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Abstract.  The new standards advocate integrated 
engineering processes.  A process is a kind of system.  
As such, it derives its added value from the 
relationships among its parts (e.g., activities).  For a 
group of activities to be truly integrated (versus merely 
aggregated), their interfaces must be well defined.  In 
engineering processes, these interfaces usually indicate 
a flow of information.  Engineering processes are 
extremely complex because of the large number of 
interfaces, as many types of information flow to many 
destinations.  This paper reviews a powerful technique, 
the design structure matrix (DSM), for representing and 
analyzing complex processes.  The DSM is extended to 
account for external inputs and outputs, providing the 
basis for process "puzzle pieces" that can be assembled 
to form large, integrated processes. 

INTRODUCTION 
Emerging standards for engineering, design, and 

product development processes such as CMMi, EIA/IS 
731, ISO 15288, etc. advocate the inclusion of a 
number of “good practices.”  Essentially, these 
practices are activities that should be part of any 
development process so that it can be capable, mature, 
repeatable, etc.—with the implication that such 
processes provide the maximum value to their 
customers and users.  Unfortunately, processes for the 
development of large, complex systems are already 
complex, and the inclusion of additional activities does 
not make them any simpler. 

One of the major problems in complex system 
development projects is the difficulty coordinating the 
contributions of a number of activities, such that each 
of these contributions comes at just the right time.  In 
product development, many of the contributions come 
in the form of information that is consumed, 
transformed, and supplied by activities.  The value of 
the process is compromised when information is “out of 
sync,” forcing those executing activities to make 
assumptions in the absence of real data [3, 4].  This 

problem is exacerbated as more activities and 
contributions must be managed.  No one can keep track 
of everything.  We need better tools that will give us 
visibility into these situations, highlight problems, 
suggest solutions, and be able to handle increasing 
complexity. 

A classic means to address and reduce complexity 
is through modeling.  A model is an abstract 
representation of reality that is built, analyzed, and 
manipulated to increase understanding of that reality.  
A good model is helpful for testing hypotheses about 
the effects of certain actions in the real world, where 
such actions would be too disruptive or costly to try in 
the real situation.  Here, we are interested in models 
that will help us represent, understand, manage, and 
improve complex processes.  Such models would also 
facilitate process integration. 

Process modeling, like many other types of system 
modeling, is often approached through process 
decomposition into simpler elements.1  But a complex 
process is more than just a grouping of activities.  It 
exists for a purpose—to produce something.  Especially 
in product development context s, that something 
typically requires the activities to collaborate, not 
simply to make a unilateral contribution.  Process 
complexity is a function of (1) the number of elements, 
(2) the individual complexity of each of those elements, 
(3) the number of relationships between the elements, 
and (4) the individual complexity of each of those 
relationships.  Rechtin [7] reminds us that relationships 
among elements are what give systems their added 
value, and that the greatest leverage in systems 
architecting is at the interfaces.  This is no less true for 
processes.  Hence, a good process model must account 
for the interfaces between its activities.  Unfortunately, 
what often passes for a process model in industry fails 
to say much about the relationships between activities, 

                                                                 
1 Of course, decomposition presents the danger of incorrect 
abstraction—failing to represent the characteristics of the process that 
provide its full value and capability. 
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as evinced in flowcharts where the modelers label the 
boxes but not the arrows. 

While many organizations that develop complex 
systems have made efforts to “document their 
processes,” very few have actually built (and committed 
to improve and learn from) useful process models.  
Furthermore, the process models or descriptions that do 
exist are often unintegrated, and it is left to those 
attempting to plan, execute, and manage projects to 
wicker disparate process models into a coherent whole.  
Unfortunately, what emerges is seldom understandable 
by or useful to many people, and it often has little 
impact on actual project planning, execution, and 
management.  On the other hand, an integrated process 
model would be very valuable to a number of users. 

Some people confuse the real process (how work 
is really done) with the process model or definition, 
which is only an abstract representation of the real 
process.  Standard processes, tailored processes, 
flowcharts, etc. are all just process models.  Models can 
be improved by adding more detail (making them less 
abstract) and by verifying that they adequately and 
accurately represent reality.  It is usually the case—
especially in complex processes like engineering—that 
the models never fully represent the way work really 
occurs.2  Thus, a prerequisite to process improvement 
(changing the real process) is increasing the adequacy 
and accuracy of the process model. 

How do we know when a process model is 
sufficiently adequate and accurate?  It depends on the 
intended use of the model.  The list in Table 1 covers a 
variety of potential uses for (and users of) process 
models.  No one user would need all of the listed 
capabilities.  Various types of users require different 
views of process model data.  However, all of the 
information represented by any view of a process model 
must come from a consistent source (typically a 
database).  (When data are added or updated, those data 
should automatically update in the views of all users.)  
The goal is to provide a single process model that is 
sufficiently adequate and accurate for all of these uses 
and users at once.  This is possible because it is easy to 
extract only the relevant portion of a detailed process 
model and provide it to a user with limited needs.  But 
it is extremely undesirable to maintain a variety of 
disparate, less-detailed models of the same process.  
Unfortunately, this is the current situation in many 
companies:  several unintegrated representations of how 
work gets done are maintained by various users for 
various uses—e.g., cost and schedule accounting by one 
group, planned work flow and assignments by others, 

                                                                 
2 Modelers often describe the way things have always been done 
(which probably needs to be improved) or the way they would like 
things to be done (which is unverified and may be infeasible). 

potential activities to add to the plan by others, the 
“standard” view of the process by others, etc. 

 

• Program Planning:  A process model helps determine 
the statement of work (SOW), the work breakdown 
structure (WBS), the integrated master plan (IMP) and 
schedule (IMS), and therefore the systems engineering 
master/management plan (SEMP).  It also helps to 
estimate cost, schedule, effort, resources, and risk.  It is 
therefore useful for proposal preparation. 

• Program Execution:  A process model helps identify 
the critical path, determine what to work on this week, 
evaluate progress, coordinate deliverables, analyze the 
impacts of changes and the value of options, and replan 
the remainder of a program. 

• Baseline for Continuous Improvement:  A process 
model helps analyze potential process changes in terms 
of net value (investment costs vs. value added benefits) 
and helps isolate root causes of problems. 

• Knowledge Retention and Learning:  A process model 
captures lessons learned when the process does not work 
as expected. 

• Process Visualization:  A process model helps people 
visualize where they are in a process and what they need 
and must produce and when. 

• Training:  A process model can help new hires get 
oriented, see what they need to do and why, and see 
where to go for more information. 

• Framework for Metrics:  A hierarchical process model 
serves as the framework for organizing low-level 
measures and for rolling them up to feed high level 
metrics that tie directly to business goals. 

• Compliance/Audits/Assessments:  A process model 
helps an organization comply with audit requirements 
and assessments. 

Table 1:  Uses of a Good Process Model 

This paper presents an approach to process 
modeling and integration that provides the foundation 
for all of these uses.  The next section discusses the 
building blocks of a process model.  Then, a process 
representation and analysis technique called the design 
structure matrix (DSM) is reviewed.  The paper then 
discusses the importance of process synchronization, 
which must be prefaced by process integration.  The 
DSM is used to demonstrate process integration 
applications. 

PROCESS MODELING OBJECTS AND THEIR 
ATTRIBUTES 

A basic process model can be built from two types 
of objects, process elements and deliverables.  Process 
elements represent processes, subprocesses, activities, 
tasks, or any package of work that produces an output.  
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Most process elements will require some kind of 
input(s) as well.  Both inputs and outputs are 
deliverables.  This paper will mainly refer to process 
elements as processes or activities, in the relative sense 
that processes are “parents” and activities are 
“children.”  The paper refers to deliverables as either 
internal or external, where internal deliverables are 
produced and consumed within the boundary of a 
process, and external deliverables are either produced 
or consumed outside the boundary of a process.  Some 
typical process element and deliverable attributes are 
listed in Table 2.  Process elements are the same basic 
type of object as IPO (input, process, output) and 
ETVX (entry, task, verify, exit) objects. 

These objects will often be defined in a 
decentralized fashion.  For example, a survey can be 
sent to a person with expertise in a particular activity to 
capture that activity’s attributes.  A model integrator 
can then assimilate multiple survey responses into a 
process model such as the one in Figure 1.  Model 
integrators will spend most of their time resolving the 
deliverable objects that link the process elements, since 
activity experts will seldom agree at first on deliverable 
names and flow paths.  After the initial model is built, 
with all of its inconsistent deliverables highlighted, all 
of the activity experts can be brought together to reach 
consensus.  Despite the effort required, a somewhat 
decentralized approach to model building allows the 
people doing the work to contribute, yielding a more 
accurate process description that users will accept. 

THE DESIGN STRUCTURE MATRIX (DSM) 
Complex processes quickly become challenging to 

represent, present, and understand.  Flowcharts with all 
kinds of boxes and arrows (“spaghetti and meatballs”) 
do not simplify the problem.  Fortunately, a technique 
for representing complex systems and their 
relationships in a concise and visual manner can be 
applied to processes.  As shown in Figure 2, a DSM is a 
square matrix with corresponding rows and columns.  
The diagonal cells represent the activities, which are 
listed from upper left to lower right in a roughly 
temporal order.  Off-diagonal cells indicate the 
dependency of one activity on another—e.g, 
information flow.  Reading down a column shows 
information sources; reading across a row shows 
information sinks.3  For example, Activity 1 provides 
information to Activities 2, 4, 5, and 6.  Activity 2 
depends on information from Activities 1 and 6 and 
provides information to Activities 3 and 4. 

Figure 2 shows how the DSM displays dependent, 
independent, and interdependent activity relationships.  
Since Activity 2 depends on information from Activity 
                                                                 
3 Some DSMs use the opposite convention—rows for sources and 
columns for sinks—resulting in feedback appearing above the 
diagonal.  The two conventions convey equivalent information. 

1, these two activities will probably be executed 
sequentially in the workflow.  Activities 3 and 4 do not 
depend on each other for information, so they may 
safely proceed in parallel (barring other resource 
constraints).  Activities 5 and 6 both depend on each 
other’s outputs.  These activities are said to be 
interdependent or coupled and are discussed below. 

Of particular interest are the cases where marks 
appear in the lower-triangular region of the DSM.  Such 
marks indicate the dependence of an upstream activity 
on information created downstream.  If project planners 
decide to execute the activities in the given order, 
Activity 2 will have to make an assumption about the 
information it needs from Activity 6.  After Activity 6 
finishes, Activity 2 may have rework if the assumption 
was incorrect.  The DSM conveniently highlights 
iteration and rework, especially when it stems from 
activities working with potentially flawed information. 

When we see a mark in the lower-left corner of the 
DSM, we know that there is a chance of having to 
return to the beginning of the process, which could have 
a catastrophic impact on cost and schedule.  The marks 
in the lower-left corner of the DSM may represent key 
drivers of cost and schedule risk.  Rearranging the 
activity sequence (by rearranging the rows and columns 
in the DSM) can bring some subdiagonal marks above 
or closer to the diagonal, thereby reducing their impact.  
Simple algorithms automate this exercise.  Adding 
quantitative information to the DSM and using 
simulation can quantify the impacts of process 
architecture changes on cost and schedule risk [5]. 

Sometimes a subdiagonal mark cannot be brought 
above the diagonal without pushing another mark 
below the diagonal.  This is a case of interdependent 
activities, such as Activities 5 and 6.  Each activity 
depends on the other.  They must work together to 
resolve a “chicken and egg” problem.  Coupled 
activities might work concurrently, exchanging 
preliminary information frequently.  If a subset of 
coupled activities must begin before the rest, the more 
robust (less volatile and/or sensitive) information items 
should be the ones appearing below the diagonal in the 
DSM.  If coupled activities are functionally-based, an 
opportunity may exist to fold the activities into a single 
activity assigned to a cross-functional team. 
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Process Element Attributes Deliverable Attributes 
• Name 
• Description 
• Inputs (and sources) 
• Outputs (and sinks) 
• Parent process element 
• Constituent subelements (“children”) 
• Metrics (duration, cost, risk, etc.) 
• Resources (critical skills, roles, tools, facilities, etc.) 
• Organizational assignment 
• Entrance criteria 
• Exit criteria 
• (And others in advanced model) 

• Name 
• Description 
• Supplier(s) 
• Consumer(s) 
• Parent deliverable 
• Constituent deliverables (“children”) 
• Format 
• Medium 
• Requirements 
• Verification and Validation criteria 
• (And others in advanced model) 

Table 2:  Fundamental Building Blocks of Process Models 

 

Activity

Activity

ActivityActivity

Activity

Higher level
process element

D

D

D
D D

D

D

 
Figure 1:  Linking of Process Model Objects 
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Figure 2:  Example DSM 
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Integration, test, and design review activities 
typically have marks in their rows to the left of the 
diagonal.  These activities create information (including 
results of decisions) that may cause changes to (and 
rework for) previously executed activities.  
Unfortunately, most process planners “plan to succeed” 
and their process models fail to account for these 
possibilities.  Fortunately, the DSM provides an easy 
way to document potential “process failure modes” and 
their effects on other activities.  The simple marks in 
the DSM can be replaced by numbers indicating the 
relative probability of information change, iteration, 
etc.  This enables an analysis of process failure modes 
and their effects on cost, schedule, and risk.  Process 
improvement investments can then target mitigation of 
the biggest risk drivers.  The process model thus 
becomes the repository for organizational learning 
(lessons learned), and future projects that follow the 
process receive the benefit of best practices. 

For a real-life example, Figure 3 displays a DSM 
of the Preliminary Design process for an uninhabited 
combat aerial vehicle (UCAV).4  The first dozen 
activities comprise the Conceptual Design phase.  In 
this phase, design requirements and objectives (DR&O) 
are prepared, a configuration concept is proposed, it is 
analyzed by a variety of discipline perspectives, and 
then these results are assessed.  The assessment may 
reveal a need to alter the DR&O, to create a new 
configuration concept, and/or to alter the current 
configuration concept.  This cycle repeats until the 
design space is sufficiently understood and/or time and 
money are exhausted.  (All of these activities are 
condensed into a single row and column in Figure 3.)  
The design process then moves into the Preliminary 
Design phase, where the configuration is developed and 
analyzed in more detail and the objective is to prepare a 
proposal to acquire funding for additional phases.  
Figure 3 shows the process “as is,” without any attempt 
to resequence the process to eliminate feedback.  This 
basic model served as the basis for additional process 
analysis, evaluation, discussion, and improvement. 

Figure 3 contains an additional extension:  the 
regions above and to the right of the main matrix 
account for external inputs and outputs, respectively.  
Since we can look down a column of the DSM to see 
where an activity receives its information from, we 
simply continue looking above, along the extended 
column, to see external inputs.  Similarly, we read 
across the extended row to see external outputs.  The 
first row in the external inputs region is a summary 
row, as is the first column in the external outputs 
region. 

                                                                 
4 The UCAV example comes from The Boeing Company and is fully 
documented in [1]. 

The DSM provides a concise, visual format for 
representing processes.  A process flowchart consuming 
an entire conference room wall can be reduced to a 
single-page DSM.  After a quick orientation, everyone 
can see how his or her activity affects a large process.  
People can see where information comes from and 
where it goes.  They can see why delaying the activities 
they depend on forces them to make assumptions, 
which may trigger rework later.  It becomes apparent 
that certain information changes tend to cause rework.  
Such situation visibility and awareness leads to 
improved process design and coordination.  The DSM 
also provides a process knowledge base from which the 
foundations of process plans and risk assessments can 
be drawn.  Moreover, the DSM is amenable to some 
simple yet powerful analyses. 

As a metaphor, consider the pictures made when 
fans in the stands at a football game each hold up a 
colored card.  None of those doing the work may be 
able to see the big picture.  The DSM provides the view 
from the blimp. 

DSMs have been developed for planning and 
managing projects in the building construction, 
photographic, semiconductor, automotive, aerospace, 
telecom, and electronics industries [2].  More detailed 
and quantitative models based on the DSM have been 
developed by several researchers [e.g., 5, 6, 8-10]. 

Perhaps the greatest barrier to DSM usage is the 
amount of information required to characterize the 
structure of a design process.  DSMs representing 
complex system development processes call for 
integrating the expertise of a number of people.  
Building a DSM also forces some people and groups to 
think in terms they may not be accustomed to.  But this 
is good, and it should be made to happen anyway.  A 
great amount of benefit is often realized simply by 
participating in the DSM construction process. 

THE IMPORTANCE OF PROCESS 
SYNCHRONIZATION 

The DSM provides important benefits for process 
representation and understanding, which are 
prerequisites for process improvement.  But process 
improvement requires looking outside as well as inside 
the process’s boundary.  The external regions of the 
DSM help with this challenge.  This section discusses 
why external inputs and outputs are essential to account 
for in a process model. 
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External Inputs l l l l l l l l l l l l l

Company_Historical_Data l l l l l l l l l l
Functional_Innovations_&_Assumptions l l l l l l l l
C&A_Requirements l
Specific_Vehicle_Mission_Requirements l
Payload_&_Avionics_Power_Info. l
Conceptual_Design_Deadline l
Conceptual_Design_Budget l
USAF_Requirements l
Preliminary_Design_Budget l
Preliminary_Design_Deadline l
Preliminary_Design_Resources l
Equipment_Geometry l
UCAV_Propulsion_Analyses l
Results_from_similar_loads_problems l

Activities 1-12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Conceptual Design Activities 1-12 l l l l l l
Prepare UCAV Preliminary DR&O 13 l l l l l l l l l l l l
Create UCAV Preliminary Design Configuration 14 l l
Prepare & Dist. Surf. Models & Int. Arngmnt. Drwngs. 15 l l l l
Create Initial Structural Geometry 16 l l l
Prepare Structural Geometry & Notes for FEM 17 l l l l l l l
Perform Aerodynamics Analyses & Evaluation 18 l l l l l
Perform Weights & Inertias Analyses & Evaluation 19 l l l l
Perform S&C Analyses & Evaluation 20 l l
Develop Structural Design Conditions 21 l l l l
Develop Bal. Freebody Diagrams & Ext. App. Loads 22 l l l
Establish Internal Load Distributions 23 l l l
Evaluate Structural Strength, Stiffness, & Life 24 l l l l
Evaluate & Plan Manufacturing & Tooling 25 l l l l l
Create Resource Tables & Evaluate Cost 26 l l l l
Prepare UCAV Proposal 27 l l

 
Figure 3:  Example DSM for UCAV Preliminary Design Process 

 
Process efficiency depends not only on the 

efficiencies of the process’s constituent elements but 
also on the timing of interactions with external 
processes—i.e., process synchronization.  To illustrate, 
consider the following example, beginning in Figure 4.  
A process contains three activities, executed in 
sequence.  Each activity depends on input from both its 
predecessor activity (except for Activity 1) and an 
external process.  The result of the process, provided by 
Activity 3, is a final deliverable (D).  Figure 5 shows 
this process on a time line. 

 

1 32

A B C

D  
Figure 4:  Example Process (3 Activities, 3 Inputs, 1 

Output) 
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tfinish

1 32

A B C

D

tstart  
Figure 5:  Example Process Time Line 

Now, suppose the process is the beneficiary of a 
“lean initiative” that cuts each activity’s duration in 
half, as shown in Figure 6.  Unfortunately, the external 
inputs still arrive at their same, old times.  If the 
activities have to wait on their external inputs, then the 
resulting time savings for the whole process is only the 
savings from the last activity—much less than the 
process’s managers probably expect. 

 

tfinish

1 32

A B C

D

tstart  
Figure 6:  Process Improvement Cuts Cycle Time in 

Half for Each Activity 

Instead of waiting for the external inputs to arrive, 
suppose activities 2 and 3 each go ahead and begin 
work as soon as their predecessor finishes, as shown in 
Figure 7.  For example, Activity 2 begins when Activity 
1 provides outputs, without waiting for external input 
B.  In this case, Activity 2 is making an assumption 
about B.  If that assumption turns out to be incorrect, 
then Activity 2 will have to do rework (Activity 2r).  If 
activities make many assumptions and begin earlier 
than they should, the resulting rework can offset any 
supposed time savings for the process.5  In fact, the 
time savings may not be any more than if the activities 
had just waited for their inputs, as in Figure 6.  And the 
costs may be higher, because waiting resources can do 

                                                                 
5 Rework is an even worse problem in activity webs or networks than 
it is in activity chains, because rework in one activity cascades 
throughout all activities that depend on the reworking activity’s 
output(s). 

other tasks (and get paid by other budgets), but 
reworking resources are getting paid for doing the same 
task twice.  Unfortunately, it is all too common in many 
development programs for activities to begin before 
they should, because the people assigned to those 
activities do not want to be seen “sitting around.”  
(What this really says is that the organization’s resource 
allocation mechanisms and policies are not flexible 
enough.) 

 

tfinish

1 32

A B C

D

tstart

2r 3r

 
Figure 7:  Activities Beginning Without Their Inputs 

Often Have Rework 

 
By now, hopefully it is obvious that actually 

realizing the savings expected in the process requires 
coordinating the availability of the external inputs—i.e., 
process synchronization—as in Figure 8.  It is not 
enough for each individual process to be lean and 
efficient:  all processes (i.e., the entire product 
development process, including the supply chain) must 
be synchronized and coordinated, or else there are few 
real time and cost savings that will actually get passed 
along to the bottom line.  The essence of lean product 
development is to get “the right thing in the right place 
at the right time.” 

 

tfinish

1 2

A B C

D

tstart

3

 
Figure 8:  Synchronizing the Arrival of External 

Inputs Allows Realization of More Savings 
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PROCESS INTEGRATION 
Before we can coordinate interfaces, we must be 

aware of and understand all the interfaces:  process 
integration is  a prerequisite to process synchronization.  
Some organizations begin their process modeling 
efforts by documenting their existing work methods in a 
decentralized fashion.  That is, they tell various 
managers in the organization to document their own 
processes.  The collection of processes that results is 
often stored in a process asset library of some kind.  
The collection may be dubbed the “standard process 
set” or something similar.  However, in many cases this 
collection is merely an aggregation, not an integration, 
of the constituent processes.  That is, the relationships 
between the processes may not be well defined (correct, 
sufficient, etc.).  Process integration is the work 
required to wicker the individual processes together 
into an integrated process.  This section demonstrates 
this exercise using the DSM. 

For example, consider a set of three processes, 
each defined by a DSM:  Process A (Figure 9), Process 
B (Figure 10), and Process C (Figure 11).  Each process 
comes from a separate organization and has a separate 
owner.  Each DSM is augmented with regions above 
and to the right to show external inputs and outputs, 
respectively.  External interfaces exist with each of the 
other two processes and with processes external to this 
set of three. 

 
External Processes l l

Process B l

Process C l

Process A 1 2 3 4 5
Activity A1 l l l

Activity A2 l l l

Activity A3 l l

Activity A4 l

Activity A5 l l

 
Figure 9:  Example DSM for Process A 

 
At a high level, the way these processes relate to 

each other is shown by the DSM in Figure 12.  Note 
that each of the three processes provides something to 
and receives something from the other two.  How 
should these processes be sequenced?  Should they all 
just proceed simultaneously?  There is no way to 
resequence the DSM that will eliminate subdiagonal 
marks.  Do the subdiagonal marks imply that this set of 
processes doomed to experience lots of rework? 
 

External Processes l l

Process A l l

Process C l

Process B 1 2 3 4 5
Activity B1 l l

Activity B2 l

Activity B3 l l l

Activity B4 l

Activity B5 l

 
Figure 10:  Example DSM for Process B 

 

External Processes l l

Process A l

Process B l

Process C 1 2 3 4
Activity C1 l l

Activity C2 l

Activity C3 l l l

Activity C4 l l

 
Figure 11:  Example DSM for Process C 

 
The first thing we should try to do is understand 

this top-level, aggregate process better.  This requires 
more information about each lower-level process and 
its interfaces:  What are the particular activities that are 
requiring and producing the deliverables?  What are the 
particular deliverables that are being exchanged?  By 
taking the individual processes’ DSMs and aggregating 
them, we arrive at a DSM like the one in Figure 13.  
Each diagonal element of the DSM in Figure 12 has 
been replaced by a lower-level matrix; each off-
diagonal element has also been “zoomed in.”  Using the 
external regions around the DSM from each process, 
we can determine which specific activities are 
exchanging deliverables. 

 
l l l EP

Aggregate
Process A l l l

Process B l l l

Process C l l l  
Figure 12:  Aggregate DSM for Integrated Process 
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Figure 13:  Expanding the Aggregate DSM by 
Decomposing Activities and Deliverables 

 
In cases where processes are sending or receiving a 

single deliverable, it is easy to determine which 
activities are involved.  For example, Process A 
provides a deliverable to Process C, and we can see 
from Figure 9 and Figure 11 that, actually, Activity A5 
is providing the deliverable to Activity C2.  In other 
cases, where more than one deliverable is being 
exchanged, actual knowledge of the particular 
deliverables is needed to complete the 
integrated DSM.  For instance, Process A 
provides two deliverables to Process B.  
From Figure 9, we know that the 
deliverables are provided by activities A2 
and A3; from Figure 10, we know that the 
deliverables are consumed by activities 
B1 and B2.  But just looking at the 
individual DSMs will not tell us which 
goes where.  (Of course, it is possible that 
both deliverables go to both places.)  
Knowledge of the deliverable objects 
themselves is necessary to determine the 
integrated DSM (Figure 14).  Adding 
detail to a process model requires an 
amount of digging and puzzling. 

Once an integrated DSM has been 
built, we can analyze the set of processes 
in more detail and gain new insights.  For 
example, by block diagonalizing6 the lower-level DSM, 
the integrated set of processes can be sequenced to 
minimize feedbacks—e.g., to minimize the need to 
make assumptions—as shown in Figure 15.  By 
                                                                 
6 Block diagonalization, block triangularization, partitioning, 
sequencing:  see [2] 

intermingling the activities from the 
three processes in the DSM, a 
reasonable sequence for executing the 
activities is revealed. 

 

 
 
As the example shows, process 

integration requires an understanding of the 
deliverables that must be exchanged between processes 
and their constituent activities.  If these interfaces are to 
be coordinated and the processes synchronized, they 
must first be understood and resolved so that both 
parties agree about the deliverable’s content, timeliness, 
format, medium, etc.  Understanding processes requires 
digging deeper into their activities and deliverables.  
How deep is enough?  We should understand and 
document processes to the level we wish to effectively 
manage, control, coordinate, and synchronize 
processes. 

 

 

Figure 14:  Complete Aggregate DSM 

Once the DSM has been manipulated to achieve an 
acceptable activity sequence, this sequencing can be 
input to scheduling tools such as Microsoft Project® for 
further analysis, resource loading, etc.  The DSM is 

l l l l l l EP
Aggregate

Activity A1 l l l

Activity A2 l l ? ?
Activity A3 l ? ?
Activity A4 l

Activity A5 l l

Activity B1 l l

Activity B2 l

Activity B3 l l l

Activity B4 l

Activity B5 l

Activity C1 l l

Activity C2 l

Activity C3 l l l

Activity C4 l l

l l l l l l

Aggregate
Activity A1 l l l

Activity A2 l l l

Activity A3 l l

Activity A4 l

Activity A5 l l

Activity B1 l l

Activity B2 l

Activity B3 l l l

Activity B4 l

Activity B5 l

Activity C1 l l

Activity C2 l

Activity C3 l l l

Activity C4 l l
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useful as the basis for structuring workflow in product 
data management (PDM) tools; DSM output can be the 
basis for a truly integrated master schedule (IMS). 

 

 

Figure 15:  Aggregated DSM After Sequencing 

CONCLUSION 
This paper shows how process modeling can serve 

an important role in process understanding and 
improvement.  Processes are complex systems.  A 
generic tool for managing complexity, the DSM, can 
help.  Large, detailed DSMs can be built by integrating 
smaller DSMs.  Smaller DSMs, including regions to 
account for external inputs and outputs, are the “puzzle 
pieces” from which integrated processes are built.  
Process integration is especially important when there 
are large numbers of interdependent activities to 
coordinate.  Process integration and synchronization 
lead to reduced variance in process execution time and 
cost, which can translate directly into competitive 
advantage for a perceptive organization. 
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l l l l l l

Aggregate
Activity A1 l l l

Activity A3 l l

Activity B3 l l l

Activity C1 l l

Activity C3 l l l

Activity A2 l l l

Activity B2 l

Activity A4 l

Activity B1 l l

Activity A5 l l

Activity C2 l

Activity C4 l l

Activity B4 l

Activity B5 l


