Meeting Minutes – EPF Face-2-Face Meeting in Reston
Host: Telelogic and Number Six Software
Dates: 8/10-11
Attendees

· Scott Ambler

AmbySoft / IBM
· Chris Sibbald

Telelogic

· Bruce Macisaac
IBM

· Mark Dickson

Xansa

· Brian Lyons

NumberSix

· Chris Armstrong
Armstrong Process Group

· Jim Ruehlin

IBM

· Steve Adolph

UBC

· Kurt Sand

Telelogic (First day only)
· Joe Krebs

IBM

· Ricardo Balduino
IBM

· Todd Fredrickson
IBM (method architect for GS Method)
· Ana Valente Pereira
Whatever Consulting

Agenda
· Thursday (9:00 – 6:00)
· Greetings, introductions, and collaboration and commitment on the actual agenda we will follow.
· Burndown
· Walk through burndown spreadsheet and verify everyone’s understanding and acceptance of it as a management and reporting tool.

· Make any necessary updates live
· Review process
· Walk through content guidance (and update live as necessary)

· Walk through review process including its impact on our burndown

· Breakouts for Review
· Select portions of the EPF content and conduct some reviews in small groups and pairs. I’m thinking this can be along the lines of an hour each of reviewing two packages with us broken up into three groups.
· Review retrospective
· Discuss review process to drive consistency moving forward. We might want to do a pass at this in the midpoint of the breakout sessions for faster feedback.
· Outreach
· Discuss outreach as we approach release (SD Best Practices conference, podcasts, other conferences, periodicals, OpenUP collateral, authoring of white papers, training, press activity)
· Friday (9:00 – 4:00 pm)
· Guidance on structuring library for re-use. (Todd)
· Process Architecture
· Discuss Per Kroll’s suggestions on process architecture (as related to this bug with a number of attachments: https://bugs.eclipse.org/bugs/show_bug.cgi?id=152354)

· Discuss modifications and updates feasible for OpenUP/Basic v1.0

· Discuss updates appropriate for the next release

· Prepare a clear response on what is accepted and any elements that are not accepted as-is in his suggestion.
· Devise plan moving forward that gets us to our 1.0 release.
· Wiki
· See live demo of OpenUP/Wiki and discuss (as preparation it would be good for all participants to have created an account at http://lcmglab.xs4all.nl).
· Cover other topics as we desire including
· Brainstorming on pending tool features and additional features we have identified based on our usage

· Discussion of extensibility of process using the tool, possibly producing a minimal plug-in that demonstrates our suggested technique(s).

· Doing a walkthrough of something from Work-Item/Feature identification to integration and verification

· Walk through and improve the look and feel, possibly leading to new bugs

· Other package-specific issues that should be worked out in a group.

Thursday

Greetings, Intro, Agenda
· Round table introductions.
· Reviewed and agreed on Agenda. We change order of some items from draft sent by Brian on Aug. 9…see above for update.
· Added item to agenda for guidance on standard plug-in development…how to structure library, naming, building for extensibility.

Burndown Chart
· Discuss basic reporting requirements.
· Current way of reporting burndown is to get 50% of points when Bug moves to RESOLVED, 50% of points when Bug moves to VERIFIED (and on RM Chart another 100% of points when Bug moves to CLOSED). Joe to check that all tabs compute points the same way.
· General feeling that we are spending a lot of time on this. Lesson learned is we should have defined and validated this earlier in the project. Also, it is seen as important that we review/validate the OpenUP WIL and metrics.
· Chris S. noted that the value of doing this is not so much to measure progress of OpenUP development (although that is important), but rather to prove/validate the process that we are promoting.

· Validating the process is essential; however some feel that the content development is not a good proving ground since it is different. Kurt made the point that the tool team (EPF composer) should be piloting the OpenUP process to prove it.

· Discussion of current state of OpenUP, several areas are behind schedule and we need to consider either slipping date or down-scoping. Either way we will need to manage expectations.
· Ricardo noted that the EPF project is in the Incubation phase with the goal of becoming a real project in September…so this may impact the extent of de-scoping and/or schedule slip we accept.
· Goal for OpenUP is to provide an example process that will have proper structure, examples of method elements, is extensible and can serve as a good starting point for creating a development process.
· Discussion of exemplary (worthy of imitation). Although the whole process may not be exemplary in Sept., there will be aspects of exemplary content. Release notes could be explicit on this: ex. “see this guideline for an example of how to write Guidelines”. Kurt suggested that we identify exemplary elements of each type so that we, as authors, have examples to copy. Also need to update authoring guidelines.

· Discussion of whether there should be an example of Tool mentors. EPF composer tool mentor is a natural candidate, however, since there is no environment discipline they may not be so easy to integrate this.
Status:

PM: Gut feel 10% authored, will not be done by Sept. 30.

RM: 80% done, review/verification is the only thing left. About 40 hrs to go out, of a total of about 200 hrs. Will complete by Sept. 30.
Dev: 67% done. Can complete by Sept 30 with de-scope of some guidance elements.
Test: on track to complete by Sept. 30.

Arch: Will be done authoring content in the next few days (re-using RUP for small projects). 7 points left. Will be done by Sept. 30.
General: 18 open issues, many of them are small issues (1 – 4 points, copyright issues, graphics banner). Big issues related to content (Index, Glossary, Overviews, whitepaper, examples). 75% of work outstanding. Will be done by Sept. 30th with some de-scoping.
CM: on track to complete by Sept. 30th.

Note: In general there is a lot of reviewing that must be done to ensure high quality content. Review is critical to catch problems and determine course of action…when an element is assigned to someone, one should also assign the reviewers. Also, need to ensure cross-package review.

Review Process (Jim)

1. Create Bugzilla entry (Bug state is NEW)

2. Assign Bug
3. Accept Assignment (bug moves to ASSIGNED)

4. Write content

5. Contribute content (commit to CVS or attached content to bug) (Bug moves to RESOLVED – FIXED)
6. Tier 1 content review (informal, peer review)

a. If accepted

i. Update content in accordance with review comments
ii. Commit (bug moves to VERIFIED)

b. If rejected

i. REOPEN bug

7. Tier 2 review

a. If accepted

i. Update content in accordance with review comments
ii. Commit (bug moves to CLOSED)

b. If rejected

i. Bug RE-OPENED

Or for those who prefer visual models:

[image: image1.png]Updated 8/17/06

@Bug or new content identified

[content rejected]

@ Formal content: review

[content accepted]

@Update content

@ Cornmit content

Status

Orly committers
can assion Bugzlla
entries

@ Create Bugzlla entry

Status = New |

Status = Assigned |

=)

Assignee accepts Bugzlla

Status
@Write content [~ |

@ Contribute content

Status = Verified Status = Resolved
Resolution = Fixed
@ Contribute content @ Update content

Content wi often be accepted
"with changes”. The content is
acceptable with a list of changes

the contribuor must address

For clarity, only the common flows/states are
shown. For nstance, it's possble to Close
Bugzila at any time with a Resolution of

Wontfix, which is not shown here

[content accepted]

@ Informal content review

[content rejected]

Reopened

Every one agreed with this process.

Group Review – Task: Design the Solution

Noted that when you contribute to a task you can add steps but you cannot add text to a step or remove a step.

Note: Base element (Task:Design Solution) is RESOLVED in bugzilla, the VM element that extends this has not been reviewed (however the extension is clearly marked with text “[visual modeling]” next to contributed steps in the composite published element).

We wanted to perform the “group review” using the EPF Wiki, however there appeared to be a missing diagram in the task that is not in the original site…rather than trouble shoot at this point we reverted to the “plain” published site. Goal of group review is to agree on common process/steps to review that will be applied in break-out sessions.
· Mark Dickson has created a checklist based on the authoring guidelines. Mark sent this checklist to the epf-dev mailing list on July 6th.
· Scott recommended that Brian remove first few words (“The purpose of this task is to”) of Purpose section of the task as they are redundant.

· Good use of imperative in steps (“Identify…”, “Determine…”), should be duplicated in other tasks.
· One should only list additional performers that are explicitly mentioned in the steps as playing a part in the task.
· Discussion of replacing mandatory inputs (Supporting Requirements, Architecture, Use Case) with the Work Item. (Work Item to be added to PM package). It was decided that the inputs should be remain as is.
· There was also discussion of creating an abstract artifact “requirement” that is subtyped by Use Case and Supporting Requirement, but decided not to do this at this point.

· Discussion of using links when “referencing” a method element. In the case of step 1, there is a reference to the method element Analyst. It was decided that this should be a link (without element type).
· In step 1, remove the phrase “and possibly submit a change request against the requirements”.
· It was decided that we would permit dependencies on other roles, but minimize dependencies on tasks in other packages. Work Products should be used as the “interface” between tasks.

· Discussion about the order and applicability of the steps. It was noted that the purpose of the task descriptors is to specialize the task within a particular context (removing steps, WPs, etc.) as appropriate for this usage of the task. For now, it is important for authors and reviewers to understand that not all steps may be performed and that the task may be performed more than once with different emphasis throughout the lifecycle as described in the process (capability patterns and delivery process).
· Change name of second step to Identify Collaborating Elements.

· Avoid analysis vs. design distinction.
· Change “Existing elements…” to “Examine existing elements…” in step 3 (third paragraph).

· Add more emphasis on re-use in step 2.

· Need to keep the text of steps rather short (1 – 4 sentences). If more than that is needed, perhaps it is multiple steps, perhaps it should be in a guideline.
· The purpose of the steps is to describe what must be done, not how. The guidelines will provide guidance on how (and can easily be tailored).

· If there are more than approx. 10 steps consider splitting the task.

· Add “Design Element” to the glossary.

· For this particular element (Task: Design Solution), it probably makes sense to address visual modeling via guideline rather than contributing element.

· Purpose should answer why you are doing the task in relation to the final output. (Why do I want to produce the output workproduct…a) communicate with stakeholders to gain agreement that solution will solve problem/satisfy requirement, b) understand what to implement).

· Some overlap between Main Description and Key Consideration for this task (see last line of Main Description and second line of Key Considerations).
Break-out Review Plan –
The following “review boards” were agreed for each package:

	Package
	Owner
	Reviewers

	PM
	Chris A.
	Joe (author)

	RM/CM
	Chris S.
	Bruce

	Dev/Test
	Brian
	Kurt, Todd

	General
	Steve
	Jim, Ana

	Architecture
	Mark
	Ricardo, Scott

RM Package Review Results and Retrospective:

During the review, changes were made directly to the method element in a temporary library. Chris will incorporate the changes in the main library. Main changes and considerations are captured below.

Role: Analyst
Updated brief description of Analyst Role….lighter, less formal language used to achieve the same intent (example “gather requirements” vs. “elicit requirements”).

Use complete phrases so the content can be translated easily (preamble to bulleted list should be a complete phrase). Example: “A person performing this role needs the following skills:” vs. “A person performing this role needs:”.
Use “this role” rather than “the analyst” (several places) in order to make it easier to rename the method element if required.
Task: Find and Outline Requirements

Task brief descriptions should be active sentences with the subject “This task”. (“This task describes how to capture the requirements for the system.” Vs. “Capture and describe the requirements for the system to be.”) As mentioned above, the steps should use the imperative style.
If something is important enough to be an output work product, it should be obvious which step outputs it. For example, we added a step “Update Work Items List” as an explicit step to the task:Find and Outline Requirements vs. a sentence within the step “Capture Requirements”.
Check all tasks to make sure the “Purpose” section is filled in. We (Bruce and Chris S.) actually liked the style “The purpose of this task is…”.

Artifact: Supporting Requirements
Change the name of the supporting requirements template to be Supporting Requirements Specification.
Future Considerations for Supporting Requirements:

Consider replacing use case and supporting requirements with functional, non-functional, and constraint types.

Consider separating FURPS into its own package as one way of allowing for other categorizations.

Issues:

Should we follow links by black “s” to indicate plural? For example, use cases

Should we capture review actions be capture on the work item list? Should there be a review record artifact? For general action items, should they be captured on the WIL or should there be a separate action item list or left up to the practitioners to figure it out.
Development Package Review Results and Retrospective
Guidelines may be associated with a task or an artifact…for Guideline:Design the reviewers decided to remove the reference to artifact, maintaining only the link to the task.
We need a development guideline on the required fields (ex. is main description required on all elements?)

Decision: The main description field of roles is not required. For other elements this field is required.
Avoid sentence fragments, these are ambiguous and difficult to translate.

Reviewing Role Skills. General pattern proposed is:

A person performing this role needs the following skills:
Expertise in…

Knowledge of…

Ability to…

Lessons learned from Review of Development:
For all work products, “Impact of not having” field must be filled in (if you can’t come up with a big impact of not having the work product, you should challenge the need for the WP in OpenUP.).

Three types of reviews were identified:

1) Technical correctness (aka proper use of English)

a. Proper use of language, respect style guide

b. Can be done by technical writer not necessarily familiar with the Software Development Process.

2) Method correctness (aka proper use of EPF Composer)

a. Proper information in the correct fields.

b. Proper associations between elements
3) Content correctness (correct/good content)

a. Subject matter experts in the content area agree that this is a best practice.
General Package Review Results and Retrospective
Discussed refactoring (base concepts -> epf base concepts, openup, openup_management, openup_development, openup_xxx).

All text should be reviewed by a non-native English speaker to screen for slang.

Friday

Guidance on Structuring EPF Library for re-use
Presentation by Todd (see attached).

[image: image2.emf]EPF Plugin structuring

Scott asked if there is a document that summarizes “How do I create a plug-in that extends OpenUP?”. Todd stated that there is a document in the works, and it will be provided to EPF.

Scott asked if there is a means to promote/demote elements from one package (say a commercial package) and another (say openUP). Todd stated there is some capability in RMC that will be reviewed for donation to EPF.

There was some discussion of tool support, or lack thereof, for reporting on dependencies and inheritance between elements to aid in evolution of plug-ins. Currently there is no support within EPF composer for this.

Discussed how to document these dependencies (i.e. how to capture meta-data). Re-useable Asset Specification (RAS) mentioned as a potential means.

As a minimum, OpenUP must provide guidance on how to minimize dependencies.

Discussion of creating packages such as tool mentors that would support multiple processes (RUP, OpenUP, DSDM, etc.). The people creating these would create a plug-in that extends the base process tasks to “hook in” the mentors. However, a separate plug-in (or separate packages within the plug-in) would be required for each base process to make this easy for the end-users to simply add the information to the base process.

Todd showed a document that discusses domain definitions (see attached).

[image: image3.emf]Domain Definitions

Scott felt that the list of domains was too complicated for Agile practice.
Re-Architecting OpenUP

Discussion of Per’s proposal:

Term “Intent Management”: general agreement that the term Requirement is more widely known and accepted than Intent, however it is understood that negotiated agreement and prioritization is implied.
Chris A. walked us through the Venn diagram and its variants.
Discussion of Method Content vs. process…general sense that we focus too much on method content…for end user the process is the important part with method content as reference only…perhaps two tabs in browser (process, reference).

Bruce feels that the Test Case and Test Data could be combined in the single artifact (Test Case). No decision yet on whether “Create Test Case” should be in Requirement sub-process or Development sub-process or both.
Chris S. had three concerns:

a) Rename Requirements sub-process (and introduced the term sub-process vs. discipline) to Intent Management (not sure anyone will know what this is.)
See above for decision. Stick with Requirements vs. Intent.
b) Remove Actor as an artifact and replace with Persona.
Scott agreed, either we use Personas and Scenarios, or Actors and Use Cases. Since we are use case driven, stick with Actors.
c) Make WIL and Vision the central artifacts (requirements still exist, but they are not input to any development task except via reference on the WIL).

We discussed this yesterday while reviewing Task:Design Solution and agreed the artifacts referenced on the WIL (Use Case Specification, Supporting Requirements Specification) should be the inputs.

Discussed Prototype the UI: Some felt it was not needed, some felt it is needed in development. All felt that as it is confusing to have a task called Prototype the UI in Requirements…either rename it “mock-up” or sketch, etc. to be used within Requirements to elicit/validate requirements or leave it in development.
We discussed combining tasks Run Test and Evaluate Test. Bruce stated that these will always be done together and are thus candidates to be combined. Since there was not proper representation from those responsible for the test discipline, this suggestion was left for their consideration.
Discuss Task: Integrate and Create Build:

This task is not in Per’s proposal. It is (assumed) to be a step in another task.
Chris S. mentioned that Configuration and Change Management only contains Request Change…he was thinking Integrate and Create Build as well as some of the missing deployment content (Release, etc.) could go in Configuration and Change Management.

Build and Implementation have been collapsed into Build in Per’s proposal. This was discussed at length, with most expressing concern that this would cause confusion as the Implementation is source code (human readable) and the Build is binary (machine readable).
Chris S. had to leave at this point to catch a flight. The following notes were supplied by Bruce.
Notes from Bruce:
(While discussing Per's proposed restructuring)

1. Test log should not be input to "manage ongoing work".
(If the builds are problematic, people will communicate via daily scrums. The test log is not really needed as a direct input).

2. Request change - this would never be a planned task and is not unique to requirements.
It’s unclear where this should go.

3. Proposed that we combine run tests and evaluate test results.
Aren't these always done together?

4. A result of evaluating test results is to label the implementation as validated, not just the build.

5. Decision to use google messenger as our official instant messenger. Everyone is requested to install it and be online when doing openUP work.

6. Steve will ask Pierre Robillard (Author of UPEDU - Unified Process for Education) of McGill University to see if he is interested in:
 - Creating OpenUP for education, with a book and course
The goal is to make OpenUP more accessible to universities in general

7. some conferences coming up

Upcoming events:
SD Best Practices (Scott, Per, Brian, Kurt and Chris S. will be there)
EA Practitioners (Mark)
RSDC London Aug 30 (Mark Dickson will be there)
PMI Jacksonville
Oopsla (Scott will be there) - Oct
Eclipse Germany
Agile Business Conference London - Mark will be there

SD West March - papers close Aug 17
 - need volunteers to submit papers
 - Steve will submit an abstract on OpenUP tutorial

Can Naveena get a message out to EPF Dev eliciting other events that we should be involved with, and notify people that SD West call for papers is ending Aug 17.

Should do:
- an audio podcast.
- a demo of the product.
- populate the OpenUP domain name that Philippe reserved for us
 - include a published version of the OpenUP/Basic
- standard presentation

Outreach discussion:
SD Best Practices
EA Practitioners

_1217159550.ppt
*

© 2006 IBM Corporation

Proposal for Building an Extensible Library

Based on Standardized Plug-ins

J. Todd Fredrickson

EPL V1.0

Structuring of plug-ins

		Create a standardized approach for partitioning content that facilitates the sharing of content while providing the flexibility to customize content in the fashion that is most appropriate

		Packaging guidelines provided for each plug-in type

		Well-structured plug-ins aid in configuration of methods for different contexts and licensing levels

		Plug-in structure can be mirrored and or extended a different licensing levels to facilitate the customization of open source content and provide the means to create compatible extensions

EPL V1.0

Concept and Core Plug-ins

Core plug-ins contain content that is highly reusable for each licensing level

Expect majority of content to be work products, and roles with common guidance and a limited number of generic tasks

Concept plug-ins contain content pertaining to basic background information applicable to all other plug-ins

com.core

lic.core

int.core

prop.core

com.cncpt. base

opn.core

com.cncpt. expanded

com.cncpt. tailoring

com.cncpt. authoring

There is intended to be one core plug-in with common stuff, and then a set of plug-ins that are unique for different contexts (e.g., system development, management, method tailoring, method configuring).

Concept Plug-ins (cncpt)

Description: Concept Plug-ins represent basic information about either the tooling or architecture that applies to anyone making use of the tool or architecture so as to be considered the equivalent of being part of the actual tool itself.

Purpose: used to provide basic background information about the method, since not all concepts apply to all user groups (i.e. beginning users require a more thorough explanation that advanced users and some concepts may only apply to those authoring or tailoring the method).

Contains: mostly guidance, some custom categories related to that plug-in

Package structure: based on categories of guidance included

Extends: concept

Extended by: concept (exception is base concepts)

Configuration rules: normal rules for inclusion/exclusion of items and error handling (the base concepts plug-in should form the basis for any library)

Usage: the inclusion of additional concept plug-ins should not impact existing plug-ins or require any other modifications

Considerations: whether authoring process is exception to the above

Core Plug-ins (core)

Description: Core plug-ins should contain highly reusable content applicable across a wide variety of contexts and should minimize default relationships established (particularly those with a multiplicity of 1 due to limitation on variants). Core plug-ins may also includes the basic navigational building blocks for developing standardized views to be used in configurations for the publishing of web sites.

Purpose: used to provide finest grained common building blocks for the development of additional methods

Contains: artifacts, outcomes, roles, domains, WP kinds, role sets, custom categories (pre-defined or views), limited guidance that is global in nature

Package structure: Package structure of core plug-ins will mirror domain structure for work products with additional packages to further segment content based either on subject or typical usage scenarios which may be based on the size of the project (and assumed formality of accompanying guidance) or alternative approaches to developing the solution. Package structure of roles should be based on expected usage patterns.

Extends: base concepts

Extended by: context, resource, tool, limited cased technique

Configuration rules: errors from missing items based on categories should be ignored; dependencies should only be within the same or nested packages to eliminate other errors

Usage: When building a configuration it is expected that only some portions of the core plug-in will be used which is why minimizes cross package dependencies is essential. This plug-in serves as the basis for other plug-ins so no other special considerations are necessary.

Considerations: whether to create packages for individual roles and/or work products to allow a more precise selection for configurations and whether basic navigation should be moved to base concepts or left in core

EPL V1.0

Core Plug-In Package Structure Based on Common Categorization Schemes

Package structure for core plug-ins broken out by types of content and the further by the primary categorization scheme for that item (i.e. domains for work products, role sets for roles, etc.)

Separating out types at the core level is intended to make reuse easier without including extraneous content in selected configuration

Starting with existing categorization schemes makes navigating library structure easier

Expect that the package structures will break content out to a finer level of detail than the actual categories

Additional groupings can either be by subject area or anticipated usage based on complexity or size of projects

EPL V1.0

Context Plug-ins

Context plug-ins contain content that has either been customized from the core for a particular area or new content that is specific to that area that would most likely not be reused outside of that context

Expect this to be the primary place for defining tasks, context specific guidance and process elements as well as defining relationships between core elements

Context plug-ins can then in turn be further refined by other more specific context plug-ins

com.core

com.cntx.

proj_mgmt

com.cntx. app_dev

lic.cntx. app_dev

int.cntx. app_dev

com.cntxt. PM_ror_AD

int.cntx.

legacy_AD

com.cntx. architecture

com.cntx. test

Fine grained CPs focused on outputting 1-5 related work products at the core level intended for high reuse (may not include roles?)

Large grained CPs intended to be primary building blocks for delivery processes at the context level

Context Plug-ins (cntxt)

Description: Context plug-ins are created for specific focus areas such as application development or project management. Assignments for default relationships should be established as high as possible in the overall context hierarchy to maximize consistency and reuse.

Purpose: Primary means for defining relationships between elements and creating content specific to a particular are of concern that will be used to develop the actual delivery processes.

Contains: disciplines, capability patterns, specialized artifacts, outcomes with limited reusability, deliverables, tasks and guidance particular to that context

Package structure: Tasks should be packaged based on the disciplines defined for that context. Deliverables can either be packaged with the appropriate tasks or be broken out by complexity of project for which they apply (i.e. small, medium, large) and/or typical groupings of what are delivered together (i.e. conceptual vs. implementation). Capability patterns should be grouped by related discipline with smaller patterns being used to build larger patterns. Package structures related to roles or work products should mirror those in the core plug-ins they are extending to provide a consistent way of creating configurations.

Extends: core, context

Extended by: context, technique, resource, process

Configuration rules: normal rules for inclusion/exclusion of items and error handling

Usage: may require that some of their additional elements be added to the processes being utilized. This may be done by creating a new process plug-in off the original or can be done during tailoring for an individual project.

Considerations: need additional guidance on when to combine vs. separate contexts based on reuse

EPL V1.0

Process plug-ins provide guidance on how to execute supported by resource, tool & technique plug-ins

		Process plug-ins are similar to context plug-ins but are designed to contain the variations and elements specific to a single or small family of delivery processes

		Resource plug-ins allow for the inclusion and/or replacement of different templates, examples and the like

		Tool plug-ins allow for the swapping out of different related guidance

		Technique plug-ins vary existing content without adding new content that would require changes to existing implementations

com.cntx. app_dev

com.cntx.

PM_for_AD

com.tool.

vendor

com.tech. j2ee

com.res. formal

com.core

com.proc. app_dev

Process Plug-ins (proc)

Description:

Purpose: Process plug-ins are intended to be used for any final tweaks to content and the creation of delivery processes and any necessary additional capability patterns required by that process. Process plug-ins are intended as the meeting the minimum requirements for publishing a process (leaf level????)

Contains: delivery process (multiple if closely related), variants

Package structure: Package structures should mirror those of the plug-ins being extended and include packages for delivery processes.

Extends:

Extended by:

Configuration rules:

Usage:

Considerations:

Delivery processes may be customized from another delivery process, made up of capability patterns and/or include stand-alone activities and descriptors. However it should be noted that it will be harder for extensions at the context level to be included in delivery processes where capability patterns have not been used.

Technique Plug-ins (tech)

Description: Technique plug-ins are intended to modify an existing context or process plug-in for the application in a specific area, using a specific tool or specialized approach/technique. Technique plug-ins typical only vary existing content or add guidance to existing elements so that any further contexts or process plug-ins will get the benefits of those techniques with out a separate technique plug-in having to be built for each. (The exception to this is where existing capability patterns are contributed to which is not yet supported in the tooling.)

Contains:

Package structure:

Extends: context, technique

Extended by: technique

Configuration rules:

Usage: adding this to a configuration should require no other modifications to existing plug-in (similar to current plug-in behavior in RUP), techniques should be applied high in the hierarchy to have the broadest impact rather than at the process plug-in level

Considerations:

Tool Plug-ins (tool)

Description:

Purpose:

Contains:

Package structure:

Extends: core

Extended by: technique

Configuration rules:

Usage: adding this to a configuration should require no other modifications to existing plug-in (similar to current plug-in behavior in RUP)

Considerations: need to examine if this is really different than technique and whether default tools should be included as a deselectable package in core, also need to look at interplay between this and resource plug-ins and guidance on reports vs. “form” work products

In the case of technique plug-ins built for tools it is recommended that where possible the main tool mentors be associated to the core work products via contribution with a plug-in extended the core plug-in so those tool mentors can apply to any context using those work products and that tool. If need be a second technique plug-in extending that one can be created that also links to a particular context plug-in.

Resource Plug-ins (res)

Description:

Purpose:

Contains:

Package structure:

Extends: core, context

Extended by: resource

Configuration rules:

Usage: adding this to a configuration should require no other modifications to existing plug-in (similar to current plug-in behavior in RUP)

Considerations:

Alternative resources should be created in resource plug-ins that have a compatible package structure to allow for the creation of configurations without errors and should replace the default resources (there is currently a bug so that the replaced elements do not appear in out-going relationships from other elements that should be addressed in 7.1 otherwise a contribution should be created for the original reference element to allow the navigation between element and resources to remain bi-directional). Resource plug-in should not extended except in limited cases by other resource plug-ins.

EPL V1.0

Additional plug-ins support standards compliance and management of the method

		Standards plug-ins define what is required for various standards, how different parts of the method support these standards is handled via mappings in the different compliance plug-ins allowing content to support multiple standards

		Method management plug-ins provide additional information regarding the quality, governance and other aspects related to managing the content

com.cntx. mgt_sys

com.stds. cmmi

com.cmpl. mgt_sys_

cmmi

com.mthmgt

com.core

Method Management Plug-ins (method_mgmt)

Description:

Purpose:

Contains: custom categories for management of methods only and related variants

Package structure:

Extends: all

Extended by: none

Configuration rules: strictly for categorization, configuration errors don’t matter

Usage: should not be generally used in externally published sites, and may be preferable to exclude from internal publications as well except in limited circumstances

Considerations:

Method Management plug-ins should be created for every other type of plug-in to categorize the content appropriately <<poor solution really requires meta-model change>>, consider a single method management plug-in per licensing level?

EPL V1.0

Plug-In Naming Conventions

		Licensing Layers

opn = Open Source Layer

com = Commercial Layer

lic = Licensing Layer

int = Internal Layer

prp = Proprietary Layer

		Plug-in Types

cncpt = Concept Plug-ing

core = Core Plug-in

cntx = Context Plug-in

proc = Process Plug-in

res = Resource Plug-in

tech = Technique Plug-in

mthmgt = Method Management Plug-in

stds = Standards Plug-in

cmpl = Compliance Plug-in

tool = Tools Plug-in

licensing_layer. _plugin_type. Descriptive_name

Plug-in names are made up of three parts, the first piece identifies the licensing layer, the second part is descriptive name for the type of content included, with the last part identifying the type of plug-in

Ib-
:__

,.__.
I

____..__

In-

©
___“:__

= B Method Content
= (3, Content Packages
= 2 work products
= B develpment
" i andlysis_desion
= B requrements
" B requirements_ith se cases
C5 Roles.
B Tasks
(68 WorkProducts
(® Guidance
B archiecture
. B implementation
B test
C5 Roles.
B Tasks
(68 WorkProducts
(® Guidance
- B management
C5 Roles.
B Tasks
(68 WorkProducts
(® Guidance
G2 Standerd Categories
Dispines
= g8 Damains
(£ Development.
= 3 Management
(38 Project Manageent
= Operations
(2 Deployment
(38 Work Product Kinds
C5 Role Sets
G Tooks
(2 Custom Categories
-G Processes

_1217159663.doc

[image: image1.emf]Management

Project

Management

Organization Business

Relationship

Management

Marketing

Quality

Management

Business

Strategy

Business

Process

Business

Value &

Financials

Human Capital

Strategy &

Management

Learning

Knowledge

Management

Organization

Design

Organization

Change

Management

Architecture

Operating

Platform

Technical

Solution

Design

Maintenance

Operational

Architecture

Functional

Architecture

Enterprise

Architecture

Deployment

Business

Continuity

IT

Management

& Monitoring

Facilities

Selection

Operations

Technical

Solution

Development

Storage

Infrastructure

Networking

Business

Performance

Management

Standards &

Policies

Sales

Environment

Test

Technical

Solution

Requirements

Method

Development

Technical

Solution

Implementation

Intellectual

Property &

Asset Reuse

Security &

Privacy

Architecture

The Architecture domain contains work products that address architecture at the enterprise and solution level. The work products at the enterprise level provide guidance to promote consistency across multiple projects endeavoring to solve a specific business problem, while the work products at the solution level describe how to capture the architecture of a system intended to satisfy some particular purpose. Both sets of work products focus on the key technical decisions, including significant elements, patterns and scenarios that drive and constrain the design and overall implementation. The Architecture work products assist in the resolution of competing concerns and decisions that may be made regarding system qualities.

Enterprise Architecture

The Enterprise Architecture sub-domain work products provide a framework for both business and IT, which guide investment and design decisions. They specify processes, standards, interfaces, and common services for the deployment and management of IT assets in support of business objectives. These work products are part of the Enterprise Architecture Framework that provides linkage among a business strategy, an IT strategy, and the implementation of IT solutions. Enterprise Architecture work products address four constituent parts: Business, Data, Application, and Technical Architectures, although in IBM’s EA framework there are three: Business, Information Technology (business dependent IT), and Technology (business dependent IT), each of which can be subdivided according to ones focus (such as functional, operational, data, security, etc.).

Functional Architecture

The Functional Architecture sub-domain contains work products concerned with the functionality of collaborating software components of an IT system. The functional aspect is expressed as one or more models that represent the static structure and dynamic behavior of the components in the system.

The work products for these components are defined in terms of interfaces and operations. Structure is defined in terms of component composition and usage relationships. Behavior is defined in terms of component collaborations and is expressed as sequence diagrams.

The work products reflect the need to satisfy service-level characteristics.

Operational Architecture

The Operational Architecture sub-domain comprises work products that are concerned with the distribution of IT system components across the organization's geography in order to achieve the required service level characteristics (performance, availability, and so forth). They are also concerned with the systems management functions and activities needed to maintain the IT system components such as software distribution and responding to alerts.

The Operational Architecture work products are normally represented by one or more operational models that show the type and location of hardware nodes, connections, network topology, and the placement of deployment units. In order to emphasize spatial organization, the Operational Architecture work products do not show functional details such as how software components collaborate.

Business

The work products in the Business domain provide a basis for understanding a business context. This is normally prerequisite to defining the solution that is to be produced. These work products provide a definition of a client's business and help to establish the business opportunity that provides the motivation for the project. They may also be used to document business processes and capabilities both internal and external to an organization that are used as the basis for improvements, as well as defining work products that capture information related to marketing, standards and polices and decisions based on the business direction.

Business Performance Management

The Business Performance Management sub-domain includes work products are used to improve and measure overall business performance by aligning strategic and operational objectives with business activities. These work products provide a basis for making more effective decisions as well as better managing business operations by minimizing disruptions.

Business Process

The work products in the Business Process sub-domain include those associated with scoping a project from a process perspective; assessing and analyzing current process performance; designing and testing the future process design, understanding the gap between the current and future process environments; and prioritizing the changes that have to be made.

Business Strategy

The work products in the Business Strategy sub-domain concentrate on internal capabilities and cover both strategy analysis and strategy formulation.

The strategy analysis work products focus on identifying relevant attributes in the business and interpreting them in light of existing strategies or potential strategies for the future. The work products address the analysis of players and possibilities, identifying the implications of specific environmental conditions, and identifying uncertainties in the business’s strategic decisions.

The strategy formulation work products address an enterprise strategy that could be at a corporate, business unit, or organizational level. The work products also address the decomposition of an enterprise level strategy to create detailed process or resource strategies that may applied to lower levels within an enterprise. Technology is an integral component in these work products.

Business Value & Financials

The work products in the Business Value & Financial sub-domain address the value of initiatives and the value that is captured is measured and managed. A business case normally provides the information and tools to make business investment decisions.

Marketing

The work products in the Marketing sub-domain address marketing strategies that identify target audiences, craft compelling value propositions, determine how to capture value, and devise relationships with intermediaries to reach customers. Essentially, the marketing strategy work products concentrate on the communication of value propositions to external audiences.

Selection

The work products in the Selection sub-domain deal with identifying, evaluating, and selecting a capability or solution based on a set of business requirements. These work products may also be used to select hardware and software products, as well as services both internally and externally.

Standards & Policies

The work products in the Standards & Policies sub-domain relate to the documentation of standards and best practices. They are also used to develop strategies for achieving or maintaining compliance to standards.

Infrastructure

The work products in the Infrastructure domain define the necessary supporting framework required to deliver a solution in the form of facilities, networks, operating platforms, workstations, servers, and storage. The Infrastructure work products are the physical implementation of an architecture. These work products include the specification and configuration of resources to provide a solution.

Facilities

The work products in the Facilities sub-domain address evaluating current facilities, and planning, designing, implementing, and maintaining future facilities. Typical items within scope include: buildings, equipment, cabling and wiring, security, fire protection, physical space, power capacity and protection, climate control and flooring.

Networking

The work products in the Networking sub-domain address the planning, design, and construction of a physical network infrastructure. The work products contain information that capture physical and logical network diagrams; performance, capacity, and availability data, and network management processes such as network organization, skills, and training, current vendors, services, and products.

The Networking domain work products have close ties to other aspects of a system or solution such as systems management, business processes, performance, capacity, help desk, problem determination, security, testing, and business continuity and recovery.

Operating Platform

The work products in the Operating Platform sub-domain address the standard platforms on which a solution is expected to run. The work products may be used to specify platforms required for the solution. They also address versions and configurations.

Storage

The work products in the Storage sub-domain are used to specify storage products for a solution. They are also used to define configurations for the storage devices.

Management

The work products in the Management sub-domain provide guidance on how a solution is to be developed including the overall management of the project. These work products support the development effort required to build the solution rather than forming part of the solution itself. As such, these work products are often key inputs to other parts of the development process or serve as ways of documenting adherence to the overall process. These work products provide a framework for the policies and processes that the project organization uses to achieve its objectives.

Environment

The work products in the Environment sub-domain describe the environment needed to support and manage the development of a solution. They contain project specific guidance and information related to the adoption of the overall development process as well as defining the infrastructure and tooling needed. This includes items related to managing the overall work environment and maintaining version control of the items that will be produced as part of the project, but i is not intended to cover the definition of items that will be included as part of the solution.

Intellectual Property & Asset Reuse

The work products in the Intellectual Property & Asset Reuse sub-domain provide guidance on the creation and reuse of assets. Assets may be harvested or created, and hardened as a stand-alone effort to develop for use on one or more projects or as part of a general reuse strategy when developing solutions. The work products also address intellectual property rights related to the use of assets both internally and externally.

Project Management

The work products in the Project Management sub-domain focus on the defining, planning, staffing, monitoring and reporting required for the overall project, program or portfolio. These work products also define how things like risk, change and deliverables will be managed for a particular project, program or portfolio.

Quality Management

The work products in the Quality Management sub-domain support the definition of quality objectives and the independent verification and validation of a project's state with respect to its quality objectives.

The work products are also used prior to the project initiation to determine if the proposed solution can be delivered, that business case for the solution can satisfy the respective business objectives, and that the risks have been identified and addressed appropriately.

Relationship Management

The work products in the Relationship Management sub-domain focus on managing the relationship either within a project or between development organizations, their sponsors, suppliers, subcontractors, and customers.

Sales

The work products in the Sales sub-domain address the information and processes required to sell products and services.

Method Development

The work products in the Method Development domain describe the work products that are produced as part of the authoring of a new method. This does not include work products related to the adoption or application of a method on a specific project.

Operations

The work products in the Operations domain organize work products concerned with deployment of a solution to the operational environment and the subsequent maintenance of that solution in that environment. These work products focus on the “steady state” aspects of the solution.

Business Continuity

The work products in the Business Continuity sub-domain assist with the assessment, design, implementation, and management of business protection and recovery programs. These work products focus on either making critical business functionality continuously available or providing a smooth transition and recovery plan in the case of interruption.

Deployment

The work products in the Deployment sub-domain address the actual rollout of the solution into the production environment. They do not address the solution being deployed but instead focuses on the supporting materials needed for a successful deployment of that solution.

IT Management & Monitoring

The work products in the Information Technology Management & Monitoring sub-domain are typically used when improved management of IT resources and infrastructure is required. These work products contain information about IT, organization, process, finance, strategic direction, policies, procedures, and guidelines. They contribute to integrated transition planning and business case creation.

Maintenance

The work products in the Maintenance sub-domain provide structure and guidance for the maintenance of existing systems. Since maintenance work is typically built upon the foundation of other work products produced in development, the work products unique to the Maintenance sub-domain focus on the identification, prioritization, and selection of the maintenance work that is to be done. This is vital to the typical maintenance engagement Service Level Agreements (SLAs), and other contract and service measures are dependent on this effective management of maintenance work.

The work products may also be used to trigger enhancements to an operation environment that require the redesign or parts of the system or the introduction of new functions.

Security & Privacy

The work products in the Security and Privacy sub-domain address primarily business issues and secondarily IT issues. The work products, therefore, are related to virtually all other domains. A client's security and privacy requirements need to be understood and met as part of any project. Due to their pervasive nature, the work products in this sub-domain depend on or place dependencies on the work products of many other domains. These dependencies can be strong or weak depending on the context. These work products assist in understanding the security and privacy issues, risks, exposures, and vulnerabilities. They also include materials related to operational responsibilities for performing all elements of security operations, including on-going vulnerability testing and real-time intrusion detection.

Organization

The work products in the Organization domain focus on organizational (people) and cultural aspects of a solution. The work products identify the organization’s structure and key areas of impacts and issues that may be affected by the solution. Additionally these work products include information related to the overall transformation and enablement of an organization.

Human Capital Strategy Management

The work products in the Human Capital Strategy Management sub-domain address the needs of the people in an organization, the needs of the organization itself, and opportunities that optimize a client's business value. The work products are used during the conception, design, development, implementation, deployment, production environment, management, and measurement of a system, solution, or business.

Knowledge Management

The work products in the Knowledge Management sub-domain focus on the strategy, processes, communities, and tools needed to identify and manage knowledge that is critical to running a business or organization. The work products also address where the knowledge resides, how to acquire or harvest it, and how to disseminate it to those who need the knowledge it.

Learning

The work products in the Learning sub-domain address education and user support strategy, planning, design, delivery, and materials. Learning materials repositories and measurement of learning effectiveness are also addressed. The key focus of these work products is to facilitate or support knowledge transfer through a variety of mechanisms.

Organization Change Management

The work products in the Organization Change Management sub-domain deal with the process of transitioning a business from its current state to a desired state through the combination of organization, process, and IT transformations. The work products identify the ability of the client to persevere through the changes required to successfully build and deploy a new system or solution. Work products cover plans and supporting elements to facilitate and implement the transition to the desired state.

Organization Design

The work products in the Organization Design sub-domain contain information to help understand the current organization including both assessments and definitions, as well as information that document the desired organizational structure.

Technical Solution Development

The work products in the Technical Solution Development domain address the work products used to create a hardware solution, software solution or system solution. These work products address the requirements, design and implementation of that solution.

Technical Solution Design

The work products in the Technology Design sub-domain describe how the requirements are transformed into a logical abstraction of the solution, to enable the implementation of the solution.

Technical Solution Implementation

The work products in the Technical Solution Implementation sub-domain address the construction of the solution including the creation of the required ancillary materials needed to package that solution for deployment. The solution being developed may be software, hardware or a system.

Technical Solution Requirements

The work products in the Technical Solution Requirements sub-domain address the elicitation, documentation, and management of the requirements for the software, hardware or system solution being developed.

Test

The work products in the Test domain define the work products that address test planning, managing and controlling the testing process, analyzing test results, and reporting on testing activities. The Test work products are used not only to validate that the solution has met it’s objectives, but are used throughout the project to test the different elements that contribute to the development of the overall solution.

_1215520804.vsd

text�

Management�

Project Management�

Test�

Organization�

Business�

Relationship Management�

Marketing�

Quality Management�

Business Strategy�

Intellectual Property & Asset Reuse�

Business Process�

Business Value & Financials�

Human Capital Strategy & Management�

Learning�

Knowledge Management�

Organization Design�

Organization Change Management�

Technical Solution Development�

Architecture�

Operating Platform�

Technical Solution Design�

Maintenance�

Storage�

Networking�

Infrastructure�

Operational Architecture�

Functional Architecture�

Enterprise Architecture�

Deployment�

Business Continuity�

IT Management & Monitoring�

Facilities�

Selection�

Operations�

Technical Solution Requirements�

Business Performance Management�

Standards & Policies�

Sales�

Environment�

Method Development�

Technical Solution Implementation�

Security & Privacy�

