Notes by markus.sabadello@gmail.com…
IdAS general thoughts
The IdAS (Identity Attribute Service) is a central component of Higgins. It is responsible for abstracting identity sources.
IdAS users can pass a ContextId to IdAS, which then chooses a Context Provider suitable for the ContextId. The Context Provider contains one or more Context Factories, which are able to open a Context for the given ContextId.

. Contexts, the Digital Subjects they contain, the Identity Attributes each Digital Subject has, etc. are all described by the Higgins data model.
The IdAS user can ultimately retrieve/modify Context, Digital Subjects and Identity Attribute objects without the need to know any details about the underlying data source, data access protocols to backing stores (SQL, LDAP, …) if any, etc.
A fundamental building block of IdAS is the Context Provider Registry
, whose job is it to find an appropriate Context Provider for a given ContextId.
XRI use in IdAS

XRI can be useful in IdAS for three purposes:

1) At present ContextIds MUST be XRIs [as per the F2F we’ll add parallel support for WS-Addressing later] that are resolved to an XRDS file, or will in any other way be able to provide such a file.
2) The Context Provider Registry will also be implemented using XRI resolution. An XRDS file will provide the necessary information for looking up suitable Context Providers.

3) Eventually, it should also be possible to look at a given i-name and automatically create i-cards from it.
1) XRI use for ContextIds

The requirement for a ContextId is to provide enough information to be able to instantiate
a Context. To achieve this, a suitable Context Factory needs to be found. To find a suitable Context Factory and open a Context, the following information is needed:

· Required: A type that identifies the data access
protocol (OpenID, LDAP, …)

· Optional: Configuration parameters for the Context

This information can be put into an XRDS file. If the ContextId is an XRI, it can simply be resolved to an XRDS containing the required information.
Example: The ContextId =peacekeeper/(+openid) could resolve to the following XRDS. Service endpoints selection is activated, with Service Type NULL and Media Type NULL.
<XRDS xmlns="xri://$xrds">

 <XRD xmlns="xri://$xrd*($v*2.0)">
 <Query>*peacekeeper</Query>
 <Status code="100"/>

 <Expires>2007-05-07T18:32:16.000Z</Expires>

 <ProviderID>xri://=</ProviderID>

 <LocalID priority="10">!D720.D50C.2B18.AD60</LocalID>

 <CanonicalID priority="10">=!D720.D50C.2B18.AD60</CanonicalID>

 <Service priority="10">

 <Path select="true">(+openid)</Path>

 <URI append="none" priority="1">https://authn.freexri.com/</URI>

 <URI append="none" priority="2">http://authn.freexri.com/</URI>

 <Type select="true">http://openid.net/signon/1.0</Type>

 </Service>

 </XRD>

</XRDS>
The <Path> (highlighted in blue) is used during Service Endpoint Selection to fully resolve the ContextId. The <Type> is the information IdAS needs to be able to look up a suitable Context Provider in the Context provider Registry. The SEP may and in most cases will contain further configuration information for opening a Context. For example, to open an OpenID Context, the URL of an OpenID endpoint is required.
Ideas here:

· This is easy with the OpenXRI client and syntax packages.

· Resolution should probably be performed via a proxy, instead of doing it directly.

· Think about what to do if the SEP has multiple <Type> elements, which is perfectly legal in XRDS documents, however not very likely.

2) XRI use for the Context Provider Registry

The Context Provider Registry’s job is to find a Context Factory that can handle the <Type> that was successfully found from a ContextId’s SEP. The Context Provider Registry itself also uses XRDS. To look up a suitable Context Factory, the following information is needed:
· Required: A class name of a ContextFactory

· Optional: Configuration parameters for the Context Factory

This information can be put into an XRDS file. Using the <Type> found from a ContextId and an XRI referencing a Context Provider Registry, XRI resolution can be performed and the required information can be found.

Example: The XRI @registry*(http://openid.net/signon/1.0) could resolve to the following XRDS. Service endpoint selection is activated, with Service Type NULL and Media Type NULL.

<XRDS xmlns="xri://$xrds">

 <XRD xmlns="xri://$xrd*($v*2.0)">
 <Query>*(http://openid.net/signon/1.0</Query>

 <Status code="100"/>

 <Expires>2007-05-07T18:32:16.000Z</Expires>

 <ProviderID>xri://@registry</ProviderID>

 <LocalID priority="10">!123</LocalID>

 <CanonicalID priority="10">@!7F6F.F50.A4E4.1133!123</CanonicalID>

 <Service priority="10" xmlns:h="..namespace of higgins..">

 <h:factory>
 <h:class>org.eclipse.higgins.idas.cp.openid</h:class>

 <h:param key=".." value=".." />

 </h:factory>
 </Service>

 </XRD>

</XRDS>

The information highlighted in pink can be used to construct a Context Factory, which will open a Context.

Idea here: Use the OpenXRI authority server to host the Context Provider Registry. This would have the advantages that

1) A programmatic interface for modifying its contents would immediately be available.

2) We are planning to create a HTML-based for OpenXRI server; this can then also be immediately used for accessing the Context Provider Registry.

3) With external <Ref>erences in the XRDS a cascading behavior of the Registry would immediately be possible if no match is found. I.e. the local registry has a <Ref> to a registry on the LAN, which in turn has a <Ref> to a global registry.
3) Creating ContextIds from an i-name [not urgent]
It is possible to automatically create ContextIds from an i-name. This is done by resolving the i-name without Service Endpoint Selection and looking at each Service Endpoint. For each Service Endpoint with a <Type> element for which a suitable Context Provider exists, a ContextId can be derived. This is the i-name plus the contents of the <Path> element.
For example, given the i-name =peacekeeper, the ContextId =peacekeeper/(+openid) can be derived, if the XRDS contains a Service Endpoint as in 1).

This ContextId can later be used to open as Context, as described in 1).

Ideas here:

· This is easy with the OpenXRI client and syntax packages.

· Resolution should probably performed via a proxy, instead of doing it directly.

· Think about what happens if the XRDS changes between creation of the ContextIds and their later resolution.
· Think about what to do if multiple SEPs have same <Path> elements, which is perfectly legal in an XRDS.
�At the F2F we began to think of the IdAS CP Registry as more properly spread between the newly created Configuration and Discover Components.

�As above, this is bigger than just IdAS now. We’re thinking XRDSs can help find other stuff too.

�Opening is a second step to authenticate to it.

�This is broader than specialized identity protocols. SQL or direct read/write of RDF could also be supported.

