Hyades Protocol Layer Zero
Introduction

This document will present details of a proposal for the Layer Zero interface for the new Hyades DCE protocol. The particular details of the proposal will be presented first. Appendices in this document provide use cases and collaboration diagrams that may be useful as background reference material for the design. Data types and transmission specifications are also discussed in an appendix.
Server Layer Zero Interface

The intent of the Layer Zero interface is to provide the base upon which the rest of the Hyades DCE communications will be built. The Layer Zero portion of the Hyades DCE will do nothing more than establish connections and route commands. All higher functions will be built as additions to this base.

Layer Zero will provide socket and named pipe based entry points for connection. It will support the following commands:

Command:

CID_SOCKET_CONNECT

Data:

typedef struct {

 hdc_uint_t objType;

 hdc_string_t objName;

 hdc_uint64_t objID;

} hdc_socket_connect_data;

Description:
This command would be sent to initiate a handshake from any object that was connecting to the server via a socket connection. The objType field in the data block will identify the connection object as a client, an agent or another DCE (or possibly some other type in the future). Initially, only clients are expected to connect in this way, but the protocol should be capable of handling connections from other object types. The objName field will not be used for clients. For agents, this field would give the agent name. The objID field is also not used for clients. For agents this field would give the agent’s process ID (assuming a local agent). For DCEs this field would give the DCE’s server ID.
Command:

CID_PIPE_CONNECT

Data:

typedef struct {

 hdc_uint_t objType;

 hdc_string_t objName;

 hdc_uint64_t objID;

 hdc_string_t returnPipeName;

} hdc_pipe_connect_data;

Description:
This command would be sent to initiate a handshake from any object that was connecting to the server via a named pipe connection. The objType field in the data block will identify the connection object as a client, an agent or another DCE (or possibly some other type in the future). Only agents are expected to connect in this way. The objName field gives the agent name. The objID field gives the agent’s process ID.

Command:

CID_DISCONNECT

Data:

None
Description:
This command will be sent when an object is ready to disconnect from the DCE. The DCE will notify any objects that are associated with the object being disconnected and free any associated resources.
In addition, Layer Zero will send the following responses to the above commands

Command:

CID_CONNECT_COMPLETE
Data:

typedef struct {

 hdc_uint_t connectionID;

 hdc_uint_64 serverID;

} hdc_socket_connect_data;

Description:
This command will be sent in reply to either CID_SOCKET_CONNECT or CID_PIPE_CONNECT. The connection ID is a value that the DCE to which a connection has been made will use to identify the object that is receiving the command. The server ID is a value that the DCE itself generates as a unique identification. The object receiving this command will use these two values in the replyToID and replyToServerID fields for any commands it sends after receiving this message.
Command:

CID_DISCONNECT_ACK

Data:

None

Description:
This command will be sent in reply to the CID_DISCONNECT command. The connection will be terminated after this command is sent.
Issue: Named Pipe Authentication

Security and authentication for socket-based connections will be handled using SSL. However, we have no mechanism for authenticating named pipe-based connections. Because agents will be able to access the process launching service, we will need some way of determining the user privileges that should be assigned to that agent. Is it sufficient to use the security attributes of the process associated with this agent?
Command Block
The following header information will be attached to all commands:

typedef struct {

 hdc_uint_t commandBlockSize;
 hdc_uint_t headerId;
 hdc_uint_t targetId;
 hdc_uint64_t targetServerId;
 hdc_uint_t replyToId;
 hdc_uint64_t replyToServerId;
 hdc_uint_t interfaceId;
 hdc_uint_t commandId;
 hdc_uint_t context;
 hdc_uint_t dataSize;
 hdc_void_t* data;
} hdc_command_t;
Command Block Size and Header ID
The header block begins with a value indicating the size of the entire command block. This will be computed as the size, in bytes of the standard header block entries (through dataSize [= 44]) plus the size of the data. This is the size of the block as transmitted, not the size of the data structure into which it is read.
The header ID is an arbitrary value which the server will use to verify that the header is in the expected format. In the future, the server will also use this value to identify new structures, as required. See below for more discussion of future changes to the command block.
Target, Server and Reply IDs
The target ID and target server ID together form a unique identifier. The target ID alone is not intended to be globally unique, but is only unique with a single instance of the server. However, the server ID is intended to be globally unique. Therefore the two together form a globally unique pair. The same is true of the “reply to” ID and the “reply to” server ID. In this context, “server” is meant to refer to an instance of the Hyades Data Collection Engine.
The target ID and target server ID together specify the object that is the intended recipient of the command. This may be a static ID that identifies the DCE itself (HYADES_SERVER_ID) or it may be the ID that the server assigned to a client or agent when that object connected to the server (see CID_CONNECT_COMPLETE above).

The server ID is generated by the instance of the DCE itself. The server ID is a 64-bit value. The upper 32-bits are derived from the server host machine’s IP address. The lower 16-bits are the port by which the server is accessed. The remaining 16 bits are reserved for future use. Important: Although other components will have the above information, all components other than the DCE itself should treat the server ID as an opaque value. It is subject to change as needed, and it not intended as a means of communicating IP address and port information.
The “reply to” ID and the “reply to” server ID together specify the object that is sending the command. When the target object replies to a command, it will move the “reply to” ID and “reply to” server ID to the target ID and target server ID.

There may be some inherent confusion involved when the DCE itself is sending a command (or reply) to a client which is located on a different computer. Following the description above, the target ID will be the value that the DCE uses to identify the client, and the server ID will be the ID of the DCE itself (that is, the ID of the server to which the client is attached). Even in this case, the target server ID has nothing to do with the computer on which the client is running. This may be better understood from the perspective of an agent (which has no knowledge of the client locale) sending a command to a client through the DCE.
The current design is intended only to support routing of commands to objects which are directly connected to the DCE processing the command. The DCE will use the server ID value only to verify that the command was intended for one of its clients or agents. In the future, it will be desirable to be able to route a command across multiple DCEs. This will probably require an expansion of the command block.
Interface and Command IDs
The interface ID and command ID together uniquely identify the command that is being sent. The interface ID tells the object receiving the command what the command ID means. If the interface is not supported by the object, the command will be rejected.
In order to obtain a unique ID for interfaces, the interface ID will be created by combining a 16-bit company/developer mask with a 16-bit company-/developer-specific interface identifier. The developer mask will be stored in a common header file which will be part of the public Hyades source code. The developer-specific interface identifier will be defined at the discretion of the developer.
For instance, the public file (“HIIMasks.h”) may contain the following entries:

#define HII_ECLIPSE_HYADES_MASK 0x010000

#define HII_IBM_WEBSPHERE_MASK 0x020000

#define HII_IBM_RATIONAL_MASK 0x030000

#define HII_SCAPA_MASK 0x040000

#define HII_INTEL_VPE_MASK 0x050000

Then a proprietary source file may define its interfaces as follows:

#define HII_VTCOLLECTOR HII_INTEL_VPE_MASK | 0x0001
#define HII_VTSAMPLING HII_INTEL_VPE_MASK | 0x0002

Additions to the public interface ID mask list will be managed in the same way as other contributions to the Hyades source. Developers who do not have commit access will need to request the addition of a new interface ID mask before developing new interfaces for Hyades-based products.
Context

The context is an arbitrary number assigned by the sender of a command. This context is used to correlate reply messages to the originating message. The usage of this element is unchanged from the previous protocol.
Command Data
The command data is an opaque field for the purposes of command routing. The size and contents of the data are determined by the interface ID and command ID, which determine the precise command to which the data corresponds. The specification for an interface will describe exact details of the command data for each command.
Issue: Expansion of this header

One of the goals of the current protocol design is flexibility for future needs. In the case of the header block, the header ID is intended to provide for future expansion. For instance, if in a future revision we need to add a new field, we would change the header ID and define a new structure which includes the new field. However, Hoang Nguyen has suggested that instead we add a new opaque field to the current definition with a size field and a pointer to a block of data that would be identified as server data. For the current implementation, this field would not be used. In the future it might include such data as routing information for commands sent across multiple servers or security tokens.
Message Block

A client may wish to send message blocks containing more than one command. To allow for this, all messages (including those containing only a single command) will use a message envelope defined as follows:

typedef struct _hdc_command_entry_node {

hdc_command_t *command;

struct _hdc_command_entry_node *next;

struct _hdc_command_entry_node *previous;
}hdc_command_list_node_t;

typedef struct {

hdc_command_list_node_t *head;

hdc_command_list_node_t *tail;

hdc_uint_t count;
}hdc_command_list_t;

typedef struct {

hdc_uint_t type;

hdc_uint_t ticket;

hdc_uint_t length;

hdc_string_t key;

hdc_command_list_t commands;
}hdc_message_t;
When a message is transmitted across a connection, the multiple commands will simply be written sequentially following the message header. The DCE will assemble these commands into the above structures as they are received.

Typical Command Sequence

A typical session will begin with a client that is not yet connected to a DCE. The client will open a socket connection to the DCE and send the following command:
	Field
	Value

	commandBlockSize
	60

	headerID
	HDC_HEADER_0

	targetID
	HDC_SERVER

	targetServerID
	0

	replyToID
	0

	replyToServerID
	0

	interfaceID
	HII_SERVER_BASE

	commandID
	CID_SOCKET_CONNECT

	context
	0

	dataSize
	12

	data
	{ HDC_CLIENT, NULL, 0 }

The constants used for this command will all be pre-defined in a general public header file. The client does not yet know its own ID or the server ID for either itself or the target (the DCE itself) so it specifies zero for these values. This will only be allowed for the connection commands and for broadcast commands (events).
In response to this command, the server will send the following reply:

	Field
	Value

	commandBlockSize
	56

	headerID
	HDC_HEADER_0

	targetID
	<connectionID>

	targetServerID
	<serverID>

	replyToID
	HDC_SERVER

	replyToServerID
	<serverID>

	interfaceID
	HII_SERVER_BASE

	commandID
	CID_CONNECT_COMPLETE

	context
	0

	dataSize
	8

	data
	{ <connectionID>, <serverID> }

The client will store its connection ID and the associated server ID for use with future commands. Now to get a list of available agents (using an interface not yet specified as of the writing of this document), the client would send a command something like this:

	Field
	Value

	commandBlockSize
	60

	headerID
	HDC_HEADER_0

	targetID
	HDC_SERVER

	targetServerID
	<serverID>

	replyToID
	<connectionID>

	replyToServerID
	<serverID>

	interfaceID
	HII_AGENTMGR

	commandID
	CID_LIST_AVAILABLE_AGENTS

	context
	1

	dataSize
	8

	data
	{ 1, HII_VTSAMPLING }

This command requests all agents that support the HII_VTSAMPLING interface (a proprietary interface known to the requestor). The server would assemble this list and send a reply something like this:

	Field
	Value

	commandBlockSize
	48 + dataSize

	headerID
	HDC_HEADER_0

	targetID
	<connectionID>

	targetServerID
	<serverID>

	replyToID
	HDC_SERVER

	replyToServerID
	<serverID>

	interfaceID
	HII_AGENTMGR

	commandID
	CID_AVAILABLE_AGENTS

	context
	1

	dataSize
	8+strlen(<agentName>)

	data
	{ 1, <agentName> }

Appendix A – Data Types and Representations
The following table describes what the data types used above:
	Type
	Meaning

	hdc_uint_t
	32-bit unsigned integer

	hdc_uint64_t
	64-bit unsigned integer

	hdc_string_t
	TBD (UTF-based)

	hdc_void_t *
	void *

Issue: Byte Ordering

Among the platforms that will be supported by the Hyades DCE, some use Big Endian byte ordering and some use Little Endian. There will be situations in which communication occurs between machines of different types and other situations where both machines use the same byte-ordering convention. Clients written in Java will naturally tend to Big Endian byte ordering. However, there may be a need to support clients written in C++ on Little Endian platforms.
For small amounts of data, converting the byte order on the fly is a simple task with negligible impact. However, when large amounts of data are being transferred between machines with like byte ordering, we would like to avoid reordering the bytes at both ends of the conversation.

For standard interface, it will be convenient to standardize on a single byte ordering format. Programs which require transfer of large amounts of data can implement their own proprietary interface to negotiate byte ordering, but this seems likely to be a common enough situation that it would be preferable to provide a standardized solution.
Appendix B – Use Cases
The following use case diagrams were used in thinking through the design above. They are included as a starting point for future discussions. Descriptions will be added as needed.
[image: image1.wmf]Manage Agents

Manage Connections

Route

Commands/Events

Client

Agent

Service

Establish Data

Channel

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

DCE

«uses»

«uses»

«uses»

«uses»

DCE

Hyades Protocol Use Cases

[image: image2.wmf]Disconnect from DCE

Connect to DCE

Suspend Connection

Client

Agent

Service

Ping

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

DCE

«uses»

«uses»

«uses»

«uses»

DCE

Resume Connection

Suspend Activity

Resume Activity

«uses»

«uses»

«uses»

Manage Connection Use Cases

[image: image3.wmf]Get Agent

List Available

Agents

Configure Agent

Client

Agent

Service

Get Service

«uses»

«uses»

«uses»

DCE

«uses»

«uses»

«uses»

DCE

«uses»

«uses»

«uses»

«uses»

Manage Agents Use Cases

[image: image4.wmf]Broadcast Event

Send Command

Route Command

Client

Agent

Service

«uses»

«uses»

«uses»

«uses»

DCE

«uses»

«uses»

DCE

«uses»

Route Commands Use Cases

Appendix C – Collaboration Diagrams

The following collaboration diagrams were used in thinking through the design above. They are included for reference only. Descriptions can be added if needed.
[image: image5.wmf]Client

Server Base

1: Open socket

2: accept

3: CID_SOCKET_CONNECT(clientFlag, null)

6: CID_CONNECT_COMPLETE(connectionID, serverID)

2: The DCE stores the client socket in a

 an array of connections and assign it

 a unique ID.

[image: image6.wmf]Agent

Server Base

1: Open named pipe

2: CID_PIPE_CONNECT(agentFlag, agentPipeName, agentName, processID)

3: Open named pipe

4: CID_CONNECT_COMPLETE(connectionID, serverID)

2: The DCE stores the agent info

 in an array of connections and

 assigns a unique ID.

[image: image7.wmf]Client/Agent

Server Base

1: CID_DISCONNECT

2: CID_DISCONNECT_ACKNOWLEDGED

Appendix D – Acronyms
The following table indicates what various acronyms and prefixes used in this document are intended to mean:

	Acronym
	Meaning

	CID
	Command ID

	HII
	Hyades Interface ID

	hdc
	Hyades Data Collection

