
The following instructions are derived from those used by the platform team:

http://www.eclipse.org/eclipse/platform-core/documents/3.1/run_from_jars.html

By way of illustration, we will walk through jarring org.eclipse.datatools.connectivity.ui.
All of these modifications are made using Eclipse 3.2M5a with auto-build enabled.

1. When the plug-in is loaded into Eclipse and built, a number of warnings might appear
in the Problems View. In particular, we are interested in the following:

The first warning can be fixed by opening build.properties and deleting the following
line:

jars.extra.classpath =

The second warning is a result of DTP 0.7 backward compatibility with Eclipse 3.1. For
DTP CVS head (that is, DTP versions later than 0.7), Eclipse 3.1 support is not required,
so this deprecated property can be changed. Open the manifest.mf file and change:

Eclipse-AutoStart: true

to the following:

Eclipse-LazyStart: true

Also, if you find the Eclipse-AutoStop, then delete it completely. While you are editing
the manifest file, also remove the plug-in jar property:

Bundle-ClassPath: connectivityui.jar

Finally, save and close both the manifest and build.properties files. After building, a new
set of warning should appear:

Open the build.properties file in the build file editor, and flip to the “build” tab. You will
see the old plug-in jar name still present:

http://www.eclipse.org/eclipse/platform-core/documents/3.1/run_from_jars.html

Right click on this library name, and choose “Rename.” When the rename dialog appears,
delete the old name and enter a single dot:

Click on “OK” then save build.properties. Finally, make sure that the bin.includes section
was updated correctly. Flip to the “build.properties” tab and look at bin.includes. It
should have a dot (.), but not the name of the old library:

If it has the name of the old library, then you should see a warning in the Problems View:

This means that the bin.includes was not updated correctly. Change it to remove the old
library name:

Which results in:

Notice the dot added to bin.includes.

You should now be able to export the plug-in as a deployable jar (the plug-in exporter
creates a plug-in jar automatically for those plug-ins who library is designated with the
dot). Many things can go wrong when a plug-in is jarred: for example, resources such as
icons may fail to load. Therefore, you will need to thoroughly test your plug-in after
jarring, to verify that it still works as expected.

