
Supporting Material: Process Components Case Study file:///C:/temp/rupcomp/components/guidances/supportingmaterials/proccomp_casestudy_over...

1 of 11 6/1/2006 18:07

Process Components Case Study

Expand All Sections Collapse All Sections

Main Description

Case Study: Process Components in Eclipse Process Framework Composer

Overview

This published site provides an outlook to how Process Components could be realized in Eclipse Process Composer. It currently presents one Process
Component called Define Scope.

To learn more about component, please review first the following documents:

Concept: SPEM 2.0 Process Component explaining how process components are defined in SPEM 2.0
Concept: Convansys Process Component explaining how Convasys defined and used components in the past

Case Study Scope

This case study current realizes one component using RUP content that has been donated by Convasys. I re-modeled the original Convasys component
using the SPEM 2.0 concepts and created this mock-up site.

Here as summary of the key changes I did when modeling the Define Scope component based on an example from Convasys:

I did not use the discipline grouping as some activities contained work from other disciplines (e.g. prototype UI). Although the results of that work
supports the quality of the requirements discipline it is not requirements work. I also believe that breakdown structures should focus on a breakdown of
work and not introduce artificial summary tasks/activity for grouping especially if we are going to create cross-discipline activities in OpenUP.
I used task from RUP701 and therefore they might look a little bit different than Kirti's original.
Kirti did not provide me with a black box component diagram for Manage Scope, so I had to do some guesswork and derived what is input and what is
output myself by looking at the RUP tasks involved and what makes sense.
I updated all task descriptors to only cover the work to be covered by the component, i.e. I changed the input and outputs and selected relevant steps
only.
I changed the exist states a bit from Kirtis, because I thought there was room for improvement. For example "Updated" is not really a state and very
ambiguous. Whenever you do a change on a ork product it is updated, but exit states should rather express explicitly what as changed and/or what new
state is available on the work product. I therefore chose state names such as "features defined", "use case prioritized" instead of "updated".

Define Scope process component walkthrough

External Process Component view

When loading the published case study site and selecting the process component Define Scope in the tree-browser and then reviewing the component's
description tab you will see and overview of the component. The diagram in the Description view shows the external component view listing input and output

Supporting Material: Process Components Case Study file:///C:/temp/rupcomp/components/guidances/supportingmaterials/proccomp_casestudy_over...

2 of 11 6/1/2006 18:07

ports using the UML 2.0 presentation for components. The output ports specify in their names the state of the work products that get send through that port.
Similar states can be define for the inputs, but has not been done in this case study as the Convasys source for this particular component only specified
output states.

Supporting Material: Process Components Case Study file:///C:/temp/rupcomp/components/guidances/supportingmaterials/proccomp_casestudy_over...

3 of 11 6/1/2006 18:07

Supporting Material: Process Components Case Study file:///C:/temp/rupcomp/components/guidances/supportingmaterials/proccomp_casestudy_over...

4 of 11 6/1/2006 18:07

The type of the ports corresponds one to one to work products, which leads to individual ports for each an every work product required by the component as
well as produced by the component. An alternative way of using ports could be the following:

This representation makes use of the fact that in UML 2.0 component ports have a type, which can be related to interfaces with a usage dependency or
realization relationship. Usage dependencies indicate required interfaces that could be interpreted as inputs and realizations indicate provided interfaces that
can be interpreted as outputs. Modeling process component in this way would have the advantage that much less ports need to be specified, but the
disadvantage would be that we would need to create interfaces for all work products defined in method content.

Internal Process Component view

When selecting the Work Breakdown Structure in the same page the internal view of the process component is presented, which comprises of the activity
diagram and the breakdown structure.

Supporting Material: Process Components Case Study file:///C:/temp/rupcomp/components/guidances/supportingmaterials/proccomp_casestudy_over...

5 of 11 6/1/2006 18:07

Supporting Material: Process Components Case Study file:///C:/temp/rupcomp/components/guidances/supportingmaterials/proccomp_casestudy_over...

6 of 11 6/1/2006 18:07

EPF Composer specific capabilities have been used to model this breakdown in the exact same way as the Convasys source. The different process views
such as Team Allocation and Work Product Usage view can now be used to examine the detail of the component. For example the work product states that
were visible in the port names for outputs have been specified in the Work Product Usage view as show below. This information can be reviewed in the EPF
Composer tool as well as the published site.

In addition to presenting work products and their states activity by activity, EPF Composer can also create so-called roll-ups that combine the work products
from lower breakdown levels and summarize them for a higher breakdown level. Such roll-ups can be used as a bill of materials for the component showing
all participating work products. For example, the image below shows now all the work products used and produced by this process components, if they are
used as input and/or outputs by the underlying activities, as well as a summary of all the states the work product go through inside the component.

Supporting Material: Process Components Case Study file:///C:/temp/rupcomp/components/guidances/supportingmaterials/proccomp_casestudy_over...

7 of 11 6/1/2006 18:07

For example, the Vision document goes through three different states, because it is manipulated in three different activities in the component. As one can
see one image above the "Define the System" activity establishes the state "Features Detailed" and the "Manage the Scope of the System" activity
establishes the state "Scope defined". The roll-up displayed above shows the combination of all of these states.

When specifying ports for this component the end-user would need to manually select now which of these states will be the final states of the work products
that pass through the ports. This information cannot be automatically be detected as many components such as this one would define parallel work. The
EPF Component model either would need to list all states a work product passed through in the components or an end-user needs to make the selection,
which the final state should be.

EPF Composer provides other views on the component in the tool or published Web-site such as a role overview presenting a list of all roles involved in the
component or a so-called consolidated view that combines all the information modeled for the component.

Supporting Material: Process Components Case Study file:///C:/temp/rupcomp/components/guidances/supportingmaterials/proccomp_casestudy_over...

8 of 11 6/1/2006 18:07

Supporting Material: Process Components Case Study file:///C:/temp/rupcomp/components/guidances/supportingmaterials/proccomp_casestudy_over...

9 of 11 6/1/2006 18:07

The image above shows the Team Allocation view from the published Web-site that shows all roles participating in the component, plus the work products
they are responsible for and the task they will perform. this view allows team member that are assigned to play any of these roles in the component with a
quick overview of what they key information relevant to them.

Supporting Material: Process Components Case Study file:///C:/temp/rupcomp/components/guidances/supportingmaterials/proccomp_casestudy_over...

10 of 11 6/1/2006 18:07

Supporting Material: Process Components Case Study file:///C:/temp/rupcomp/components/guidances/supportingmaterials/proccomp_casestudy_over...

11 of 11 6/1/2006 18:07

Finally the image show above presents the Consolidated View showing the complete breakdown of work, roles performing tasks as well as the input/output
for the tasks.

Back to top

