
Teaching Eclipse Plug-in Development for Undergraduates

Tianchao Li and Michael Gerndt
Institut für Informatik,

Technische Universität München

{lit,gerndt}@in.tum.de

ABSTRACT
With the rapid adoption of Eclipse as both development tool and
application platform, teaching Eclipse plug-in development in uni-
versities is showing its necessity and advantage, especially on the
undergraduate level. This paper introduces our practice in teaching
Eclipse plug-in development for undergraduate students in Technis-
che Universiẗat München, Germany. Following a set of carefully
designed lab courses, the students understand the mechanism of
Eclipse from ground up - starting from the underlying SWT/JFace
toolkit and the extension mechanism of the Eclipse runtime up to
the Eclispe Rich Client Platform (RCP) and Integrated Develop-
ment Environment (IDE). Students work on mini projects to have a
practical experience in designing and developing Eclipse plug-ins.
We summarize our experiences in the preparation of background
knowledge and designing exercises, and make suggestions for im-
proving Eclipse from a teaching and learning point of view.

1. INTRODUCTION
Eclipse [2] has been rapidly adopted in companies, academia and
education as a development tool. The open source platform, well-
defined extension mechanism, abundance of plug-ins and good doc-
umentation have all made this happen.

On the other hand, teaching Eclipse plug-in programming at uni-
versities is still not a popular practice nowadays. The complexity
of the Eclipse platform itself is one of the reasons - SWT/JFace,
extension mechanisms, and the vast extension points, each is itself
an issue. Teaching Eclipse plug-in programming for undergradu-
ate students is even more rare and challenging. In addition to the
complexity of Eclipse itself, Eclipse plug-in development also has
a lot of prerequisite knowledge in object-oriented programming,
software engineering (esp. UML and design patterns) and XML.

However, teaching Eclipse plug-in development for undergraduate
students is both necessary and helpful. With the rapid adoption
of Eclipse, the mastering of Eclipse plug-in development can both
enhance the competency of graduates in object-oriented program-
ming and create a basis of knowledgeable programmers for deploy-
ing Eclipse in various research projects. Teaching Eclipse plug-in

ECOOP’06 Eclipse Technology eXchange (ETX) Workshop, July 4th, 2006,
Nantes, France

development will also make Eclipse even more popular both as a
development tool and an application platform.

At Technische Universität München we are offering such a course
on programming Eclipse plug-ins for undergraduate students.

The Eclipse lab course has been offered to a small group of students
in the summer semester of 2005 for the first time. The attendees are
students from undergraduate studies, mostly in their 3rd semester.
They have at least some basic knowledge about object-oriented pro-
gramming in Java and XML before they take the lab course. In the
past winter semester of 2005/2006, this course was offered a sec-
ond time, however for the most talented students in their first year
of study in computer science, within the CS department’s elite pro-
gram.

The attendees are those with very good performance in the high
school graduation exam and/or excellent computer background, who
will probably be the best students when they graduate. These stu-
dents are offered special courses and exercise groups. The goals are
manyfold. First, those student should get into contact in their early
semesters so that they can benefit from those contacts in the later
semesters. Second, we want the students to get a broader overview
and understanding of computer science very early. They can master
this additional information based on their excellent background and
will be able to combine this knowledge with the more theoretical
base courses taught in the first years.

Given their excellence, teaching Eclipse plug-in development for
such freshmen that are not assumed to have much knowledge in
programming is especially challenging. As a result, the content of
the course has been adjusted and extended a little bit to give more
background knowledge and preparations that are essential for the
students to start programming Eclipse.

This paper introduces our experience in teaching Eclipse plug-in
development for undergraduates. The remainder of this paper is
organized as follows: Section 2 introduces the general structure
of the course, which is divided into lectures, exercises, and mini
projects. Section 3 provides detailed design of the hands-on exer-
cises, and discusses some relevant issues concerning Eclipse itself.
Section 4 presents the miscellanies, including the preparation of
necessary background knowledges, online course materials, teach-
ing techniques etc. The paper concludes with a short summary in
Section 5.

2. GENERAL COURSE DESIGN



Many existing books and materials about Eclipse plug-in program-
ming follow the same pattern - each chapter focus on a different set
of relevant extension points of Eclipse and guide the reader with
examples on defining extensions to the specific extension points.
This works well for people with good knowledge of programming,
but is however not suitable for undergraduate students in general.

The length of our course is 3 hours per week and a typical semester
has 14 weeks at German universities. Mastering Eclipse plug-in
programming from the level of freshmen within such a short course
is quite demanding. The structure of our course has to be adapted
to this fact and tries to guide the students with a flat and steady
learning curve. Generally speaking, the course is divided into three
parts: lectures, exercises, and mini projects.

In the lectures part, object-oriented programming and UML are in-
troduced first. These are the background knowledge that will be
very helpful for the student to start with Eclipse programming and
to understand the general picture of extensions. In addition, Eclipse
is also introduced, with an emphasis on its general architecture and
extension mechanism.

A sequence of exercises constitute the major part of the lab course,
which offer hands-on training of different aspects and different lev-
els of knowledge for Eclipse plug-in development. Following the
detailed instructions on the exercise sheets, students work individ-
ually on the assignments. The exercises are designed in such a way
that the student master the relevant knowledge from ground up -
starting from programming with SWT, JFace, followed by under-
standing extensions and extension points, defining applications for
the Rich Client Platform (RCP), and to extend the complete Inte-
grated Development Environment (IDE). Because of the vastness
of different extension points in the Eclipse platform and the limited
timeframe in the course, it is impossible to cover every aspect of
Eclipse extension. Thus, the emphasis in the exercises is to guide
the students with a series of assignments to build up all the neces-
sary knowledge and practice in defining extensions to the Eclipse
platform. For extensions to specific extension point provided by
the Eclipse platform, the students have enough knowledge on how
to utilize the documentation to get further details and to apply their
general knowledge about extensions to actually implement the ex-
tension.

A complete training on Eclipse plug-in development requires the
ability to design a specific extension and to organize a set of exten-
sions. This cannot be achieved without actual development experi-
ence. In the last session of the lab course, some mini projects are
distributed to groups of students. The number of students of each
group is quite flexible (typically 2 to 3 students) and the complexity
of the exercises can be adjusted according to their actual level. Uti-
lizing their knowledge mastered in the hands-on exercises, they dis-
cover the necessary extensions, seeking for appropriate extension
points and even explore the Eclipse source code for necessary in-
formation. Regarding the level of knowledge, certain students can
be offered even more advanced topics like programming graphical
editors with the Eclipse Modeling Framework (EMF) and Graphi-
cal Editing Framework (GEF), etc.

3. HANDS-ON EXERCISES
The hands-on exercises constitute the most important part of the lab
course. The first part of the exercises focus on programming stand-
alone Java applications, especially those GUI applications utilizing
the SWT/JFace libraries. The second part of the exercises focuses

Figure 1: Course Roadmap

on the extension mechanism of the Eclipse platform and the head-
less, RCP, and IDE applications utilizing that mechanism. The mini
projects, though not part of the hands-on exercises, are actually a
continuation of the exercises that teach the students the develop-
ment of extensions.

The exercises cover the most fundamental parts of Eclipse (see Fig-
ure 1 for an exercise road-map). The more advanced and also op-
tional components of the Eclipse platform, e.g., the search, debug,
and update componentes etc, are not covered.

3.1 Java Programming in Eclipse
One prerequisite of Eclipse plug-in development is the develop-
ment of Java applications with Eclipse and the usage of the Eclipse
specific GUI libraries SWT and JFace. The sequence of exercises
in this part includes:

Lab 1: Java Development Tool (JDT) This leads the students into
the world of Eclipse by doing Java programming with JDT.
The familarity with JDT is not only important for the stu-
dents to program stand-alone SWT and JFace programs in
the following exercises of this part but also critical for the
students to continue with development of plug-ins with the
Plug-in Development Environment (PDE) in the next part.

The scope of the exercise covers the most important fea-
tures of the Java editing facilities like code assist and refac-
toring etc., and the setting of build and runtime class paths
and runtime libraries. This prepares for the following ex-
ercises in SWT and JFace, especially for earler versions of
Eclipse. In our experience, students are usually confused of
the configurations necessary for creating stand-alone SWT
and JFace applications. Eclipse 3.1 has improved support for
configuring and launching stand-alone SWT/JFace applica-
tions, which are very welcomed by our students.

Since the course is given for the first semester students, an
introduction to object-oriented programming is given. In this
lab course the students experiment with the Java editing fa-
cilities of Eclipse while working on examples to extend their
Java knowledge.



Lab 2: Standard Widget Toolkit (SWT) As the fundamental UI
toolkit, SWT provides the basic building blocks of Eclipse
and graphical Eclipse plug-ins. This lab leads the students to
program stand-alone Java programs with SWT, covering the
different SWT controls, layouts and event mechanisms.

To be frank, learning Eclipse plug-in development does not
necessarily require the students to know about programming
stand-alone applications in SWT. However, we feel it appro-
priate for our course as we believe to understand the mecha-
nism is more important than only being able to program the
following examples.

Lab 3, 4: JFace JFace complements SWT with higher level appli-
cation support. This is a relatively large topic, as it contains
several different smaller frameworks like viewers, contribu-
tions and actions, dialogs and wizards, registries for images
and fonts, as well as a text editing framework. Two labs go
for programming stand-alone applications using JFace (to-
gether with SWT, of course), covering some of the most com-
monly used techniques - application window and dialogs,
viewers and image handling, as well as actions, menu and
toolbar support. The text editing framework, as a separate
topic, is not covered. The wizards, as a common topic, are to
be covered in the plug-in labs.

Having introduced programming stand-alone applications us-
ing SWT, JFace becomes the natural step forward. We be-
lieve that students attending our course should learn some-
thing that can be used in different situations and will be very
helpful in their future career. Currently, JFace depends on
Eclipse core (commands and runtime), which in turn depends
on OSGi. In order to program a stand-alone application with
JFace, a lot other dependent libraries have to be included
in the class path. An inspection of JFace source code re-
veals that the dependencies are only for status, progress mon-
itor, job/operation/runnable, and adaptation support. We feel
it better if the Eclipse core is refactored into an extension
mechanism relevant part (Extension Runtime) and irrelevant
part (Common Runtime), as illustrated in Figure 3.1. This
follows the current approach of having separateorg.eclipse.text
andorg.eclipse.core.commandsplug-ins from the core run-
time.

Lab 5: GUI Programming Using Visual Editor Programming can
be tedious work if all the GUI design has to be done by ”hand
coding”, which usually involves significant amount of time
dealing with the details of various layouts, constraints, and
settings. Before we transit to the next part to work on plug-
ins, we want the students to be skilled in programming GUI
elements with all the help they can get - the Visual Editor
(VE) for visually programming visual classes is one such
tool.

We choose not to use the VE when starting to teach GUI pro-
gramming, because we believe that the students need some
time to understand the concepts of GUI coding. Also, this
part is actually a new addition in the next semester’s teaching,
mainly because of the recent progress in the functionality and
usability of VE, noticeably the new GridLayout tooling and
the improved support of parsing hand-written code. We can
expect more wider adoption of this tool than before.

3.2 Extending Eclipse Platform
For the development of Eclipse plug-ins, we introduce every aspect
of it. The sequence of lab courses in the second part includes:

Lab 6, 7: Eclipse Runtime and Extension MechanismThis intro-
duces Eclipse runtime, with a focus on its extension mecha-
nism. Topics covered includes both the extension of an ex-
isting extension point and the definition of a new extension
point. The exercises start from the implementation, config-
uration, and launching of a headless application that extends
theorg.eclipse.core.runtime.applicationsextension point and
outputs greeting messages. Then, students work on the defi-
nition of an extension point that defines the name of the per-
son to be greeted and on the customized class contribution,
which is to be provided by individual extension definitions.
We try to eliminate GUI topics from this lab so that the stu-
dents can focus only on the extension mechanism provided
by the Eclipse runtime.

As the next step, we designed an exercise for the students
to implement an extensible GUI based on the SWT, JFace,
and the Eclipse runtime. This not only helps the students to
understand the mechanism of RCP which will be the topic
of the next lab, but also give the students a chance to under-
stand efficient handling of code contribution with lazy class
loading.

OSGi [7], an important basis of the Eclipse runtime, is not
digged into. This is mainly due to the limited timeframe in
our course. However, the improved documentation and de-
velopment support for OSGi bundles since Eclipse 3.2 has
drawn our attention and we are considering to include pro-
gramming OSGi bundles in future courses.

Lab 8: Rich Client Platform This lab introduces programming rich
client applications by defining extensions to the RCP1.

Again, here we do not follow the usual procedure to put RCP
application development after that of IDE extension. We ad-
mit that merely making extensions to the existing IDE, which
is itself an RCP application, is easier to begin with than build-
ing an application on top of RCP. However, we feel it appro-
priate to follow our roadmap from ground up, as this reveals
the underlying mechanism better. This is feasible because
we have introduced the extension mechanism and the contri-
bution of applictions in the previous labs.

RCP was initially introduced into Eclipse in v3.0. Version
3.1 and the latest 3.2 has made noticeable improvement for
developing RCP applications by providing an improved new
project wizard and RCP templates. We have seen these im-
provements greatly reducing the difficulty of learning RCP
development.

Lab 9: Workspace and ResourcesThis lab focuses on the Eclipse
workspace and resource concept and APIs. Students are guided
to develop a headless application that do statistics on the
specified workspace.

Workspace is the central data model for the IDE. However,
before introducing IDE extension, we would like the students
to concentrate on the workspace and resource first. Fortu-
nately, programs that work with the workspace do not even
have to be part of the IDE, nor do they have to be a RCP
or GUI program. Headless applications, for example the
AntRunner application as part of Eclipse works on the Eclipse
workspace and we are following this approach.

1To be specific, a rich client application build on top of RCP is
called a RCP application in this paper.



⇒

Figure 2: Split of Eclipse Runtime (Left: current fact; Right: imaginary split)

Lab 10: IDE This lab offer the students some hands-on practice in
extending the Eclipse IDE. The lab starts with an explanation
of the IDE as a RCP application, followed by an exercise in
which the students continue their work in the last exercise to
extend the Eclipse IDE for workspace statistics support.

As the last session in the hands-on lab exercises, this lab
summarizes by giving the students some clue on where to
find the necessary information when certain problems are
encountered in their work. This includes the guidelines of
plug-in programming, a summary of the Facade classes in
the Eclipse runtime, platform, resource and IDE, as well as
a summary of the references the students can consult for a
specific type of problem. A list of the advanced topics that
the students can discover themselves is also provided.

A single lab exercise is definitely not enough to cover even
the most important aspects of IDE extension. However, on
the one hand, with all the previous background of program-
ming applications based on SWT, JFace, extending the Eclipse
IDE is not much different from defining an extension to the
RCP. On the other hand, the following mini projects give the
students a real chance to become familiar with different as-
pects of Eclispe extension.

4. MISCELLANY
4.1 Background Preparation
Our experience shows that object-oriented programming in Java
and certain aspects of software engineering like UML and design
patterns are important background knowledge for our lab course.
Students usually gradually grasp these knowledge in their first year
studies.

For freshmen without previous knowledge in these aspects, we need
to get them prepared as soon as possible. Therefore, depending on
the background of the students, we give them an introduction to
object-oriented programming with Java. This covers an overview
of the main concepts of OO programming and of the Java language
as well as of the compilation and runtime environment.

We also introduce UML as a vehicle for starting application de-
velopment with a design phase. We believe that software design
should be taught very early in a CS study program. While there
is not enough time to cover all the ideas of software development
with UML, we introduce only the main ideas and some of the main
diagrams, i.e., the class diagram and the sequence diagram.

We use an UML plug-in (currently EclipseUML from Omondo [6])
for Eclipse to allow the students to familiarize themselves with
UML and its integration into an IDE. The students learn that de-
signing a software with UML is not wasting time but will automat-
ically lead to appropriate source skeletons. Thus, the students can
experience that working with UML enables easier interaction and
information exchange with colleagues without requiring duplica-
tion of work.

4.2 Course Materials
All the course materials are available online [4]. Online materi-
als include the presentations for the lectures, exercise sheets and
links to the reference materials. The materials are available under
the Eclipse Public License (EPL). A collection of screenshots of
student projects are also available on the course web site.

In the spirit of open source, good tutorials from external sources
that are publicly available are also used in the course. These in-
clude those from the Eclipse web site and the annual EclipseCon
conference, as well as those from the IBM developer web site. We
have also identified some good books, but they are references only
for students in case they would like to go beyond the scope of our
lab course.

In the development of this course, we find that although there are
already papers, books, and online help available, the documentation
for Eclipse is still not enough, especially for the need of learning
and mastering Eclipse plug-in development. What is most needed,
for example, include diagrams that describe plug-in dependency
and extension relationships, and diagrams that describe each part of
the Eclipse platform that can serve as rule of thumb when program-
ming plug-ins. We expected to develop some of these documents
during this course and will make them available once ready.

4.3 Teaching Techniques
E-learning techniques are utilized in the course. Technische Uni-
versiẗat München, like many other Germany universities, has intro-
duced Clix [1] as its central e-learning platform. One of the first
courses of the computer science department that will be available
on this platform will be our lab course. We plan to use Clix func-
tionality for the following purposes:

• Registration of students.



• Distribution of teaching material based on a learning strategy.
Course material for later exercises will only be available if
the required prerequisites have been finished.

• Submission of solutions to exercises by the students.

• Giving feedback to the students on their solutions.

• Execution of tests with automatic correction to get an overview
about the level of knowledge gained during the course.

• Establishing communication channels amongst the students
and between students and teachers.

With Eclipse’s internal Web browser, the students do not need to
switch between Eclipse and an external browser to use Clix and
work on the workspace. A complete integration of Eclipse and
Clix demands both budget and experience, which will be gradually
gathered in the process of our course.

Students participating in this course are requested to study a lot of
background material. It is obvious that not all the background in-
formation can be presented by the teachers within 3 hours lectures.
We assume that the students carefully read the referenced material
and are able to extract the information required for the exercises.
Therefore, the course is based on the students’ ability to follow this
learning technique. By targeting in this winter term the most tal-
ented high school students, we are optimistic that this requirement
will be met by most of the students.

We do not use any Eclipse extensions that claim to make learning
Java programming using Eclipse easier (for those interested, please
refer to [8] for a summary of some of such extensions). Our course
is so intensive that the students must learn Java and be familiar with
Eclipse quickly and we have designed our course so that the learn-
ing curve is not too steep to follow. Of course, the students can
appeal any tools that make their life easier. According to our expe-
rience, we haven’t heard any students boaring about the difficulty
of learning Eclipse usage.

5. SUMMARY
Teaching Eclipse plug-in development for undergraduate students
is a demanding task, especially for first-year students.

Our initial attempt to teach Eclipse plug-in development for the un-
dergraduate students, especially the first-year students, has proved
the feasibility of offering such a demanding course to students of
little or no previous knowledge of programming.

The course is especially suited for the most talented students since
it offers insight into a number of very interesting areas of object-
oriented programming. It covers basic oo programming techniques,
UML modeling, pattern-based programming, familiarization with a
huge code basis, designing and implementing graphical user inter-
faces with class libraries, understanding reusability concepts based
on the extension mechanism, and implementing new interesting
projects based on public domain software.

Based on our experience in the previous semesters, we are opti-
mistic that the students will gain knowledge in the above mentioned
areas that will enable them to understand more easily the benefits
from the more theoretical base lectures taught in the undergraduate
program.

6. ACKNOWLEDGMENTS
Thanks for IBM for supporting this course with Eclipse Innovation
Grant 2005.

7. ABOUT THE AUTHORS
Tianchao Li is currently a full-time research associate at the com-
puter science department of Technische Universität München, Ger-
many. He is an Eclipse committer and has four years experience
with Eclispe development. He has developed plug-ins for IBM,
EP-Cache [5] project, Eclipse Parallel Tools Platform, and Globus
Service Development Environment [3]. He is now supported by
IBM Center for Advanced Studies to work on his Ph.D. studies on
automated resource mangement for large-scale applications. Be-
sides resource management and workflow support for the Grid and
Eclipse-based tools for parallel and distributed computing, his re-
search activities also include performance monitoring and tuning,
computer architecture and its simulation.

Michael Gerndt is an associate professor for architecture of par-
allel and distributed systems at the computer science department
of Technische Universität München, Germany. His research in-
terests include language design, compilation techniques, and pro-
gramming tools for parallel and distributed systems, automatic per-
formance analysis for parallel programs. Michael is a member of
the advisory board of the Euro-Par conference, the steering com-
mittee of the International Conference on Supercomputing (ICS),
and the steering committee of the International Workshop on High-
Level Programming Models and Supportive Environments (HIPS).
He is also serving as a PC member of numerous conferences and
workshops in the area of parallel computing. He has published
more than 40 conference and journal articles in his area of research.

8. REFERENCES
[1] Clix e-learning platform.

http://www.im-c.de/international/index.htm.

[2] Eclipse. http://www.eclipse.org/.

[3] Globus Service Development Environment.
http://sourceforge.net/projects/gsde/.

[4] T. Li and M. Gerndt. Eclipse Plug-in Programming Lab
Course Website. http://www.lrr.in.tum.de/˜lit/teaching/eclipse.

[5] T. Li and M. Gerndt. Performance Cockpit: An Extensible
GUI Platform for Parallel Tools. InProceedings of the 11th
International Euro-Par Conference (Euro-Par 2005), Lishoa,
Portugal, Aug. 30th - Sept. 2nd 2005.

[6] Omondo. EclipseUML. http://www.omondo.com.

[7] OSGi. http://www.osgi.org/.

[8] J. K. P. Bouillon. Using Eclipse in Distant Teaching of
Software Engineering. InProceedings on Workshop on
Eclipse Technology Exchange (eTX 2004), Vancouver,
Canada, October 2004.


