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process into the FBS framework and thus
into the broader framework of engineering
design. By doing so, we can draw some les-
sons about the state of our favorite engi-
neering discipline. The most important les-
son might be that many of the analogies we’ve
drawn from other engineering disciplines, es-
pecially civil engineering, are somewhat
flawed or biased.

What is design?
Derived from the ancient Greek worldview

and culminating with the theories of philoso-
phers such as Descartes, science—particularly
analysis—regards the world as a sea of facts and
ideas to be explained and understood. In con-
trast, design and engineering disciplines consider
the world inadequate and needing repair. They
seek to change and improve it by creating new
artifacts: 

The engineer, and more generally the designer,
is concerned with how things ought to be—
how they ought to be in order to attain goals,
and to function … With goals and “oughts”
we also introduce into the picture the di-
chotomy between normative and descriptive.
Natural science has found a way to exclude
the normative and to concern itself solely with
how things are.4

The act of design is a “goal-oriented, con-
strained, decision-making, exploration, and
learning activity which operates within a con-
text which depends on the designer’s percep-
tion of the context.”1 The designer explores
and plays with numerous variables, and the
context shifts as the designer’s perceptions
change and the designer becomes more aware
of the design process.

This article is not about design models, but
about models of design. From Leonardo da
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Vinci (“disegno”) and Giambattista Vico (“in-
genio”) to Nobel Prize laureate Herbert Si-
mon, designers and philosophers have exam-
ined the act of design in various domains. I
found the FBS framework particularly useful
for reflecting on how we design software
products. My first discovery was that software
developers’ use of the term design differs from
that of engineers in other disciplines, making
some of our comparisons and analogies some-
what skewed or simply invalid. The limits of
software science hurt us in that we lack the
proper tools to reason about our designs;
however, we can exploit software’s “soft” na-
ture to our advantage. 

A general framework for
engineering

In the FBS framework, eight processes link
a set of five elements (see Figure 1). The frame-
work aims to analyze how engineers design—
that is, the processes and intermediate artifacts
we produce.

FBS elements
Engineering design aims to transform a set

F of functions into a design description D such
that an artifact conforming to D (manufac-
tured according to D, for example) will fulfill
the functions in F. Say, for example, we want
a window that gives us daylight, ventilation
control, access to a view, and so on. Naively,
we could think of designing as the transforma-
tion F � D. Then, D is all the information a
manufacturer needs to build a given window.

But we haven’t found such a straightfor-
ward route from the set of required functions
to the design description. The design descrip-
tion consists of elementary artifacts and their
relationships, described in a structure S. S is
the structured set of existing design decisions
for our target object. We can derive some of D
from S, expressed in terms of the elements of S—
that is, S � D.

Thus, in the window example, the structure
includes glass panes, frames, hinges, and han-
dles. D specifies which part to pick, what mate-
rial to use, the window’s dimensions, and so on.

F � S expresses another model of design-
ing. This is nothing more than a sort of cata-
log lookup, where we find a structure associ-
ated to a certain function. It’s not really much
of a creation, and unless we’re lucky enough
to have a complete catalog of all structures for

all functions, we aren’t there yet. For win-
dows, we might be lucky: We could find one
ready-made that matches our needs.

The structure S exhibits a set of behaviors
Bs, which we can derive from S through analy-
sis or experimentation: S � Bs. For example, a
certain type of glass pane has certain properties
in light transmission, heat transmission, weight,
impact resistance, and cost. These behaviors
(Bs) might not be quite what we expect; rather,
we expect a set Be of expected behaviors to ful-
fill F. In fact, we tend to reformulate the func-
tions in F in terms of expected behavior: F � Be.
In some sense, Be will be a precise formulation
or specification of the window we want: this
amount of light, and this level of insulation, for
this maximal price.

This leaves us with a tension between 
Be and Bs. We’ll need to evaluate this tension,
Be � Bs, and revisit our assumptions about F,
Be, S, and D.  So, a more complex model of de-
sign is F � Be, Be � S � Bs, concluded by the
obvious S � D.

This whole process is one of synthesis. But
Bs might differ from Be too much to be accept-
able, leading to various reformulations of S, Be,
F, and ultimately a very different D.

FBS processes
In the FBS framework, eight subprocesses

connect the various elements:
■ Formulation (F � Be) transforms the design

problem, expressed in function (F), into be-
havior (Be), which is expected to enable F.

■ Synthesis (Be � S) transforms the expected
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behavior (Be) into a solution structure (S)
that’s intended to exhibit the desired be-
havior.

■ Analysis (S � Bs) derives the actual behavior
(Bs) from the synthesized structure (S).

■ Evaluation (Be � Bs) compares the be-
havior derived from structure (Bs) with
the expected behavior (Be) to prepare the
decision if the design solution is accepted.

■ Documentation (S � D) produces the design
description (D) for constructing or manufac-
turing the product. The manufacturer has no
further design choices to make.

■ Structural reformulation (S � S) addresses
changes in the design state space in terms of
structure variables or the variables’ value
ranges. Structure evolves and is refined over
time.

■ Behavioral reformulation (S � Be) addresses
changes in the design state space in terms
of behavior variables or the variables’ value
ranges. Expectations evolve, change, or are
refined.

■ Functional reformulation (S � F) addresses
changes in the design state space in terms of
function variables or the variables’ value
ranges. The needs are evolving.

Applying FBS to software
engineering

Although Gero and his colleagues didn’t

have software in mind when developing their
framework, we can map software engineering
to it. To represent software engineering prac-
tice, I use the Rational Unified Process.

Mapping artifacts
I first map FBS elements to RUP artifacts

(see Table 1).

■ F corresponds to the stakeholders’ needs,
the vision, the services the system will pro-
vide (such as the use case survey), and the
constraints, including financial ones, ex-
pressed in the business case.

■ Be is the system’s documented requirements:
use case model and supplementary require-
ments, user interface prototypes, use case
storyboards, and so on. (Yes, the detailed
requirements are part of the design.)

■ S is what we in software call the software
system’s design, including its architecture.
It identifies the solution’s elementary arti-
facts and their relationships. Therefore, in
addition to our design models, S includes
the programs, which are the continuation
of the design at a finer granularity level.
(Yes, the source code is part of the design.)

■ Bs is the system’s actual behaviors as de-
rived from S—the design and code—and
witnessed in terms of test results and other
evaluations. It includes anything we can de-
rive from S that would show us how close
we are from meeting Be.

■ D is the detailed blueprint that customers
will use to instantiate, install, and create
their software system. It’s more than the
software design and code—it’s the gold
master CD-ROM that engineering sends
to production.

You might have noticed that to map soft-
ware engineering (or design) to the FBS frame-
work, I had to extend the boundary of “soft-
ware design” to include much more than
software practitioners’ traditional activities, ac-
cording to the Software Engineering Body of
Knowledge (www.swebok.org). In SWEBOK,
software design covers only a narrow set of
processes and artifacts.5 But if we accept that
design is making choices that will shape the final
product, we must include some requirements 
activities and all coding and testing activities.
Formulating the problem and analyzing the re-
quirements or code is “doing design”—making
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Table 1
Artifact mapping from FBS to RUP

FBS element Definition RUP artifacts

F Set of functions Vision document
Stakeholders’ needs
Use case survey
Business case

S Synthesized structure Design models
Code

Be Set of expected behaviors Requirements
Use case model
Supplementary specification
Use case storyboard, UI prototypes

Test cases
Bs Set of actual behaviors Test results

Inspection and review reports
Measurements

D Description Executable code (installers, etc.)
Other deployment artifacts (data, user 
guide, training material, etc.)



choices that impact the ultimate system. How-
ever, software engineers traditionally define
“design” more narrowly, as building a model of
the system to be constructed up to the point at
which coding can begin.6,7

Mapping processes
Similarly, we can map the RUP processes to

the FBS framework’s processes (see Table 2).
Formulation maps to RUP’s business mod-

eling and requirements disciplines. We formu-
late the functions into expected system behav-
iors. Some processes call this requirements
analysis.

Synthesis is the RUP analysis and design
discipline, and to some degree, the implemen-
tation discipline. The meaning of “analysis” in
software engineering differs from Gero’s, who
uses it to look at the result of synthesis, not as
a prelude. This process is where most software
design occurs. Using our bag of tools and tech-
niques, and with a good grasp of the require-
ments (Be), we invent a design (S).

Analysis includes all the processes we use to
derive the actual system behavior implied by
S. In software, analysis involves inspection, re-
views, and mostly experimentation—that is,
testing a running application, even a partial
one (a prototype). Software engineers perform
only a small fraction of analysis through rea-
soning based on S. This is the area of formal
methods, schedulability analysis, queuing the-
ory, and so on. Hopefully we’ll get there some
day, but other engineering disciplines are far
more advanced than software engineering in
this area because they have the laws of physics
at their disposal and eons of experience behind
them.7

Again, a significant gap exists between
analysis in software, which maps to synthesis in
FBS, and analysis in other engineering disci-
plines, which we could call static software
analysis: the techniques and tools we can apply
to our design models and code to derive some
of their properties, correctness included, with-
out having to finish the code and run it (for ex-
ample, security analysis, dead code analysis, or
conformance to coding standards).

Evaluation is the assessment of the gap be-
tween expected behaviors (the “specs”) and
observed behaviors (what we see running in
the lab). Evaluation consists mostly of analyz-
ing test results and static software analysis re-
sults, and partly of reviews and inspections. It

corresponds to RUP’s test discipline and some
project management activities.

Documentation is covered by the RUP de-
ployment discipline: producing all the bits and
pieces required for manufacturing and in-
stalling the system. Here also a major shift in
the use of “documentation” occurs; the docu-
mentation process produces the detailed blue-
prints that let a manufacturer produce the soft-
ware system. So we aren’t speaking about what
software developers casually call “software
documentation,” nor are we speaking about
user documentation. The software documenta-
tion is in S in the form of design documents,
models, and comments in the code. And if the
manufacturer must produce user documenta-
tion, D must contain, for example, the PDF
files to send to the print shop. Documentation
activities are completing the bill of materials
and preparing a master CD-ROM with the in-
stallers, binaries, data, help files, and other el-
ements to be reproduced and delivered.

Structural reformulation is where develop-
ment spends most of its time: evolving the de-
sign, expanding the code, refactoring, fixing
the design, and fixing the code. Coding is sim-
ply a reformulation, at a more precise level, of
the initial rough or high-level structure S (the
software design). In Gero’s terms, however,
coding is part of design. Coding isn’t a mere
manufacturing process, as discussions about
software construction might lead us to think
(in the SWEBOK, for example). Software engi-
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Table 2 
Process map, from the FBS framework to RUP

FBS process From � To RUP process chunks

Formulation F � Be Business modeling
Requirements definition

Synthesis Be � S Analysis and design
Implementation

Analysis S � Bs Testing
Review activities

Evaluation Be � Bs Assessment activities
Documentation S � D Implementation

Deployment
Structural reformulation S � S Refinement of design, code, refactoring

Fixing defects in design and code
Behavioral reformulation S � Be Scope management 

Requirements change
Functional reformulation S � F Change in needs 



neers make many design decisions while cod-
ing and refactoring.

As we know, other forms of reformulation
occur, especially in iterative development. Be-
havioral reformulation entails adjusting the
specification based on a design—for example,
dropping or postponing a feature, changing a
constraint, or introducing an unexpected
“free” feature—and often takes the form of
scope management. 

And finally, possibilities found in the design
influence users’ expectations and desires for
services, leading to functional reformulation.
Often users want higher performance, and some-
times new functions arise. For example, because
cell phones have screens and keyboards, we can
play games with them, although this wasn’t the
original function. The agile practice of having
customers on site during software development
certainly encourages this process.

Software life cycles
The classic waterfall lifecycle process is a lim-

ited walk through the FBS framework graph, as
Figure 2a shows. We expect synthesis to happen
in one attempt, crossing our fingers for a short
and successful analysis and evaluation in one
shot. Structural reformulation is limited (just
going from design to code), and behavioral and
functional reformulations are strongly discour-
aged: “Sorry, this wasn’t in the original re-
quirement specification.”

Iterative life cycles, illustrated in Figure 2b,

exploit the loop more fully (synthesis, analy-
sis, and evaluation). They break formulation
and synthesis processes into small increments,
gradually building the set of expected behav-
iors and leading to an evolutionary synthesis,
supported by incremental evaluation. Iterative
development lets us work on both sides of the
evaluation process (Be to Bs), and not simply
fix S to achieve the right Bs. We call this process
design emergence and refactoring.

Iterative development and agile methods
exploit the reformulation processes, in partic-
ular behavioral and structural reformulation.
Involving customers throughout the develop-
ment process by showing them intermediate
versions of the structure results in changes in
the set of functions or expected behaviors.

The evolution of software development life
cycles, techniques, and tools for supporting the
various processes led to this shift of emphasis
from straight synthesis to loops and reformu-
lations. Traditionally, software designers per-
formed the synthesis process on paper, while
coders and testers did the coding, analysis, and
evaluation. Today, RUP and agile processes en-
courage a more seamless approach, with mod-
eling closely tied to programming (round-trip
engineering, as Rational Software used to call
it), and exploit the very fast turnaround on the
edit-compile-debug loop. Supported by tool
automation, analysis and evaluation can con-
tinue repetitively, daily, hourly, relentlessly re-
running suites of regression tests.
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Lessons from the FBS framework
Having mapped the FBS framework to soft-

ware, we can exploit it further to reason about
other aspects of software engineering.

Lack of fundamental theory
As noted in earlier work,7 our lack of a fun-

damental software theory makes the evaluation
process experimental. In fact, we deal with a
very concrete S and almost nothing added to D,
and can’t rely much on static analysis. Hence,
the RUP focuses on executable releases at each
iteration to objectively assess the design.

But to our advantage, software is “soft,” let-
ting us perform rapid and low-cost loops on
structural reformulation. Civil engineers can’t
do this when building a bridge—once they start
using the description D to pour the concrete,
they’re committed—so they must validate ab-
solutely everything in the analysis process.

Legacy systems
We don’t always start at F to go to D. To

evolve a legacy system, the process can follow
the path D � S � Be � F. Or, we can start at
D (the system), reverse-engineer it to a simple
form of S (the design) from which we reverse-
engineer Be (the specification), and from there
move forward, with or without adding new
functions to F. Other engineering disciplines
sometimes do this as well, in particular in
forensic activities following a major catastro-
phe such as a collapsed bridge or when up-
grading very old structures. 

Reuse
Reusing software components (or develop-

ment based on COTS products or packages)
shortens the cycle to F � Be � S, allowing the
design to be more of the kind Gero called cat-
alog look-up8: “for these enterprise functions,
our ERP (Enterprise Resource Planning) sys-
tem offers this and that design, just tick the
boxes on your order form.” But in software
we need to look beyond the “Lego block” as-
pect and try to reuse the patterns and
processes, not just the chunks of software. 

Modeling
Software modeling can range from sketch-

ing design elements that support developer
communication, to developing complete blue-
prints for implementers, to a form of program-
ming where the code is almost entirely gener-

ated from a complete and detailed model. Dur-
ing specification or programming, modeling
considerably enhances the analysis and evalua-
tion processes of projects that use, for example,
UML (Unified Modeling Language) and proper
tool support. Modeling should also consider-
ably simplify the description process by auto-
matically producing the various deployment ar-
tifacts. Finally, we can use modeling to partially
describe a system’s expected behavior, and
thereby facilitate the synthesis process by mod-
eling the software requirements.

Patterns and design by analogy
As Gero and Lena Qian said, “Two designs

are analogous if they have a similar function
(F) or similar behavior (Bs). They may or may
not have similar structures (S).”2 However, the
whole-pattern movement has shown how
identifying classes of analogous designs to
share (if possible) identical structures can ben-
efit us: We can name and communicate design
fragments and share and reuse practical solu-
tions for recurrent problems. The key concept
is “similar, but not identical.”

W hat practical lessons can the FBS
framework offer software engineers?

First, we’re doing more design
than it might seem at first, and software de-
sign isn’t limited to object-oriented design,
UML models, or the structured analysis and
design technique. How we elicit, capture, or-
ganize, and describe software requirements in-
cludes a good deal of design: we’re making
choices that will be reflected in the final prod-
uct. Programming is primarily a design activ-
ity, and even testing is to some extent. Neither
are purely administrative, clerical, or con-
struction activities. Our design decisions shape
the software product, and we have responsi-
bility as designers, even though our titles and
job descriptions don’t make it clear that we’re
doing design.

Next, all engineering endeavors require some
compromise to balance expected and actual be-
havior; we achieve these compromises by work-
ing on either end of the equation.

We can also see that because we’ve all but
eliminated software “manufacturing,” software
production is almost solely a design activity.

M a r c h / A p r i l  2 0 0 5 I E E E  S O F T W A R E 5 7

Because we’ve
all but

eliminated
software

“manufacturing,”
software

production is
almost solely a
design activity.



5 8 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

In addition, we must be careful with our en-
gineering analogies. When we speak to other
engineers about “software construction,”
“software manufacturing,” and “software fac-
tory,” or when we say that “design is complete
and implementation starts,” we might not be
well understood. Words like “design,” “analy-
sis,” and “documentation” are overloaded,
and their casual, unqualified use can lead to
misunderstandings.

With a better grasp of the general engineer-
ing design pattern, software folks will better
understand how their concerns and activities
fit into larger systems-engineering projects
that might involve computer hardware, ma-
chines, and even buildings—that is, it gives
them ammunition to stand up to the big guys.

The key lessons, for me, are that the water-
fall model isn’t absolutely fundamental to en-
gineering design, that iteration loops are in-
herent to all engineering design processes, and
that in software we’re more likely to exploit
these loops because our object—software—
can be more easily and continuously modified
than, say, civil engineering objects.

There are lessons for researchers, too. Cast-
ing software design in the FBS framework ex-
poses some of software engineering’s strengths
and weaknesses. Because software engineering
relies mostly on experimentation rather than
static analysis, our discipline needs to progress,
particularly in finding approaches to describ-
ing software that easily translate to static
analysis and code generation. This is actually
the objective of model-driven development.
Hopefully, MDD will close the gaps both up-
stream (using static analysis to match our de-
sign with the requirements without having to
test) and downstream (producing code auto-
matically—that is, correct by construction and
hardly needing testing).

We can refine the model to dig further into
the nature of software design. In particular, we
can consider the structure as a structured set
of design decisions, not just the structure of
the system to build. We can also split the for-
mulation, synthesis, and evaluation processes
into two levels to isolate an architectural level
consisting of architectural formulation, archi-
tectural synthesis, and architectural analysis.

Gero and his colleagues have since gone
further with their framework and have added
a reflective component to it, involving three
nested worlds: the external world, the inter-
preted world, and the expected world. Food
for further thought.
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