
E.D.Willink  Workflow Example 
 

 

 
23 July 2003 (Working Draft)  Page 1 

Workflow Example 

1 Introduction 
This design document describes a simple workflow example that demonstrates the usage of 
UMLX to define a workflow application. The defined workflow is less important than the ability 
to define a useful workflow. Given this ability, other workflows may be easily defined.  

Note that this example provides excellent opportunities for confusion of meta-levels, since 
transforms are defined that invoke transforms, and the individual transforms comprise 
workflows (transformation sequences) in order to define the overall workflow  application. 

The workflow supports repeated interactive application of a selected library transform to an 
XMI model. The workflow therefore starts by 'prompting' for the file name containing the 
model, then enters the main recursion in which a list of available transforms is provided, and 
from which a chosen transform is selected. If no transform is selected, the recursion 
terminates, otherwise the selected transform is applied. Once the recursion terminates, the 
user is 'prompted' for a file name in which to save the model. 

The workflow diagrams have much in common with UML activity diagrams, so could be 
trivially redrawn with considerable loss of semantic accuracy. This is left as an exercise for 
readers who need precise UML 1.x when we are discussing UML 2.x and QVT behaviours. 

2 Information Models 
The Information model is partitioned into 4 'packages'; XMI, UML, UMLX, Files and Schema, 
of which the first 4 are externally defined in practice, but internally defined for the purposes of 
this example. 

2.1 XMI 

 
We are applying transforms to complete models so we need no detailed XMI structure, 
merely the abstract element from everything inherits. 

2.2 UML 

 
The only part of UML that is needed is a String value. 

2.3 UMLX 

 
The only part of the UMLX information model we need is the definition of invokable 
transforms, all inherited from the abstract Transform behaviour. 



E.D.Willink  Workflow Example 
 

 

 
23 July 2003 (Working Draft)  Page 2 

ForeignTransforms require a separate process to be invoked with communication via files 
or sockets. Derived transforms will need to establish these policies. 

JarTransforms can be invoked using standard Java class path resolution. JmiTransform is 
a suggestion of one protocoil that may be sufficiently standard to need no further derivation. 

UmlxTransforms are defined in UMLX and so may be invoked within the transforming 
execution environment. 

2.4 Files 

 
The detailed modelling of a FileContext describing the location of an opened file and the 
textual context of a TextFile is not defined yet. There is surely some standard. 

2.5 Schema 

 
The re-used information models are incorporated in the information model for the example. 

Nil is a trivial void type. This might be part of UML if I studied it more carefully. 

String is a class containing a UML String value. 

The abstract StringOrNil and TransformOrNil support successful/failed returns of a 
String or Transform from interactive transforms. 

3 Transform Models 
The Transformation model is partitioned into 4 'packages'; Main, Utilities, Interactive and 
<<BuiltIn>>, of which the Interactive at least should be a standard library. The top-level 
transformation is Main.Main, and like Java is just one of many possible starting points. 



E.D.Willink  Workflow Example 
 

 

 
23 July 2003 (Working Draft)  Page 3 

3.1 Main 

3.1.1 Main.Main 

 
The main transform invokes OpenTransforms to identify the libraries of available transforms 
and then OpenModel to acquire the model which is then processed by the MainRecursion, 
whose result together with the context of the OpenModel is passed to the SaveModel 
prompter. 

This transformation is unusual in having no input or output ports. It operates as information 
appears within the Open transforms and disappears within the Save. 

3.1.2 Main.MainRecursion 

 
The MainRecursion first invokes FilterTransforms to identify the subset of the 
transforms that are applicable to the input, and then invokes SelectTransform to obtain 
an interactive choice of none or one transform. This choice is then passed to 
ApplyTransform and ApplyNoTransform. If ApplyTransform is successful its output is 
passed to MainRecursion for further activity.  If ApplyTransform is unsuccessful 
ApplyNoTransform provides the result and the recursion terminates. 

[The transformation cardinalities shown as FindTransforms [1] are not really necessary 
here, since everything can only execute once. The choice between ApplyTransform and 
ApplyNoTransform exactly corresponds to the TransformOrNil alternatives, so exactly one 
path matches. The 'else' arc from ApplyTransform to ApplyNoTransform is therefore 



E.D.Willink  Workflow Example 
 

 

 
23 July 2003 (Working Draft)  Page 4 

unnecessary. The sole benefit of the explicit rather than default cardinalities is to impose the 
intended behaviour so that run-time and preferably compile-time diagnostics can detect that 
CompileTimeError is something that does not occur by design, rather than something to be 
invoked when the impossible happens. 

Matches have the unpleasant property that holes in the match coverage cause nothing to 
happen silently. CompileTimeError  is my current idea on how to declare where holes are 
unintended and to be diagnosed. 

For instance, if a third derivation of NilTransform was added to TransformOrNil, the 
default cardinalities would fail to detect a match and so just do nothing. With the explicit 
cardinalities, by analogy with compilers that warn about missing enumeration cases in switch 
statements, we can diagnose any possibility of the TransformOrNil failing to match since 
we drop through to an explicit default.] 

3.1.3 Main.FilterTransforms 

 
For the time being all transforms are deemed applicable. 

3.1.4 Main.SelectTransform 

 
The collection of transforms is converted to a collection of strings for use by the 
ChooseOneString interactive transform. The chosen string or Nil is then passed to 
SelectTransformPass which identifies the chosen transform for return, or to PreserveNil 
which ensures a Nil return. 

[A smarter chooser might accept a hierarchical model of transform names with description 
fields.] 



E.D.Willink  Workflow Example 
 

 

 
23 July 2003 (Working Draft)  Page 5 

3.1.5 Main.SelectTransformNames 

 
This transform matches once for each Transform and evolves a String entry in strings 
output for the transform name.  

3.1.6 Main.SelectTransformPass 

 
The returned transform is the one whose name matches the choice. 

3.1.7 Main.ApplyNoTransform 

 
When the choice is Nil, the input is preserved as the output. 

3.1.8 Main.ApplyTransform 

 
When the choice is a Transform,  it is applied to the input. 



E.D.Willink  Workflow Example 
 

 

 
23 July 2003 (Working Draft)  Page 6 

3.2 Utilities 

3.2.1 Utilities.OpenModel 

 
The interactive OpenFileName transform is invoked to prompt for a file name, with assistance 
of a filters string to restrict names in a browser. 

In principle OpenFileName should return a naked text file, which then gets parsed to XMI, 
however when using XSLT, reading and parsing are almost one operation, so this bit is left a 
bit vague for now. 

3.2.2 Interactive.OpenTransforms 

 
TBD, presumably using some form of TRANSFORM_PATH environment. 

3.2.3 Utilities.PreserveNil 

 

3.2.4 Utilities.SaveModel 

 
Again a bit vague since XSLT does XML (and consequently XMI) serialisation almost for 
free. 

3.2.5 Utilities.XmiParser 

 
TBD, and probably in 'Java' rather than UMLX for quite a while. 

3.2.6 Utilities.XmiSerialiser 

 
TBD, and probably in 'Java' rather than UMLX for quite a while. 



E.D.Willink  Workflow Example 
 

 

 
23 July 2003 (Working Draft)  Page 7 

3.3 Interactive 
The Interactive transforms represent built-in behaviours that interact with a user. The means 
of interaction, browser, pop-up or command line is unspecified, merely the source and target 
information models. 

The names and behaviours here are just examples. It would be beneficial to align them to 
any standard workflow libraries or standards that already exist. 

As built-in transforms, these behaviours should all be hand coded to establish interfaces 
between the transformation environment and a controlling GUI environment. 

For use with XSLT these transforms will be public static Java functions taking a number of 
'model' arguments and returning one 'model'. 

3.3.1 Interactive.ChooseOneString 

 

3.3.2 Interactive.ApplyTransform 

 
This performs a polymorphic dispatch to the appropriate transformation technology. 

3.3.3 Interactive.ApplyForeignTransform 

 
For foreign transforms, realised by frozen code, interfaces will be necessary to transport the 
input and output models to the process activated to perform the transform, probably via  files, 
with proprietary formats, before eventually forking off a process to execute the program that 
implements the transform. 



E.D.Willink  Workflow Example 
 

 

 
23 July 2003 (Working Draft)  Page 8 

3.3.4 Interactive.ApplyJarTransform 

 
For external transforms, for which a suitable, typically Java, interface can be established, 
interfaces will just be required to transport the models within the current process. 

3.3.5 Interactive.ApplyJmiTransform 

 
For external transforms, for which a structer well-defined JMI interface has been established, 
interfaces will just be required to express the models as JMI within the current process. 

3.3.6 Interactive.ApplyUmlxTransform 

 
For internal transforms, for which a meta-model of the transformation is available, typically 
UMLX for now, no interfaces may be required at all, it is just necessary to pass inputs and 
outputs within the transformation process implementing the workflow application. 

3.3.7 Interactve.OpenFileName 

 
A text file is read with interactive assistance that may make use of a filters string to be more 
user-friendly about the offered selections. The context of the open is returned to enable a 
subsequent save to share the directory context of the opened file. 



E.D.Willink  Workflow Example 
 

 

 
23 July 2003 (Working Draft)  Page 9 

3.3.8 Interactive.SaveFileName 

 
The text file is saved of with interactive assistance that may use a file context to be more 
user friendly about its defaults. 

3.4 <<BuiltIn>> 

3.4.1 <<BuiltIn>>.CompileTimeError 
The compilation system should diagnose any context in which this transformation can be 
executed, and output a textual parameter as part of a diagnostic. 


