
E.D.Willink Uml2Rdbms Example

22 July 2003 (Working Draft) Page 1

Uml2Rdbms Example

1 Introduction
This example is an quick implementation of the UML to RDBMS discussion example on the
omgqvt mailing list to demonstrate the UMLX concrete graphical syntax. It requires no off-
sheet text (and could use slightly less on-sheet text by preserving attribute names
graphically, rather than constraining them with OCL).

The set problem is: “A class maps on to a single table. A class attribute of primitive type
maps on to a column of the table. Attributes of a complex type are drilled down to the leaf-
level primitive type attributes; each such primitive type attribute maps onto a column of the
table. An association maps on to a foreign key of the table corresponding to the source of
the association. The foreign key refers to the primary key of the table corresponding to the
destination of the association."

2 Information Models
2.1 SimpleUML

E.D.Willink Uml2Rdbms Example

22 July 2003 (Working Draft) Page 2

2.2 SimpleRDBMS

3 Transform Models
UMLX transformations must be invoked in a context, so further top level diagram may be
needed to traverse ModelElement hierarchy from the model root to the Package. The extra
elaboration required to handle multiple packages and package hierarchies is beyond the
scope of the set problem, as is the extra level of transformation to drill down to inherited
attributes1.

3.1 Uml2Rdbms.PackageToDataBase

Since the two sub-transformations create multiple tables we need a parent context to contain
the generated multiplicity.

1 An extra recursion from ClassToTable and ClassAttrToTable is required, aided by a list (a
MultiInstance) of derived members if occluded attributes are legal and to be suppressed.

E.D.Willink Uml2Rdbms Example

22 July 2003 (Working Draft) Page 3

3.2 Uml2Rdbms.ClassToTable

Each class contributes a table with identified as tableForClass(class). The hierarchical
column name prefix is seeded with a 'c'. Two sub-transformations are applied within the
context of the class and evolved table.

3.3 Uml2Rdbms.AttrsToColumns

Each attribute contributes one or more columns via the appropriate transformation strategy.

3.4 Uml2Rdbms.PrimitiveAttrToColumn

A primitive attribute contributes a column with a hierarchically prefixed column name.

E.D.Willink Uml2Rdbms Example

22 July 2003 (Working Draft) Page 4

3.5 Uml2Rdbms.ClassAttrToColumn

A class attribute drills down building up a hierarchical name prefix.

3.6 Uml2Rdbms.ClassToKeyForForeignKey

If the class is the destination of an association a target for foreign key references will be
necessary.

3.7 Uml2Rdbms.AssocToForeignKey

Each association contributes a foreign key and a column to the source, with the foreign key
referring to the key of the destination.

For-each association whose source and destination are persistent classes, create a
foreign key in the table identified by the signature tableForClass(source) referring to the
key identified by keyForClass(target) which is created within the table identified by
tableForClass(target).

[This differs from the DSTC example in creating the Key only if there is an association that
requires it. The DSTC behaviour can be matched by creating the Key directly in
ClassToTable.]

[The explicit columnToAssociation and foreignKeyForAssociation are provided to ease
comparison with DSTC example, they are not needed until the example is extended with
concurrent activity that needs to correlate on association products.]

E.D.Willink Uml2Rdbms Example

22 July 2003 (Working Draft) Page 5

[It might seem that the Key could be created directly in this transformation, rather than in
ClassToKeyOfForeignKey, but this would cause problems for inter-package associations,
which are beyond the scope of the problem, except in so far as UMLX exposes a difficulty.
UMLX requires that all LHS instances that are used for value are reachable by composition
relationships with respect to inputs. The source and target are not reachable as drawn and
so can only be used for identity. Creation of the key would require name='k_'+target.name
and so would require a package path to be established to reach the target, which would
imply an unattractive 2D drill-down through the package hierarchy to reach the independent
parents of association and target. In this case, the separate transformation avoids the
problem. In the more complicated case, there are considerable benefits in establishing a flat
root, nodes and arcs intermediate or pivot model before starting serious multi-pass
rearrangements.]

