
Henshin: Advanced Concepts and Tools for
In-Place EMF Model Transformations

Thorsten Arendt1, Enrico Biermann2, Stefan Jurack1,
Christian Krause3?, Gabriele Taentzer1

1 Philipps-Universität Marburg, Germany
{arendt,sjurack,taentzer}@mathematik.uni-marburg.de

2 Technische Universität Berlin, Germany
enrico@cs.tu-berlin.de

3 CWI Amsterdam, The Netherlands
c.krause@cwi.nl

Abstract. The Eclipse Modeling Framework (EMF) provides model-
ing and code generation facilities for Java applications based on struc-
tured data models. Henshin is a new language and associated tool set
for in-place transformations of EMF models. The Henshin transforma-
tion language uses pattern-based rules on the lowest level, which can be
structured into nested transformation units with well-defined operational
semantics. So-called amalgamation units are a special type of transfor-
mation units that provide a forall-operator for pattern replacement. For
all of these concepts, Henshin offers a visual syntax, sophisticated editing
functionalities, execution and analysis tools. The Henshin transformation
language has its roots in attributed graph transformations, which offer
a formal foundation for validation of EMF model transformations. The
transformation concepts are demonstrated using two case studies: EMF
model refactoring and meta-model evolution.

1 Introduction

Model-driven software development (MDD) is considered as a promising para-
digm in software engineering. Models are ideal means for abstraction and enable
developers to master the increasing complexity of software systems.

In model-driven development, the transformation of models belongs to the
essential activities. Since models become the central artifacts in MDD, they are
subject to direct model modifications, translated to intermediate models, and
finally code is generated. While direct model modifications are usually performed
in-place, i.e. directly on the model without creating copies, model translations
usually keep source models untouched and produce new models or code. These
transformations are called out-place.

Another crucial concept for MDD are domain-specific modeling languages
which allow the definition of models on an adequate abstraction level with all

? Supported by the NWO GLANCE project WoMaLaPaDiA.



2 Arendt, Biermann, Jurack, Krause, Taentzer

information needed to generate the right models or code. A promising approach
to define domain-specific modeling languages is the Eclipse Modeling Framework
(EMF) [1,2] which has evolved to a well-known and widely used technology. EMF
provides modeling and code generation capabilities based on so-called structural
data models. As they describe structural aspects only, they are mainly used to
specify domain-specific languages. EMF complies with Essential MOF (EMOF)
as part of OMG’s Meta Object Facility (MOF) 2.0 specification [3].

For various kinds of EMF model modifications such as refactorings, introduc-
tion of design patterns and other modeling patterns, we need a powerful in-place
transformation approach, operating directly on EMF models. There are several
in-place model transformations approaches which can transform EMF models
directly, e.g. Kermeta [4], EWL [5], EMF Tiger [6], and Moment2 [7]. The cor-
responding transformation languages are either rather simple or in case the of
Kermeta, not declarative enough to offer the opportunity for formal reasoning
on model transformations.

To fill this gap, we have developed the transformation language and tool en-
vironment Henshin, operating directly on EMF models. Henshin is a successor
of EMF Tiger in the sense that it is also based on graph transformation concepts
but extends the transformation language of EMF Tiger considerably. Henshin
comes along with a powerful, yet declarative model transformation language,
offering the possibility for formal reasoning. Its basic concept of transformation
rules is enriched by powerful application conditions and flexible attribute com-
putations based on Java or JavaScript. Furthermore, it provides the concept of
transformation units defining control structures for rule applications in a mod-
ular way. A special kind of transformation unit are amalgamation units which
offer a forall-operator for applying transformation rules in parallel. For further
flexibility, special units for code execution can be added.

The Henshin tool environment consists primarily of a fast transformation
engine, several editors, and a state space generator to support reasoning by model
checking based on state space generation from transformation systems, useful for
model checking transformations. Since these transformation concepts are close
to graph transformation concepts, it is possible to translate the rules to AGG
[8], a tool environment for algebraic graph transformation where they might be
further analyzed concerning conflicts and dependencies of rule applications as
well as their termination.

Two example applications of Henshin are considered: (1) refactoring of EMF
models [9], more precisely refactoring Pull Up Attribute and (2) a simple form
of meta-model evolution [10] where two evolution steps of a Petri net model are
reflected on instance models being concrete Petri nets in abstract syntax.

The paper is organized as follows: Section 2 introduces the Henshin transfor-
mation language and describes its most important concepts. In Section 3 and 4,
we present two case studies on refactoring and meta-model evolution. The Hen-
shin tool environment is presented in Section 5. A discussion of related work can
be found in Section 6 and concluding remarks in Section 7.



Henshin: In-Place EMF Model Transformations 3

2 The Henshin transformation meta-model

In the following, we describe informally our transformation language using the
Henshin transformation meta-model, which is also an EMF meta-model and
moreover uses the Ecore meta-model for typing purposes. The Henshin trans-
formation language is based on graph transformation concepts [11,12,13] and
therefore offers a visual syntax and means for formal reasoning about transfor-
mations.

Fig. 1. Rules with application conditions

2.1 Rules and matching

A transformation rule consists of left and right-hand side graphs (respectively
LHS and RHS) which describe model patterns by their underlying (graph) struc-
ture (cf. Fig. 1). Furthermore, attribute conditions can be defined for rules. Nodes
refer to objects while edges refer to references between objects. Nodes, edges and
attributes refer to EClass, EReference, and EAttribute via references called type
(not shown in Fig. 1) which are classes of the Ecore meta-model. These type ref-
erences are used as an explicit typing, e.g. a node connected to a certain EClass
will will match only to objects of this type. Mappings between LHS and RHS
can be defined between nodes. Since EMF models cannot contain parallel edges
of the same type between the same nodes, edge mappings are implicitly given
if both, their source and target nodes are mapped. For clarity, we omit the ex-
plicit notation of multiplicities in all figures. As a general guideline, all reference
types using names in plural have 0..* multiplicity. All others have upper bound
1. Note that we concentrate on the structure of the transformation meta-model
and neglect the properties of model elements such as their names.

Rules can be applied to a construct called EmfGraph that serves as an aggre-
gation of EObjects. Only the EObjects within an EmfGraph will be considered for
matching. Therefore, deleting EObjects removes them from the underlying Em-
fGraph representation only. The EObject might still be used in another context
but it is no longer visible for further rule applications.



4 Arendt, Biermann, Jurack, Krause, Taentzer

2.2 Application conditions

To conveniently determine where a specified rule should be applied, application
conditions can be defined. An important subset of application conditions are
negative application conditions (NACs) which specify the non-existence of model
patterns in certain contexts.

Application conditions allow the definition of first order logical formulas over
graph conditions, being atomic conditions that enforce the existence or non-
existence of model patterns, as well as further conditions over conditions (nest-
ing). Statements like ”a node must have an incoming edge or an outgoing edge”
or ”a node that is connected to this node may not have a looping edge” can be
easily expressed.

In the Henshin transformation model, shown in Fig. 1, Graphs can be an-
notated with application conditions using a Formula. This formula is either a
logical expression or an application condition which is an extension of the orig-
inal graph structure by additional nodes and edges. A rule can be applied to a
host graph only if all application conditions are fullfilled.

2.3 Transformation units

To control the order of rule applications, it is possible to define control structures
over rules called TransformationUnits. The most basic transformation unit is a
rule itself which corresponds to a single application of that rule. All available
transformation units are depicted in Fig. 2. For example, there are constructs for
non-deterministic rule choices (IndependentUnit) and rule priority (PriorityU-
nit). Except for Rules and AmalgamationUnits, transformation units can have
one or more subunits which are executed according to the semantics of its parent
unit. For instance, subunits of an IndependentUnit will be executed in random
order.

Fig. 2. Transformation units and parameters



Henshin: In-Place EMF Model Transformations 5

Furthermore, it is possible to pass objects and values from one unit to another
one via parameters. In this way, the object flow between different rules and
units can be controlled and complex transformations can be parameterized. Each
transformation unit can have an arbitrary number of Parameters which can
either refer to a specific EObject or contain a specific value. ParameterMappings
define how parameters of transformation units are passed to their subunits.

Applicability A unit is applicable if it can be successfully executed. Appli-
cability is defined differently for different transformation units. For example,
PriorityUnits or IndependentUnits are always applicable while a SequentialUnit
is applicable only if all of its subunits are applicable in the given order.

Termination A unit terminates if it is successfully executed or if no rule was ap-
plied in the context of that unit. ConditionalUnits or SequentialUnits terminate
if their subunits terminate. However, subunits of PriorityUnits and Independen-
tUnits may be applied repeatedly. This can easily result in infinite loops when
nesting units of those kinds. IndependentUnits and PriorityUnits terminate if
their subunits do not contain any applicable rule.

2.4 Amalgamation

A special kind of transformation units are AmalgamationUnits which are useful
to specify forall operations on recurring model patterns. An amalgamation unit
contains an interaction scheme consisting of one Rule which acts as a kernel rule
and multiple rules which act as multi rules. The embedding of a kernel rule into
a multi rule are defined by Mappings between nodes of the LHS of the kernel and
the multi rule. The semantics of such an interaction scheme is that the kernel
rule is matched exactly once. This match is used as a common partial match for
each multi rule which are matched as often as possible. The effect is that the
modification defined in the kernel rule is applied only once while modifications
defined in the multi rules are applied a certain number of times depending on
the number of matches. For a detailed presentation of amalgamation concepts,
see [12]. An amalgamation unit is applicable if its kernel rule is applicable. It
terminates after one application.

2.5 Relation to algebraic graph transformation

The presented language concepts of Henshin have their origin in algebraic graph
transformation [11]. This concerns the syntactical structure of rules and transfor-
mation units as well as their semantics wrt. EMFGraphs. While an EMFGraph
corresponds to a typed, attributed graphs, the given EMF model represents the
type graph. Nodes and edges in rules are related to EObjects and EReferences
which are typed over the same given EMF model. Formulas relate to graph
conditions [11] over typed, attributed graphs. The amalgamation concept is for-
mulated for typed graphs with node type inheritance and containment in [12].



6 Arendt, Biermann, Jurack, Krause, Taentzer

Finally, transformation units are defined in [13] using an approach-independent
form. However, parameters have not been considered yet in the formal setting,
but will be in future work.

To summarize, our general aim is to give a formal semantics to the full
transformation language as solid basis for further validations. A large foundation
is already available and will be completed in the near future.

3 EMF model refactoring

In this section we present an example refactoring for EMF based models [1] using
the advanced concepts of Henshin.

3.1 DSL SimplifiedClassModel (SCM)

Figure 3 shows the meta-model of DSL SimplifiedClassModel (SCM) for mod-
eling simplified class diagrams being useful in an early stage of the software
development process to formulate analysis models. SCM can be considered as
simplification of the UML superstructure [14]. Meta-attributes and references
name, qualifiedName, visibility, and redefinedAttribute, as well as well-formedness
rules correspond to those known from UML and are not explained in detail here.

Fig. 3. DSL SimplifiedClassModel (SCM) - meta-model

3.2 Model refactoring Pull Up Attribute

SCM refactoring Pull Up Attribute moves a common attribute from all direct
subclasses of a given class to this class. The name of the attribute to be moved is
given by parameter attributename while parameter superclassname specifies
the qualified name of the class the attribute has to be pulled up to. In order to
apply Pull Up Attribute, the following preconditions (PC) have to be checked:



Henshin: In-Place EMF Model Transformations 7

– The class with qualified name superclassname does not already have an
attribute named attributename (PC1).

– For each direct subclass of the class with qualified name superclassname:
• There is an attribute named attributename (PC2).
• Visibility (PC3) and type (PC4) of the attribute named attributename

are the same.
• If the attribute named attributename redefines another attribute each

attribute named attributename in each other subclass of the class with
qualified name superclassname has to redefine the same attribute (PC5).
Furthermore, the redefined attribute must have visibility private, i.e. it
must not be visible in class with qualified name superclassname (PC6).

If each precondition is fulfilled, the class with qualified name superclassname
gets a new attribute named attributename. Corresponding attributes are re-
moved from all subclasses. The new attribute gets the same visibility as before,
except that visibility private has to be set to protected since a subclass must
have access to the new attribute as well. Moreover, already redefined attributes
have to be referenced by the new attribute.

3.3 Implementation using Henshin

The Henshin implementation of Pull Up Attribute uses a SequentialUnit which
in turn uses three IndependentUnits as subunits. The first IndependentUnit is
responsible for preconditions checking and contains six rules. Each rule is speci-
fied in a way that the class with qualified name superclassname gets a comment
’ERROR’ if a certain precondition is violated.

PUAExecuteRule

<<preserve>>
:Class

qualifiedName=superclassname

<<preserve>>
:Generalization

<<preserve>>
:Generalization

<<preserve>>
:Class

<<preserve>>
:Class

<<delete>>
:Attribute

name=attributename

<<preserve>>
:Attribute

name=attributename
visibility=vis -> getVisibility(vis)

<<forbid:0>>
:Attribute

name=attributename

<<forbid:1>>
:Comment

body="ERROR"

generalization <<preserve>>general
<<preserve>>

generalization
<<preserve>>

ownedAttribute

<<create>>

comment

<<forbid:1>>

ownedAttribute <<delete>>

ownedAttribute

<<forbid:0>>

general

<<preserve>>

ownedAttribute

<<delete>>

general

<<preserve>>

general
<<preserve>>

generalization <<preserve>>

generalization
<<preserve>>

ownedAttribute

<<delete>>

ownedAttribute <<delete>>
ownedAttribute

<<create>>

ownedAttribute

<<forbid:0>>

comment

<<forbid:1>>

Fig. 4. Rule PullUpAttributeRule

The second IndependentUnit performs the transformation using an Amal-
gamationUnit. Figure 4 shows two rules (the kernel and a multi rule) of the
AmalgamationUnit as well as their LHS, RHS, and two NACs in an integrated



8 Arendt, Biermann, Jurack, Krause, Taentzer

view. LHS objects (nodes and edges) can be identified by tags 〈〈preserve〉〉 or
〈〈delete〉〉, objects tagged by 〈〈preserve〉〉 or 〈〈create〉〉 form the RHS of the rule.
Kernel rule nodes are bordered by a single line, whereas the multi rule con-
tains all those of the kernel rule and those objects bordered by two lines. They
represent so-called multi-objects.

The kernel rule moves the attribute from a class to its superclass. In its LHS
we are looking for an attribute named attributename contained in a subclass
of the class with qualified name superclassname. A condition on attribute visi-
bility changes its value to protected only if its previous value was private. This is
done by invoking Java method getVisibility() where the previous visibility
is given by variable vis. There are two NACs which have to be checked before
executing the specified transformation (〈〈forbid : 0〉〉 and 〈〈forbid : 1〉〉). The first
NAC checks whether the superclass has not been annotated by comment ’ER-
ROR’, whereas the second one checks whether the superclass does not already
own an attribute named attributename. After rule application the class with
qualified name superclassname owns the attribute named attributename.

The multi rule deletes the corresponding attribute from each further subclass.
Its LHS corresponds to the kernel rule LHS enriched by a sub-pattern for possibly
other subclasses of the class with qualified name superclassname that own
an attribute named attributename. This additional pattern is matched into
the model graph as often as different further subclasses exist. According to the
〈〈delete〉〉 tagged multi-object the corresponding attribute will be removed from
each further subclass.

The third IndependentUnit consists of one single rule that removes comment
’ERROR’ possibly inserted before. Each part of the refactoring (checking, per-
forming, and cleaning) has to be encapsulated by an IndependentUnit in order to
assure a successful execution of Pull Up Attribute, i.e. the target model is valid
either if the refactoring has been actually performed or not because of violated
conditions. Please note that the complete specification of Pull Up Attribute can
be found at [15].

4 Towards meta-model evolution

In model-driven and model-based development models are the key artifacts. As it
is quite natural that models evolve over time the compliance of existing instances
with such meta-models needs to be obtained. Not all modifications of a meta-
model lead to invalidity. In [10], Cicchetti et al. propose three categories of model
changes: Not breaking changes occur without breaking model instances, breaking
and resolvable changes break the instances but can be resolved by automatic
means and furthermore, breaking and unresolvable changes are those which do
break the instances and which cannot be resolved automatically.

In our case study below, we follow the manual specification approach, i.e. we
encode meta-model and instance model changes manually since currently there
does not exist a meta-model evolution framework based on Henshin. Neverthe-



Henshin: In-Place EMF Model Transformations 9

less, we give a practical idea how (semi-) automatic meta-model evolution can
be realized with Henshin leading to an operator-based co-evolution approach.

Henshin is able to handle any Ecore-based model, thus we can create trans-
formation rules for both, meta-models and its instances. In general, meta-models
may occur in form of an Eclipse plug-in with generated model classes or stan-
dalone as .ecore file. The latter is more flexible and since Henshin supports Dy-
namic EMF, we use such Ecore files in our approach. In the following case study,
the control flow is currently implemented in form of a simple Java class which
loads related models and transformation rules and which triggers the transfor-
mation performed by the Henshin interpreter. This implementation as well as
corresponding models and rules are part of our Henshin examples plug-in [16].

Our case study is dealing with the evolution of a Petri net meta-model.
Figure 5 shows a simple Petri net meta-model on the left while an evolved one
is shown on the right. A simple Petri net contains Places and Transitions
which can be interconnected by dedicated references. Net serves as root node.
The enhanced meta-model provides further nodes, ArcPT and ArcTP, serving
as connection entries between Places and Transitions or Transitions and
Places, respectively. Since ArcPT and ArcTP inherit from abstract Arc, it can be
used to specify a weight. Complying Petri net instances can be deduced easily
and are not shown due to space constraints.

Place
name : EString

Transition
name : EString

Net

places
0..*

transitions
0..*

src

0..*dst

1..*

dst 0..*src1..*

Net

Place
name : EString

Transition
name : EString

Arc
weight : EInt

ArcPT

ArcTP

places0..* transitions 0..*

out 0..*

in
0..*

in1..*

out
1..*src 1 trg 1src 1trg1

Fig. 5. Evolving Petri net meta-models. The original model is shown on the left
while the evolved model is shown on the right.

In order to perform an evolution as shown in Fig. 5, the utilization of a set
of general rules is conceivable being applied in a certain order. For example, the
first iteration step may be a replacement of a connection between two classes
by a connection class. The next iteration step may be to extract a super-class
analog to the well-known corresponding refactoring. Afterwards the attribute
could be introduced into the super-class. Each meta-model modification comes
with an adaption of its instance models. In the following we concentrate on
the replacement of connections only to demonstrate meta-model evolution with
Henshin. Such a replacement rule may be modeled in a very general way as
shown in Fig. 6. While two classes with given names and their container package
are preserved, two references shown in the upper area are deleted and another



10 Arendt, Biermann, Jurack, Krause, Taentzer

MM_ReplaceRe...

<<preserve>>
:EClass

name=srcName

<<preserve>>
:EClass

name=trgName<<delete>>
:EReference

<<delete>>
:EReference

<<create>>
:EReference

containment=true
name="out"

<<create>>
:EReference

name="in"

<<create>>
refclass:EClass

name=refclassName

<<create>>
:EReference

name="src"

<<create>>
:EReference

name="dst"

<<forbid>>
:EClass

name=refclassName

<<preserve>>
:EPackage

eClassifiers
<<preserve>>

eStructuralFeatures
<<create>>

eType
<<create>>

eStructuralFeatures
<<delete>>

eStructuralFeatures
<<delete>>

eType
<<create>>

eType
<<create>>

eStructuralFeatures
<<create>>

eClassifiers
<<create>>

eType
<<delete>>

eType
<<create>>

eType
<<delete>>

eClassifiers
<<preserve>>

eStructuralFeatures
<<create>>eStructuralFeatures

<<create>>

eStructuralFeatures
<<delete>>

eType
<<delete>>

eStructuralFeatures
<<delete>>

eType
<<delete>>

eType
<<create>>

eStructuralFeatures
<<create>>

eStructuralFeatures
<<create>>

eType
<<create>>

eType
<<create>>

eStructuralFeatures
<<create>>

eType
<<create>>

eStructuralFeatures
<<create>>

eClassifiers
<<preserve>>

eClassifiers
<<preserve>>

eClassifiers
<<create>>

Fig. 6. General rule for replacing a connection by a connection class

four references and one class are created. Two eOpposite references between
each two EReferences are omitted to keep the rule compact here. A negative
application condition checks for the existence of a class named equally to the
introduced class since doublets are forbidden. Note that srcName, trgName and
refclassName are so-called parameters representing the names of the connected
classes and the new reference class. They have to be set before the application
of the rule. In order to maintain compliance of instance models, e.g. meta-model
elements in use must not be removed, our evolution step of replacing connections
is structured in several sub-steps as follows. Note, in our case these steps could
be deduced even automatically.

The first step is to create new types and references. The creation part of Fig. 6
leads to such a rule. The deletion part has to occur in that rule as well but in
terms of a preserved part. Having match and co-match, this allows to maintain in-
formation about concrete classes and references to be replaced. For the following

Fig. 7. Rule for replacing a con-
nection by a connection class

we assume the parameters are set as follows:
srcName=”Place”, trgName=”Transition”
and refclassName=”ArcPT”. The second
step is to modify all instance models such
that old direct references are deleted and re-
placed by instances of the new class, each
referred to by an instance of the source
and target class. With the previous rule, its
match and its co-match at hand, the genera-
tion of a rule as depicted in Fig. 7 targeting
instance model changes is quite conceivable.
The rule may be embedded into an indepen-
dent unit additionally. In this case it is ap-



Henshin: In-Place EMF Model Transformations 11

plied as often as possible, i.e. the replacement takes place sequentially. A parallel
replacement would be possible as well by utilizing an amalgamation unit. In that
case the kernel rule would be empty and the rule in Fig. 7 would be the multi
rule.

In the third step we remove a direct reference from the meta-model. This
rule corresponds to the preserve and delete parts of Fig. 6. In addition, the rule
is equipped with a partial match by the references matched in the first step.

5 Tool environment

Henshin [16] is developed in a joint effort of the Technische Univerität Mar-
burg, the Technische Univerität Berlin and the CWI Amsterdam. The tool set
is implemented in the context of the Eclipse Modeling Framework Technology
(EMFT) [17] project, which in turn serves as an incubation project for the top-
level project Eclipse Modeling. Henshin is currently comprised of three modules:

1. a tree-based and a graphical editor for defining transformation systems,
2. a runtime component, currently consisting of an interpreter engine, and
3. a state space generator and an extension point for analysis tools.

In the following, we briefly describe the state of the art of the Henshin tool set.

5.1 Editors

There are currently two editors available for defining model transformations in
Henshin: i) a tree-based editor, generated by EMF itself, and extended with
additional notation and tools to ease the editing of transformations, and ii) a
graphical editor, implemented using GMF. Multi-panel editors, such as the one
of EMF Tiger [6] and AGG [8], separate the editing of respectively left-hand
side, right-hand side, and negative application conditions into multiple views.
We chose an integrated view on transformation rules, similar to the Fujaba [18],
GReAT [19], and GROOVE [20] editors. Examples of integrated transformation
rules in the graphical editor are depicted in Figs. 4, 6 and 7.

5.2 Runtime

The Henshin runtime currently consists of an efficient interpreter engine. Given
a transformation system and an EMF model as input, the transformation is per-
formed directly, i.e., in-place, on the given model. For exogenous transformations,
it further produces an additional output model instance. Note that endogenous
transformations are particularly well-supported by the interpreter, since they are
always executed in-place without the need of deep-copying model instances. The
interpreter supports the full expressiveness nested conditions and transformation
units, including amalgamations. Like EMF itself, the interpreter is independent
of the Eclipse Platform and can be used in non-Eclipse applications as well.



12 Arendt, Biermann, Jurack, Krause, Taentzer

Fig. 8. State space generation tool

5.3 Validation of model transformations

In Henshin, we currently provide the following validation support: To analyze
in-place model transformations, we have developed a state space generation tool,
which allows to simulate all possible executions of a transformation for a given
input model, and to apply model checking, similar to the GROOVE [20] tool.
Fig. 8 depicts the graphical state space explorer for the academic dining philoso-
phers example. Here, the state space is finite, there exists one initial state (green,
on the left) and two deadlock states (red, on the right), in which none of the
rules is applicable anymore. Large state spaces can also be generated and ana-
lyzed outside of the graphical tool. We use parallel algorithms for the state space
exploration and can therefore benefit from modern multi-core processors. In its
current version, our tool is able to handle state spaces with millions of states.

Our state space generator supports two different equalities for objects: i) the
basic one defined by EMF itself (implemented in EcoreUtil.equals()), and ii)
an equality based on graph isomorphisms. The latter abstracts from the order of
elements in multi-valued references. In particular for highly symmetric models,
such as the simple dining philosophers example, the use of graph equality reduces
the size of the state space significantly. Note that Henshin currently does not
provide means for recognizing the order of elements in multi-valued references.
Therefore, the more compact state space induced by graph equality can be shown
to be formally equivalent to the one generated using the basic EMF equality.

The state space tool set further provides an extension point for model check-
ers. We have integrated the third-party model checker CADP [21], which allows
to verify temporal properties, specified as modal µ-calculus formulas. Moreover,
we have integrated an existing OCL [22] validator for invariant checking. Found



Henshin: In-Place EMF Model Transformations 13

counter examples for both validation tools are shown as traces in the graphical
state space explorer.

6 Related Work

Since model transformation is a key concept of model-driven development, a
number of model transformation approaches have been developed. Especially two
kinds of model transformations are distinguished in MDD: (1) in-place model
modification within the same language and (2) out-place translation of mod-
els to models of other languages or to code. Model transformation approaches
supporting exogenous out-place transformations well are e.g. QVT, ATL, and
Tefkat. We do not relate Henshin closer to these approaches due to space lim-
itations. In the following, we consider EMF model transformations approaches
for endogenous in-place transformations like Kermeta [4], EWL [5], Mola [23],
Fujaba [18], EMF Tiger [6], and Moment2 [7] which we want to compare closer
with Henshin.

Kermeta is an EMOF compliant textual approach to support behavior defini-
tion based on an action language which is imperative and object-oriented. Thus,
Kermeta transformations are not rule-based and do not a formal foundation.
Its tool environment includes a parser, a type-checker and an interpreter. The
Epsilon Wizard Language is used to write small in-place transformations within
the Epsilon project. The central concept are wizards which can be compared to
rules. A wizard consists of a guard, a title and a do-section where the update
is programmed in an imperative, object-oriented style. A formal foundation of
the Epsilon Wizard Language is not mentioned. EMF Tiger is the predecessor
of Henshin basing on graph transformation concepts as well. However, its trans-
formation language is rather simple in the sense that it is purely rule-based and
allows simple attribute changes only. Application conditions of rules are just
sets of negative patterns. Moment2 supports transformations of EMF models
based on rewriting logic, as implemented in Maude. Its transformation language
provides the concept of rewrites similar to graph transformation rules. Rewrites
can be equipped with complex conditions expressed as OCL [22] constraints.
However, rewrites cannot be composed to larger transformation modules. Due
to its formalization based on rewrite logic, some static analysis and formal veri-
fication based on model checking are possible. MOLA supports transformations
on EMF models where transformations are specified by MOLA diagrams con-
sisting of graphical statements such as rules, loops, and calls to subprograms.
An interpreter for Fujaba’s story diagrams working on EMF models is presented
in [18]. Both tools work directly on EMF models and offer similar language con-
cepts as Henshin, namely rules based on patterns, and control constructs such
as sequences and loops. However, a concept such as amalgamation is not offered
by these tools. Furthermore, both MOLA and the story diagram interpreter do
not have a formal basis for further validations of model transformations. Via-
tra [24] provides a rule and pattern-based transformation language combining
graph transformation and abstract state machine (ASM) concepts. Modeling lan-



14 Arendt, Biermann, Jurack, Krause, Taentzer

guages are defined by a proprietary meta modeling approach covering all main
meta modeling concepts. The import of models in standard meta modeling for-
mats such as EMF is supported as well. Based on graph patterns and rules,
the Viatra transformation language offers advanced transformation features [24]
including recursive graph patterns, generic and meta-transformations as well as
control structures based on ASMs. Henshin’s transformation features differ from
these especially concerning the execution of rules which might also be in parallel,
as in amalgamated units.

Henshin is the only in-place transformation approach which comes along with
a powerful transformation language being executed by a transformation engine
that operates directly on EMF models. Moreover, its transformation features are
all based on algebraic graph transformation [11,12,13].

Comparing Henshin’s transformation language and tool set with the one
of GROOVE [20], we can state that both are based on graph transformation
and support nested application conditions as well as universal quantification
using amalgamation. The use of regular expressions for matching is supported
by GROOVE, but not by Henshin. Model checking in GROOVE is done using
LTL or CTL formulas, whereas Henshin supports the more expressive modal µ-
calculus through the CADP [21] model checker, as well as validation of OCL [22]
invariants. To the best of our knowledge, GROOVE cannot handle EMF models
yet.

7 Conclusion

In this paper, we present the Henshin transformation model for in-place trans-
formations of EMF models. It builds up on graph transformation concepts such
as rule-based transformation, nested and pattern-based application conditions
for rules, and a variety of transformation units to define control structures for
rule applications. To summarize, the Henshin transformation concepts rely basi-
cally on rules and patterns which can lead to a high amount of non-determinism
when executing transformations. This amount can be reduced by the use of rule
parameters, conditions and transformation units.

The direct execution of Henshin transformations allows a tight integration of
transformations on inter-related EMF models as shown in the simple meta-model
evolution example. Typing information can be dynamically loaded and re-loaded
such that instance models can be re-typed over a modified meta-model. In the
future, we intend to elaborate the translation of meta-model transformations to
instance transformations further.

Although not addressed in this paper, Henshin can also be used for exogenous
transformations such that source and target meta-model are integrated into cor-
respondence meta-model in between. The transformation is formulated over this
integrated meta-model. To view the target model only, we plan to extend Hen-
shin by model operations such as projection operations restricting an instance
model to the target domain.



Henshin: In-Place EMF Model Transformations 15

References

1. EMF: Eclipse Modeling Framework. http://www.eclipse.org/emf

2. Steinberg, D., Budinsky, F., Patenostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd Edition. Addison Wesley (2008)

3. MOF: Meta Object Facility (MOF) Core. URL: http://www.omg.org/spec/MOF
4. Kermeta: . http://www.kermeta.org

5. Kolovos, D.S., Paige, R.F., Polack, F., Rose, L.M.: Update transformations in the
small with the Epsilon Wizard Language. Journal of Obj. Tech. 6(9) (2007) 53–69

6. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical
Definition of Rule-Based Transformation in the Eclipse Modeling Framework. In:
9th Int. Conference on Model Driven Engineering Languages and Systems, LNCS
4199 Springer (2006) 425 – 439

7. Boronat, A.: MOMENT: A Formal Framework for Model Management. PhD
thesis, Universitat Politècnica de València (2007)

8. AGG: Attributed Graph Grammar System. http://tfs.cs.tu-berlin.de/agg.
9. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: EMF

Model Refactoring based on Graph Transformation Concepts. ECEASST 3 (2006)
http://easst.org/eceasst.

10. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: 12th International IEEE Enterprise Distributed
Object Computing Conference, IEEE Computer Society (2008) 222–231

11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. Springer (2006)

12. Biermann, E., Ermel, C., Taentzer, G.: Lifting Parallel Graph Transformation
Concepts to Model Transformation based on the Eclipse Modeling Framework.
ECEASST 26 (2010) http://easst.org/eceasst.

13. Kuske, S.: Transformation Units-A structuring Principle for Graph Transformation
Systems. PhD thesis, University of Bremen (2000)

14. UML: Unified Modeling Language. http://www.uml.org

15. EMF Refactor. http://www.mathematik.uni-marburg.de/~swt/modref

16. Henshin. http://www.eclipse.org/modeling/emft/henshin

17. EMFT: Eclipse Modeling Framework Technology. http://www.eclipse.org/

modeling/emft

18. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by inter-
preting story diagrams. ECEASST 18 (2009) http://easst.org/eceasst.

19. GReAT: Graph Rewriting and Transformation. http://www.isis.vanderbilt.

edu/tools/GReAT.
20. Kastenberg, H., Rensink, A.: Model checking dynamic states in GROOVE. In:

Model Checking Software (SPIN), Vienna, Austria, LNCS 3925 Springer (2006)
299–305

21. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the
construction and analysis of distributed processes. In: Proc. CAV 2007, LNCS
4590 Springer (2007) 158–163

22. OCL: The Object Constraint Language. http://www.omg.org/technology/

documents/formal/ocl.htm

23. MOLA: MOdel transformation LAnguage http://mola.mi.lu.lv.
24. Balogh, A., Varró, D.: Advanced model transformation language constructs in the

VIATRA2 framework. In: SAC ’06: Proceedings of the 2006 ACM Symposium on
Applied Computing, ACM (2006) 1280–1287 http://eclipse.org/gmt/VIATRA2.

http://www.eclipse.org/emf
http://www.omg.org/spec/MOF
http://www.kermeta.org
http://tfs.cs.tu-berlin.de/agg
http://easst.org/eceasst
http://easst.org/eceasst
http://www.uml.org
http://www.mathematik.uni-marburg.de/~swt/modref
http://www.eclipse.org/modeling/emft/henshin
http://www.eclipse.org/modeling/emft
http://www.eclipse.org/modeling/emft
http://easst.org/eceasst
http://www.isis.vanderbilt.edu/tools/GReAT
http://www.isis.vanderbilt.edu/tools/GReAT
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/ocl.htm
http://mola.mi.lu.lv
http://eclipse.org/gmt/VIATRA2

	Henshin: Advanced Concepts and Tools for In-Place EMF Model Transformations
	Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, Gabriele Taentzer
	Introduction
	The Henshin transformation meta-model
	Rules and matching
	Application conditions
	Transformation units
	Applicability
	Termination

	Amalgamation
	Relation to algebraic graph transformation

	EMF model refactoring
	DSL SimplifiedClassModel (SCM)
	Model refactoring Pull Up Attribute
	Implementation using Henshin

	Towards meta-model evolution
	Tool environment
	Editors
	Runtime
	Validation of model transformations

	Related Work
	Conclusion



