
The Eclipse Quality (http://www.eclipse.org/projects/dev_process/eclipse-quality.php) 
document details a range of API types:

Specification Test Suite Implementatio
n Clients Support 

Promise Package

Platform API yes yes yes yes yes public
Provisional yes yes yes yes not quite public

Incomplete incomplete incomplet
e yes yes yes public

Experimental yes yes yes yes ? internal.
provisional

Non-API - - yes - none internal

For DTP 0.7, a number of these choices are not possible:

1. Platform API: Because, by the Eclipse process, a project first has to build a 
community of extenders (clients) outside the project to validate API. We might be 
able to get some API to this stage by DTP 1.0, but acceptance by the Eclipse 
community is hard to attain for these.

2. Incomplete: These can only exist during project implementation, and cannot be 
propagated to a release.

3. Non-API: Obviously not a choice.

This leaves two API levels: Provisional and Experimental. (Why the package name for 
Experimental is “internal.provisional” is not clear to me, but that doesn’t really matter at 
the moment.) The difference between the two is only the support promise and the 
package names. I believe that the goal of exposing some form of API in DTP 0.7 is to 
give the community direction about where we think API might go, so they can focus their 
review efforts in the correct areas. In a sense, we should make a suggestion to the 
community about where we see DTP API moving toward, as a method of involving a 
wide audience in their development, adoption, and evolution. For these reasons, I suggest 
that we aim for Provisional API statements in DTP 0.7.

Declaring Provisional API is not automatic based on meeting the conditions in the table 
above (specification, test suite, etc.). Likewise, not completely meeting a condition or 
failing to meet a condition at all is not immediate cause to invalidate a Provisional API 
statement. Rather, the statement is subject to community review during the release 
presentation(s). We need to state what has been done, and what has not been done, to 
meet the Provisional API criteria. We also need to state how we plan to deal with API 
going forward. If the community is satisfied with our presentation, then the Provisional  
API declaration stands.



Based on the current DTP code line and supporting collateral, I believe the status for each 
condition is:

1. Specification: We have some extension point and code API specification, in 
varying degrees of completeness. We’ll need to have a fairly complete set of 
specifications for the release review.

2. Test Suite: We have little, if anything, for this yet. I understand that the 
community will emphasize this requirement, so it is likely to represent the most 
work for our API declaration. It is likely that the work associated with 
implementing test suites will be the limiting factor in the number of API declared 
in DTP 0.7.

3. Implementation: Required for all API statements, and we should be able to meet 
this easily, since we are inductively defining API.1

4. Clients: Ideally we would have multiple clients using DTP only at the API level. 
We will not have such clients in DTP 0.7. We will have DTP-internal clients, 
however, and this is the minimal starting point. I understand that the community 
likely will be flexible, given that we are trying to engage them (i.e. create more 
clients) by the very act of the Provisional API declaration.

5. Support Promise: We make not claims around this, other than the vague idea that 
this is the general direction DTP might evolve toward, given community 
feedback.

6. Package: Provisional API need to appear in “public” packages. We can keep non-
API “public” packages, but we should mark them as “Non-API” in the JavaDoc.

1 I’ll classify API development as either inductive (code first, API emerge) or deductive (API first, code 
based on specification). The Eclipse preference is for deductive API (see Jim des Rivieres’ presentation at 
EclipseCon 2005 for details: 
http://www.eclipsecon.org/2005/presentations/EclipseCon2005_12.2APIFirst.pdf). In a perfect world, we’d 
have a purely deductive API process in DTP. Clearly, we are not going to achieve this in DTP 0.7 or 1.0, 
but perhaps it is a goal that we can strive for in later versions.

http://www.eclipsecon.org/2005/presentations/EclipseCon2005_12.2APIFirst.pdf

