

131

Using the Design Structure Matrix (DSM) for Process
Integration

Tyson R. Browning

Lockheed Martin Aeronautics Company
P.O. Box 748, MZ 2274

Fort Worth, TX 76101 USA
tyson.browning@lmco.com (or) tyson@alum.mit.edu

Abstract. The new standards advocate integrated
engineering processes. A process is a kind of system.
As such, it derives its added value from the
relationships among its parts (e.g., activities). For a
group of activities to be truly integrated (versus merely
aggregated), their interfaces must be well defined. In
engineering processes, these interfaces usually indicate
a flow of information. Engineering processes are
extremely complex because of the large number of
interfaces, as many types of information flow to many
destinations. This paper reviews a powerful technique,
the design structure matrix (DSM), for representing and
analyzing complex processes. The DSM is extended to
account for external inputs and outputs, providing the
basis for process "puzzle pieces" that can be assembled
to form large, integrated processes.

INTRODUCTION
Emerging standards for engineering, design, and

product development processes such as CMMi, EIA/IS
731, ISO 15288, etc. advocate the inclusion of a
number of “good practices.” Essentially, these
practices are activities that should be part of any
development process so that it can be capable, mature,
repeatable, etc.—with the implication that such
processes provide the maximum value to their
customers and users. Unfortunately, processes for the
development of large, complex systems are already
complex, and the inclusion of additional activities does
not make them any simpler.

One of the major problems in complex system
development projects is the difficulty coordinating the
contributions of a number of activities, such that each
of these contributions comes at just the right time. In
product development, many of the contributions come
in the form of information that is consumed,
transformed, and supplied by activities. The value of
the process is compromised when information is “out of
sync,” forcing those executing activities to make
assumptions in the absence of real data [3, 4]. This

problem is exacerbated as more activities and
contributions must be managed. No one can keep track
of everything. We need better tools that will give us
visibility into these situations, highlight problems,
suggest solutions, and be able to handle increasing
complexity.

A classic means to address and reduce complexity
is through modeling. A model is an abstract
representation of reality that is built, analyzed, and
manipulated to increase understanding of that reality.
A good model is helpful for testing hypotheses about
the effects of certain actions in the real world, where
such actions would be too disruptive or costly to try in
the real situation. Here, we are interested in models
that will help us represent, understand, manage, and
improve complex processes. Such models would also
facilitate process integration.

Process modeling, like many other types of system
modeling, is often approached through process
decomposition into simpler elements.1 But a complex
process is more than just a grouping of activities. It
exists for a purpose—to produce something. Especially
in product development context s, that something
typically requires the activities to collaborate, not
simply to make a unilateral contribution. Process
complexity is a function of (1) the number of elements,
(2) the individual complexity of each of those elements,
(3) the number of relationships between the elements,
and (4) the individual complexity of each of those
relationships. Rechtin [7] reminds us that relationships
among elements are what give systems their added
value, and that the greatest leverage in systems
architecting is at the interfaces. This is no less true for
processes. Hence, a good process model must account
for the interfaces between its activities. Unfortunately,
what often passes for a process model in industry fails
to say much about the relationships between activities,

1 Of course, decomposition presents the danger of incorrect
abstraction—failing to represent the characteristics of the process that
provide its full value and capability.

132

as evinced in flowcharts where the modelers label the
boxes but not the arrows.

While many organizations that develop complex
systems have made efforts to “document their
processes,” very few have actually built (and committed
to improve and learn from) useful process models.
Furthermore, the process models or descriptions that do
exist are often unintegrated, and it is left to those
attempting to plan, execute, and manage projects to
wicker disparate process models into a coherent whole.
Unfortunately, what emerges is seldom understandable
by or useful to many people, and it often has little
impact on actual project planning, execution, and
management. On the other hand, an integrated process
model would be very valuable to a number of users.

Some people confuse the real process (how work
is really done) with the process model or definition,
which is only an abstract representation of the real
process. Standard processes, tailored processes,
flowcharts, etc. are all just process models. Models can
be improved by adding more detail (making them less
abstract) and by verifying that they adequately and
accurately represent reality. It is usually the case—
especially in complex processes like engineering—that
the models never fully represent the way work really
occurs.2 Thus, a prerequisite to process improvement
(changing the real process) is increasing the adequacy
and accuracy of the process model.

How do we know when a process model is
sufficiently adequate and accurate? It depends on the
intended use of the model. The list in Table 1 covers a
variety of potential uses for (and users of) process
models. No one user would need all of the listed
capabilities. Various types of users require different
views of process model data. However, all of the
information represented by any view of a process model
must come from a consistent source (typically a
database). (When data are added or updated, those data
should automatically update in the views of all users.)
The goal is to provide a single process model that is
sufficiently adequate and accurate for all of these uses
and users at once. This is possible because it is easy to
extract only the relevant portion of a detailed process
model and provide it to a user with limited needs. But
it is extremely undesirable to maintain a variety of
disparate, less-detailed models of the same process.
Unfortunately, this is the current situation in many
companies: several unintegrated representations of how
work gets done are maintained by various users for
various uses—e.g., cost and schedule accounting by one
group, planned work flow and assignments by others,

2 Modelers often describe the way things have always been done
(which probably needs to be improved) or the way they would like
things to be done (which is unverified and may be infeasible).

potential activities to add to the plan by others, the
“standard” view of the process by others, etc.

• Program Planning: A process model helps determine
the statement of work (SOW), the work breakdown
structure (WBS), the integrated master plan (IMP) and
schedule (IMS), and therefore the systems engineering
master/management plan (SEMP). It also helps to
estimate cost, schedule, effort, resources, and risk. It is
therefore useful for proposal preparation.

• Program Execution: A process model helps identify
the critical path, determine what to work on this week,
evaluate progress, coordinate deliverables, analyze the
impacts of changes and the value of options, and replan
the remainder of a program.

• Baseline for Continuous Improvement: A process
model helps analyze potential process changes in terms
of net value (investment costs vs. value added benefits)
and helps isolate root causes of problems.

• Knowledge Retention and Learning: A process model
captures lessons learned when the process does not work
as expected.

• Process Visualization: A process model helps people
visualize where they are in a process and what they need
and must produce and when.

• Training: A process model can help new hires get
oriented, see what they need to do and why, and see
where to go for more information.

• Framework for Metrics: A hierarchical process model
serves as the framework for organizing low-level
measures and for rolling them up to feed high level
metrics that tie directly to business goals.

• Compliance/Audits/Assessments: A process model
helps an organization comply with audit requirements
and assessments.

Table 1: Uses of a Good Process Model

This paper presents an approach to process
modeling and integration that provides the foundation
for all of these uses. The next section discusses the
building blocks of a process model. Then, a process
representation and analysis technique called the design
structure matrix (DSM) is reviewed. The paper then
discusses the importance of process synchronization,
which must be prefaced by process integration. The
DSM is used to demonstrate process integration
applications.

PROCESS MODELING OBJECTS AND THEIR
ATTRIBUTES

A basic process model can be built from two types
of objects, process elements and deliverables. Process
elements represent processes, subprocesses, activities,
tasks, or any package of work that produces an output.

133

Most process elements will require some kind of
input(s) as well. Both inputs and outputs are
deliverables. This paper will mainly refer to process
elements as processes or activities, in the relative sense
that processes are “parents” and activities are
“children.” The paper refers to deliverables as either
internal or external, where internal deliverables are
produced and consumed within the boundary of a
process, and external deliverables are either produced
or consumed outside the boundary of a process. Some
typical process element and deliverable attributes are
listed in Table 2. Process elements are the same basic
type of object as IPO (input, process, output) and
ETVX (entry, task, verify, exit) objects.

These objects will often be defined in a
decentralized fashion. For example, a survey can be
sent to a person with expertise in a particular activity to
capture that activity’s attributes. A model integrator
can then assimilate multiple survey responses into a
process model such as the one in Figure 1. Model
integrators will spend most of their time resolving the
deliverable objects that link the process elements, since
activity experts will seldom agree at first on deliverable
names and flow paths. After the initial model is built,
with all of its inconsistent deliverables highlighted, all
of the activity experts can be brought together to reach
consensus. Despite the effort required, a somewhat
decentralized approach to model building allows the
people doing the work to contribute, yielding a more
accurate process description that users will accept.

THE DESIGN STRUCTURE MATRIX (DSM)
Complex processes quickly become challenging to

represent, present, and understand. Flowcharts with all
kinds of boxes and arrows (“spaghetti and meatballs”)
do not simplify the problem. Fortunately, a technique
for representing complex systems and their
relationships in a concise and visual manner can be
applied to processes. As shown in Figure 2, a DSM is a
square matrix with corresponding rows and columns.
The diagonal cells represent the activities, which are
listed from upper left to lower right in a roughly
temporal order. Off-diagonal cells indicate the
dependency of one activity on another—e.g,
information flow. Reading down a column shows
information sources; reading across a row shows
information sinks.3 For example, Activity 1 provides
information to Activities 2, 4, 5, and 6. Activity 2
depends on information from Activities 1 and 6 and
provides information to Activities 3 and 4.

Figure 2 shows how the DSM displays dependent,
independent, and interdependent activity relationships.
Since Activity 2 depends on information from Activity

3 Some DSMs use the opposite convention—rows for sources and
columns for sinks—resulting in feedback appearing above the
diagonal. The two conventions convey equivalent information.

1, these two activities will probably be executed
sequentially in the workflow. Activities 3 and 4 do not
depend on each other for information, so they may
safely proceed in parallel (barring other resource
constraints). Activities 5 and 6 both depend on each
other’s outputs. These activities are said to be
interdependent or coupled and are discussed below.

Of particular interest are the cases where marks
appear in the lower-triangular region of the DSM. Such
marks indicate the dependence of an upstream activity
on information created downstream. If project planners
decide to execute the activities in the given order,
Activity 2 will have to make an assumption about the
information it needs from Activity 6. After Activity 6
finishes, Activity 2 may have rework if the assumption
was incorrect. The DSM conveniently highlights
iteration and rework, especially when it stems from
activities working with potentially flawed information.

When we see a mark in the lower-left corner of the
DSM, we know that there is a chance of having to
return to the beginning of the process, which could have
a catastrophic impact on cost and schedule. The marks
in the lower-left corner of the DSM may represent key
drivers of cost and schedule risk. Rearranging the
activity sequence (by rearranging the rows and columns
in the DSM) can bring some subdiagonal marks above
or closer to the diagonal, thereby reducing their impact.
Simple algorithms automate this exercise. Adding
quantitative information to the DSM and using
simulation can quantify the impacts of process
architecture changes on cost and schedule risk [5].

Sometimes a subdiagonal mark cannot be brought
above the diagonal without pushing another mark
below the diagonal. This is a case of interdependent
activities, such as Activities 5 and 6. Each activity
depends on the other. They must work together to
resolve a “chicken and egg” problem. Coupled
activities might work concurrently, exchanging
preliminary information frequently. If a subset of
coupled activities must begin before the rest, the more
robust (less volatile and/or sensitive) information items
should be the ones appearing below the diagonal in the
DSM. If coupled activities are functionally-based, an
opportunity may exist to fold the activities into a single
activity assigned to a cross-functional team.

134

Process Element Attributes Deliverable Attributes
• Name
• Description
• Inputs (and sources)
• Outputs (and sinks)
• Parent process element
• Constituent subelements (“children”)
• Metrics (duration, cost, risk, etc.)
• Resources (critical skills, roles, tools, facilities, etc.)
• Organizational assignment
• Entrance criteria
• Exit criteria
• (And others in advanced model)

• Name
• Description
• Supplier(s)
• Consumer(s)
• Parent deliverable
• Constituent deliverables (“children”)
• Format
• Medium
• Requirements
• Verification and Validation criteria
• (And others in advanced model)

Table 2: Fundamental Building Blocks of Process Models

Activity

Activity

ActivityActivity

Activity

Higher level
process element

D

D

D
D D

D

D

Figure 1: Linking of Process Model Objects

A
ct

iv
it

y
1

A
ct

iv
it

y
2

A
ct

iv
it

y
3

A
ct

iv
it

y
4

A
ct

iv
it

y
5

A
ct

iv
it

y
6

Activity 1 nn nn nn nn
Activity 2 nn nn
Activity 3 nn
Activity 4 nn nn
Activity 5 nn
Activity 6 nn nn

Dependent (Sequential) Activity 3

Activity 4

Activity 1 Activity 2

Independent (Concurrent)

Interdependent (Coupled) Activity 5

Activity 6Potential, Long-Loop Feedback
(Iteration)

Figure 2: Example DSM

Consumer(s)Supplier(s) Deliverable
Process
Element

(e.g., Activity)
OutputsInputs

135

Integration, test, and design review activities
typically have marks in their rows to the left of the
diagonal. These activities create information (including
results of decisions) that may cause changes to (and
rework for) previously executed activities.
Unfortunately, most process planners “plan to succeed”
and their process models fail to account for these
possibilities. Fortunately, the DSM provides an easy
way to document potential “process failure modes” and
their effects on other activities. The simple marks in
the DSM can be replaced by numbers indicating the
relative probability of information change, iteration,
etc. This enables an analysis of process failure modes
and their effects on cost, schedule, and risk. Process
improvement investments can then target mitigation of
the biggest risk drivers. The process model thus
becomes the repository for organizational learning
(lessons learned), and future projects that follow the
process receive the benefit of best practices.

For a real-life example, Figure 3 displays a DSM
of the Preliminary Design process for an uninhabited
combat aerial vehicle (UCAV).4 The first dozen
activities comprise the Conceptual Design phase. In
this phase, design requirements and objectives (DR&O)
are prepared, a configuration concept is proposed, it is
analyzed by a variety of discipline perspectives, and
then these results are assessed. The assessment may
reveal a need to alter the DR&O, to create a new
configuration concept, and/or to alter the current
configuration concept. This cycle repeats until the
design space is sufficiently understood and/or time and
money are exhausted. (All of these activities are
condensed into a single row and column in Figure 3.)
The design process then moves into the Preliminary
Design phase, where the configuration is developed and
analyzed in more detail and the objective is to prepare a
proposal to acquire funding for additional phases.
Figure 3 shows the process “as is,” without any attempt
to resequence the process to eliminate feedback. This
basic model served as the basis for additional process
analysis, evaluation, discussion, and improvement.

Figure 3 contains an additional extension: the
regions above and to the right of the main matrix
account for external inputs and outputs, respectively.
Since we can look down a column of the DSM to see
where an activity receives its information from, we
simply continue looking above, along the extended
column, to see external inputs. Similarly, we read
across the extended row to see external outputs. The
first row in the external inputs region is a summary
row, as is the first column in the external outputs
region.

4 The UCAV example comes from The Boeing Company and is fully
documented in [1].

The DSM provides a concise, visual format for
representing processes. A process flowchart consuming
an entire conference room wall can be reduced to a
single-page DSM. After a quick orientation, everyone
can see how his or her activity affects a large process.
People can see where information comes from and
where it goes. They can see why delaying the activities
they depend on forces them to make assumptions,
which may trigger rework later. It becomes apparent
that certain information changes tend to cause rework.
Such situation visibility and awareness leads to
improved process design and coordination. The DSM
also provides a process knowledge base from which the
foundations of process plans and risk assessments can
be drawn. Moreover, the DSM is amenable to some
simple yet powerful analyses.

As a metaphor, consider the pictures made when
fans in the stands at a football game each hold up a
colored card. None of those doing the work may be
able to see the big picture. The DSM provides the view
from the blimp.

DSMs have been developed for planning and
managing projects in the building construction,
photographic, semiconductor, automotive, aerospace,
telecom, and electronics industries [2]. More detailed
and quantitative models based on the DSM have been
developed by several researchers [e.g., 5, 6, 8-10].

Perhaps the greatest barrier to DSM usage is the
amount of information required to characterize the
structure of a design process. DSMs representing
complex system development processes call for
integrating the expertise of a number of people.
Building a DSM also forces some people and groups to
think in terms they may not be accustomed to. But this
is good, and it should be made to happen anyway. A
great amount of benefit is often realized simply by
participating in the DSM construction process.

THE IMPORTANCE OF PROCESS
SYNCHRONIZATION

The DSM provides important benefits for process
representation and understanding, which are
prerequisites for process improvement. But process
improvement requires looking outside as well as inside
the process’s boundary. The external regions of the
DSM help with this challenge. This section discusses
why external inputs and outputs are essential to account
for in a process model.

136

External Inputs l l l l l l l l l l l l l

Company_Historical_Data l l l l l l l l l l
Functional_Innovations_&_Assumptions l l l l l l l l
C&A_Requirements l
Specific_Vehicle_Mission_Requirements l
Payload_&_Avionics_Power_Info. l
Conceptual_Design_Deadline l
Conceptual_Design_Budget l
USAF_Requirements l
Preliminary_Design_Budget l
Preliminary_Design_Deadline l
Preliminary_Design_Resources l
Equipment_Geometry l
UCAV_Propulsion_Analyses l
Results_from_similar_loads_problems l

Activities 1-12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Conceptual Design Activities 1-12 l l l l l l
Prepare UCAV Preliminary DR&O 13 l l l l l l l l l l l l
Create UCAV Preliminary Design Configuration 14 l l
Prepare & Dist. Surf. Models & Int. Arngmnt. Drwngs. 15 l l l l
Create Initial Structural Geometry 16 l l l
Prepare Structural Geometry & Notes for FEM 17 l l l l l l l
Perform Aerodynamics Analyses & Evaluation 18 l l l l l
Perform Weights & Inertias Analyses & Evaluation 19 l l l l
Perform S&C Analyses & Evaluation 20 l l
Develop Structural Design Conditions 21 l l l l
Develop Bal. Freebody Diagrams & Ext. App. Loads 22 l l l
Establish Internal Load Distributions 23 l l l
Evaluate Structural Strength, Stiffness, & Life 24 l l l l
Evaluate & Plan Manufacturing & Tooling 25 l l l l l
Create Resource Tables & Evaluate Cost 26 l l l l
Prepare UCAV Proposal 27 l l

Figure 3: Example DSM for UCAV Preliminary Design Process

Process efficiency depends not only on the

efficiencies of the process’s constituent elements but
also on the timing of interactions with external
processes—i.e., process synchronization. To illustrate,
consider the following example, beginning in Figure 4.
A process contains three activities, executed in
sequence. Each activity depends on input from both its
predecessor activity (except for Activity 1) and an
external process. The result of the process, provided by
Activity 3, is a final deliverable (D). Figure 5 shows
this process on a time line.

1 32

A B C

D
Figure 4: Example Process (3 Activities, 3 Inputs, 1

Output)

137

tfinish

1 32

A B C

D

tstart
Figure 5: Example Process Time Line

Now, suppose the process is the beneficiary of a
“lean initiative” that cuts each activity’s duration in
half, as shown in Figure 6. Unfortunately, the external
inputs still arrive at their same, old times. If the
activities have to wait on their external inputs, then the
resulting time savings for the whole process is only the
savings from the last activity—much less than the
process’s managers probably expect.

tfinish

1 32

A B C

D

tstart
Figure 6: Process Improvement Cuts Cycle Time in

Half for Each Activity

Instead of waiting for the external inputs to arrive,
suppose activities 2 and 3 each go ahead and begin
work as soon as their predecessor finishes, as shown in
Figure 7. For example, Activity 2 begins when Activity
1 provides outputs, without waiting for external input
B. In this case, Activity 2 is making an assumption
about B. If that assumption turns out to be incorrect,
then Activity 2 will have to do rework (Activity 2r). If
activities make many assumptions and begin earlier
than they should, the resulting rework can offset any
supposed time savings for the process.5 In fact, the
time savings may not be any more than if the activities
had just waited for their inputs, as in Figure 6. And the
costs may be higher, because waiting resources can do

5 Rework is an even worse problem in activity webs or networks than
it is in activity chains, because rework in one activity cascades
throughout all activities that depend on the reworking activity’s
output(s).

other tasks (and get paid by other budgets), but
reworking resources are getting paid for doing the same
task twice. Unfortunately, it is all too common in many
development programs for activities to begin before
they should, because the people assigned to those
activities do not want to be seen “sitting around.”
(What this really says is that the organization’s resource
allocation mechanisms and policies are not flexible
enough.)

tfinish

1 32

A B C

D

tstart

2r 3r

Figure 7: Activities Beginning Without Their Inputs

Often Have Rework

By now, hopefully it is obvious that actually

realizing the savings expected in the process requires
coordinating the availability of the external inputs—i.e.,
process synchronization—as in Figure 8. It is not
enough for each individual process to be lean and
efficient: all processes (i.e., the entire product
development process, including the supply chain) must
be synchronized and coordinated, or else there are few
real time and cost savings that will actually get passed
along to the bottom line. The essence of lean product
development is to get “the right thing in the right place
at the right time.”

tfinish

1 2

A B C

D

tstart

3

Figure 8: Synchronizing the Arrival of External

Inputs Allows Realization of More Savings

138

PROCESS INTEGRATION
Before we can coordinate interfaces, we must be

aware of and understand all the interfaces: process
integration is a prerequisite to process synchronization.
Some organizations begin their process modeling
efforts by documenting their existing work methods in a
decentralized fashion. That is, they tell various
managers in the organization to document their own
processes. The collection of processes that results is
often stored in a process asset library of some kind.
The collection may be dubbed the “standard process
set” or something similar. However, in many cases this
collection is merely an aggregation, not an integration,
of the constituent processes. That is, the relationships
between the processes may not be well defined (correct,
sufficient, etc.). Process integration is the work
required to wicker the individual processes together
into an integrated process. This section demonstrates
this exercise using the DSM.

For example, consider a set of three processes,
each defined by a DSM: Process A (Figure 9), Process
B (Figure 10), and Process C (Figure 11). Each process
comes from a separate organization and has a separate
owner. Each DSM is augmented with regions above
and to the right to show external inputs and outputs,
respectively. External interfaces exist with each of the
other two processes and with processes external to this
set of three.

External Processes l l

Process B l

Process C l

Process A 1 2 3 4 5
Activity A1 l l l

Activity A2 l l l

Activity A3 l l

Activity A4 l

Activity A5 l l

Figure 9: Example DSM for Process A

At a high level, the way these processes relate to

each other is shown by the DSM in Figure 12. Note
that each of the three processes provides something to
and receives something from the other two. How
should these processes be sequenced? Should they all
just proceed simultaneously? There is no way to
resequence the DSM that will eliminate subdiagonal
marks. Do the subdiagonal marks imply that this set of
processes doomed to experience lots of rework?

External Processes l l

Process A l l

Process C l

Process B 1 2 3 4 5
Activity B1 l l

Activity B2 l

Activity B3 l l l

Activity B4 l

Activity B5 l

Figure 10: Example DSM for Process B

External Processes l l

Process A l

Process B l

Process C 1 2 3 4
Activity C1 l l

Activity C2 l

Activity C3 l l l

Activity C4 l l

Figure 11: Example DSM for Process C

The first thing we should try to do is understand

this top-level, aggregate process better. This requires
more information about each lower-level process and
its interfaces: What are the particular activities that are
requiring and producing the deliverables? What are the
particular deliverables that are being exchanged? By
taking the individual processes’ DSMs and aggregating
them, we arrive at a DSM like the one in Figure 13.
Each diagonal element of the DSM in Figure 12 has
been replaced by a lower-level matrix; each off-
diagonal element has also been “zoomed in.” Using the
external regions around the DSM from each process,
we can determine which specific activities are
exchanging deliverables.

l l l EP

Aggregate
Process A l l l

Process B l l l

Process C l l l
Figure 12: Aggregate DSM for Integrated Process

139

Figure 13: Expanding the Aggregate DSM by
Decomposing Activities and Deliverables

In cases where processes are sending or receiving a

single deliverable, it is easy to determine which
activities are involved. For example, Process A
provides a deliverable to Process C, and we can see
from Figure 9 and Figure 11 that, actually, Activity A5
is providing the deliverable to Activity C2. In other
cases, where more than one deliverable is being
exchanged, actual knowledge of the particular
deliverables is needed to complete the
integrated DSM. For instance, Process A
provides two deliverables to Process B.
From Figure 9, we know that the
deliverables are provided by activities A2
and A3; from Figure 10, we know that the
deliverables are consumed by activities
B1 and B2. But just looking at the
individual DSMs will not tell us which
goes where. (Of course, it is possible that
both deliverables go to both places.)
Knowledge of the deliverable objects
themselves is necessary to determine the
integrated DSM (Figure 14). Adding
detail to a process model requires an
amount of digging and puzzling.

Once an integrated DSM has been
built, we can analyze the set of processes
in more detail and gain new insights. For
example, by block diagonalizing6 the lower-level DSM,
the integrated set of processes can be sequenced to
minimize feedbacks—e.g., to minimize the need to
make assumptions—as shown in Figure 15. By

6 Block diagonalization, block triangularization, partitioning,
sequencing: see [2]

intermingling the activities from the
three processes in the DSM, a
reasonable sequence for executing the
activities is revealed.

As the example shows, process

integration requires an understanding of the
deliverables that must be exchanged between processes
and their constituent activities. If these interfaces are to
be coordinated and the processes synchronized, they
must first be understood and resolved so that both
parties agree about the deliverable’s content, timeliness,
format, medium, etc. Understanding processes requires
digging deeper into their activities and deliverables.
How deep is enough? We should understand and
document processes to the level we wish to effectively
manage, control, coordinate, and synchronize
processes.

Figure 14: Complete Aggregate DSM

Once the DSM has been manipulated to achieve an
acceptable activity sequence, this sequencing can be
input to scheduling tools such as Microsoft Project® for
further analysis, resource loading, etc. The DSM is

l l l l l l EP
Aggregate

Activity A1 l l l

Activity A2 l l ? ?
Activity A3 l ? ?
Activity A4 l

Activity A5 l l

Activity B1 l l

Activity B2 l

Activity B3 l l l

Activity B4 l

Activity B5 l

Activity C1 l l

Activity C2 l

Activity C3 l l l

Activity C4 l l

l l l l l l

Aggregate
Activity A1 l l l

Activity A2 l l l

Activity A3 l l

Activity A4 l

Activity A5 l l

Activity B1 l l

Activity B2 l

Activity B3 l l l

Activity B4 l

Activity B5 l

Activity C1 l l

Activity C2 l

Activity C3 l l l

Activity C4 l l

140

useful as the basis for structuring workflow in product
data management (PDM) tools; DSM output can be the
basis for a truly integrated master schedule (IMS).

Figure 15: Aggregated DSM After Sequencing

CONCLUSION
This paper shows how process modeling can serve

an important role in process understanding and
improvement. Processes are complex systems. A
generic tool for managing complexity, the DSM, can
help. Large, detailed DSMs can be built by integrating
smaller DSMs. Smaller DSMs, including regions to
account for external inputs and outputs, are the “puzzle
pieces” from which integrated processes are built.
Process integration is especially important when there
are large numbers of interdependent activities to
coordinate. Process integration and synchronization
lead to reduced variance in process execution time and
cost, which can translate directly into competitive
advantage for a perceptive organization.

AUTHOR BIOGRAPHY
Tyson R. Browning provides internal consulting

and conducts applied research on engineering process
development for Lockheed Martin Aeronautics
Company in Fort Worth, Texas, USA. He previously
worked with the Product Development Focus Team of
the Lean Aerospace Initiative at MIT. He earned a
Ph.D. in Technology, Management and Policy
(interdisciplinary technology management and systems
engineering) from MIT.

REFERENCES
Clip art ©2000 Microsoft Corporation.

[1] T. R. Browning, Modeling and Analyzing
Cost, Schedule, and Performance in Complex
System Product Development, Ph.D. Thesis
(TMP), Massachusetts Institute of Technology,
Cambridge, MA, 1998.
[2] T. R. Browning, "Applying the Design
Structure Matrix to System Decomposition and
Integration Problems: A Review and New

Directions," Lockheed Martin Aeronautics Company,
Fort Worth, TX, Working Paper, July 2000.

[3] T. R. Browning, "Value-Based Product Development:
Refocusing Lean," presented at IEEE EMS International
Engineering Management Conference (IEMC),
Albuquerque, NM, 2000, pp. 168-172.

[4] T. R. Browning, J. J. Deyst, S. D. Eppinger, and D. E.
Whitney, "Complex System Product Development:
Adding Value by Creating Information and Reducing
Risk," presented at Tenth Annual International
Symposium of INCOSE, Minneapolis, 2000, pp. 581-
589.

[5] T. R. Browning and S. D. Eppinger, "Modeling the
Impact of Process Architecture on Cost and Schedule
Risk in Product Development," Lockheed Martin
Aeronautics Company, Fort Worth, TX, Working Paper,
Apr. 2000.

[6] S. D. Eppinger, D. E. Whitney, R. P. Smith, and D. A.
Gebala, "A Model-Based Method for Organizing Tasks
in Product Development," Research in Engineering
Design, vol. 6, pp. 1-13, 1994.

[7] E. Rechtin, Systems Architecting: Creating & Building
Complex Systems. Englewood Cliffs, NJ: PTR Prentice
Hall, 1991.

[8] J. L. Rogers, "Reducing Design Cycle Time and Cost
Through Process Resequencing," presented at
International Conference on Engineering Design,
Tampere, Finland, 1997

[9] R. P. Smith and S. D. Eppinger, "Identifying Controlling
Features of Engineering Design Iteration," Management
Science, vol. 43, pp. 276-293, 1997.

[10] R. P. Smith and S. D. Eppinger, "A Predictive Model of
Sequential Iteration in Engineering Design,"
Management Science, vol. 43, pp. 1104-1120, 1997.

l l l l l l

Aggregate
Activity A1 l l l

Activity A3 l l

Activity B3 l l l

Activity C1 l l

Activity C3 l l l

Activity A2 l l l

Activity B2 l

Activity A4 l

Activity B1 l l

Activity A5 l l

Activity C2 l

Activity C4 l l

Activity B4 l

Activity B5 l

