type and version, etc.
The interface to the environment information agent would have to be sufficiently flexible to account for various hardware platforms that may each have system-specific information available.

File Transfer

We would like to move the file transfer functionality that is currently being implemented into a general service agent in order to make the facility generic and accessible.  

This service must also be accounted for in any future security implementations.
Version Checking

As part of the new communications protocol, a version checking mechanism should be implemented such that when a connection is established between two components, they can perform some sort of handshake to verify that they are compatible with one another.

Security

As part of the new protocol, we would like to have a security solution that did not require the loading of a Java VM on the server system.  SSL seems to provide an adequate base of security.  It will be necessary to choose or develop a solution that has sufficient tooling available to be practical in commercial distribution.
In order to provide full support for remote process launching and file transfer, the security implementation should include some means for specifying the privilege level of particular services, perhaps varying on a connection basis.

64-bit Operating System Support

The communications protocol that was in use as of Hyades 3.0 was based on a data structure that included a 32-bit process ID variable being passed between server and client for many common commands.  This presented a difficulty in porting the collection engine to 64-bit Linux and Microsoft Windows operating systems.
As part of the current development effort, we would like to introduce support for 64-bit Intel processors.

