Copyright (c) 2005 IBM Corporation and others.

All rights reserved. This program and the accompanying materials

are made available under the terms of the Eclipse Public License v1.0

which accompanies this distribution, and is available at

http://www.eclipse.org/legal/epl-v10.html

Contributors:

 IBM Corporation
Enhancements in the Memory View for Eclipse 3.2

This document discusses some of the enhancements being made to the Memory View and its framework for Eclipse 3.2. The document will briefly discuss some of the problems with the current design and how those problems will be addressed.

Communication with Debug Model
One of the major problems with the Memory View is in how it communicates with its client. When memory is needed, or when the base address of the memory monitor is needed, the view asks the model for information on the UI thread. Getting memory could be time consuming. Clients may not be able to respond quickly. Consequently, this may cause the workbench to hang as the UI thread is blocked waiting for the client to respond.

To solve this problem, the Memory View must not communicate with its client on the UI thread. Similar to the Variables View, Debug View or Expressions View, any communication to the model must be done on a background thread. This will ensure that the UI does not get locked up while the UI waits for the model to respond.
There are two options in achieving this:

· Option 1: Modify AbstractTableRendering and its related classes to ask for information on a background thread. This involves scheduling jobs to perform such tasks and would require scheduling and coordination among the jobs.
· Option 2: The second option is to replace the table viewer in AbstractTableRendering with the new asynchronous table viewer provided by the debug framework.

Both options require major redesign in AbstractTableRendering. Option 1, would require less of code rewrite. However, it would mean huge testing efforts in order to flush out all of the timing issues that might emerge as a result of this change. In addition, Option 1 does not allow the table rendering to adapt to the new flexible hierarchy / flexible update policy scheme.
Option 2 means that the AbstractTableRendering will be completely rewritten in order to use the asynchronous table viewer. There will be a lot of difficulties in maintaining API compatibility. Initial investigation already shows a need to break compatibility in existing APIs. However, this option is a more viable solution in the long run. It would allow the Memory View to support flexible hierarchy and flexible update policy. This is a chance for the Memory View to “catch-up” and become a more standard debug view.

Plan for 3.2
The platform will provide a new table rendering for Eclipse 3.2. The new table rendering will make use of the new asynchronous table viewer. This new implementation will remain internal for Eclipse 3.2 and will not maintain API compatibility with the current implementation of a table rendering, AbstractTableViewer. Clients who wish to take advantage of the new table rendering can make use of this internal class. Clients may try out this internal class and provide feedback on the new APIs. The new table rendering will be published as public API when the rest of the flexible hierarchy work becomes public in future release. At that time, AbstractTableRendering will be deprecated and clients will need to migrate to the new table rendering. Current AbstractTableRendering will not be modified to get its content from a background thread.
Support for Multiple Address Space
The major driving force for extra flexibility in the Memory View is the support for multiple address spaces. When trying to support multiple address spaces, clients face the following challenges:

1. The label of a memory rendering (AbstractMemoryRendering) is generated for the clients. Clients have no way of overriding the defaults unless they create their own renderings.

2. The “Add Memory Monitor” dialog in the Memory View is static. Clients have no way to prompt user for additional information, e.g. the address space id, when a new memory monitor is to be added.
3. User has no way to pass the additional information, e.g. address space id, from the UI to the model using the current IMemoryBlockRetrieval and IMemoryBlockRetrievalExtension APIs.

To help clients with these problems, the Memory View is going to make the following enhancements:

· Allow clients to override the label on an AbstractMemoryRendering using the ILabelProvider interface.

· Allow clients to provide customized dialog when a new memory monitor is to be added.

· Make use of flexible hierarchy to better show and organize memory monitors in a multiple address spaces environment.
Label in AbstractMemoryRendering
The label of an AbstractMemoryRendering is static and cannot be customized by the debug model. The label is generated in the following format: Expression:address <name of rendering>. Some clients have expressed the need to customize this label. For example, in a multiple address spaces environment, clients need to prefix the label with an address space id. In order to allow clients to customize the label, the memory rendering will make use of #getAdapter(…) method.

When a label is needed, the rendering asks the memory block that it is displaying for an ILabelProvider using the #getAdapter(…). Clients can optionally provide a label provider when called. If a label provider is not provided, the rendering will continue to compute a label for the rendering. However, if a label provider is provided, the rendering will ask for a label through the ILabelProvider interface. The rendering instance will be passed to the label provider in order to give the label provider enough contexts to create a suitable label. If a client decides that it only wants to provide a label for a certain types of rendering, client may optionally return a label for types that it cares about. For types that it does not care about, client returns null when asked to provide a label. In that case, the rendering will generate a default label for the rendering.

Plan for 3.2
This work is currently targeted for Eclipse 3.2 M5 as it does require new APIs.

Adding a Memory Block
When the user clicks the “+” button from the Memory View, a dialog pops up to prompt user for information. For target that supports IMemoryBlockRetrievalExtension, the dialog asks for an expression. For target that supports just IMemoryBlockRetrieval, the dialog asks for an address and a length. While this is sufficient for most clients, some clients require more information when creating a new monitor. Some clients require that their users enter an address space id, while others require their users to provide an addressable size. Possibilities are endless.

To allow clients to customize what information is required for adding a memory monitor, the platform is going to make the “AddMemoryBlock” action retargettable. The actions will be retargettable based on the selected context from the Debug View. Clients may provide an action delegate for the action. When the action is invoked, the Memory View will ask the current debug context for a “Add Memory Block” action delegate using #getAdapter(…). If a delegate is provided, client’s action delegate will be called. At this time, client may choose to provide a customized dialog and allow user to enter additional information.
If a client has decided to provide its own “Add Memory Block” action, then it becomes the client’s responsibility to create the memory block and its renderings when the action is invoked. Current IMemoryBlockRetrieval and IMemoryBlockRetrievalExtension APIs will not be modified to allow clients to pass additional information to its model. Instead, clients may define their own internal interfaces for creating their memory blocks.
After a memory block is created, the client must add the resulted memory block to the Memory Block Manager. The Memory View will receive and handle the memory block added events. In addition, if some renderings are required to be added by default, client’s action delegate is also responsible for adding the renderings to the Memory View.

The retargettable “Add Memory Block” action can be implemented in editors, Variables View, Registers View or other views. In this case, we ensure that we have a consistent look and feel (label, icon and shortcut) for this action in the workbench. In additions, users can add new memory monitors from views other than the Memory View. For example, while examining a pointer from the Variables View, user may be interested to look at memory from the pointer. User may simply select that pointer variable and invoke the “Add Memory Block” action from the Variables View. The action adds the new memory monitor and renderings and can bring the Memory View to the top for user’s viewing. This enhancement will improve user’s experience in creating memory monitor / renderings in the workbench.
Plan for 3.2
This work is currently targeted for Eclipse 3.2 M4. New APIs will be needed to make the AddMemoryMonitor action retargettable.
Flexible Hierarchy in Memory View
One of the ways to better organize memory monitors in a multiple address-spaces environment is to group the monitors belonging to the same address space together in the Memory Monitors Pane. (The Memory Monitors Pane is the tree viewer pane from the Memory View.)
Currently, the Memory Monitors pane can only display memory monitors. It would be useful if the Memory Monitors Pane can display debug elements other than memory blocks. For example, if we can populate the view pane with both memory blocks and address spaces, the memory monitors can be organized as follows in the Memory Monitors Pane:
· Address Space A
· Memory Monitor A:0x12345678

· Memory Monitor B:0xabff1234

· Address Space B

· Memory Monitor C:0x12345678

Memory Monitor A and B belong to Address Space A while monitor C belongs to Address Space B.

It would also be useful if the Memory Monitor pane allow clients to filter out certain memory monitor / address space. In addition, it will be useful if user can sort the tree viewer based on some parameter, e.g. address space name.

This use case seems to be a perfect example for flexible hierarchy in the Memory View. Currently, the Memory Monitor Pane assumes that a debug model has the following hierarchy:

· IMemoryBlockRetrieval / IMemoryBlockRetrievalExtension

· IMemoryBlock / IMemoryBlockExtension
The model is static, and the view pane shows a list of memory blocks belonging to the same memory block retrieval.

However, as shown in our example, a debug model may have the following hierarchy:

· IMemoryBlockRetrieval / IMemoryBlockRetrievalExtension

· Address Space

· IMemoryBlock / IMemoryBlockExtension

To allow clients to show their customized model in the Memory View, the Memory Monitors pane can replace its tree viewer with the new asynchronous tree viewer. A default content adapter will be provided by the platform to maintain backwards compatibility. The default content adapter populates the view pane with the current debug hierarchy. Clients may provide their own content adapters and populate the view pane with debug elements other than memory blocks.

The asynchronous tree viewer allows the pane to communicate with its client on the background thread. In addition, the new viewer makes it easier to support flexible hierarchy in the view pane. The Memory Rendering panes will continue to show renderings based on selection from the Memory Monitor Pane.

Issues:

· How is the Rendering View Pane going to be affected if the Memory Monitors Pane shows elements other than memory blocks? What should the rendering view pane show when an address space is selected?
Plan for 3.2
The work is currently targeted to M5 as no API is required for this work. Some investigative work will be done before M4 to ensure that this is the case.
GoToAddress Action

AbstractTableRendering provides a “Go To Address” action to allow users to jump to any address in memory. When this action is invoked, the user is expected to enter an expression. The expression will be converted to a BigInteger and the rendering will be refreshed to show memory at the specified location. While I was looking at what enhancements are needed to support multiple address space, there seemed to be a need to pass the expression entered to the model for evaluation in order to allow users to jump from one address space to another.
However, after some discussions with the CDT and embedded development community, clients have reflected that their users seldom go from one address space to another while looking at a memory monitor. There will be no need for this action to allow user to cross address space boundary. As a result, no change will be done to this action.
Persistence of Row and Column Sizes in Table Renderings
The debug platform has a global format setting for a table rendering. The format setting consists of a row size (number of addressable units per line) and a column size (number of addressable units per column.) The settings are used to format the table rendering during its creation.
Consider the scenario when a user may be debugging in many different environment in which the addressable size of these environments are different. While having 16 units per line is acceptable for some environment, this setting may not be acceptable for environment with larger addressable size. Users may wish to have less number of units per line to avoid having to constantly scroll horizontally to see the end of a line. As a result, these settings should be stored by debug target type / model type instead of globally.
The Memory View does not store information on behalf of its client. Clients must save and restore their model-specific data. (Similar to how memory blocks and renderings are not persisted by the Memory View.) Because the default format settings are model/target specific, it is the client’s responsibility to persist these settings.

To make it easier to persist this setting, the platform will introduce a new interface to talk to its client when the default settings are needed and when the default settings are to be saved. The new interface is defined as follows:
/**

 * Represents an element that is capable of persisting properties.

 * @since 3.2

 *

 */

public interface IPersistableDebugElement {

/**

 * Return the property with the specified propertyId.

 * @param context is the context who is asking for this property.

 * @param propertyId is the property id of the property.

 * @return the value of the specified property

 * @throws CoreException when an error has occurred getting this property

 */

public Object getProperty(Object context, String propertyId) throws CoreException;

/**

 * Sets the property with the specified propertyId. Clients are expected

 * to save the properties specified.

 * @param context is the context who is asking for this property to be saved.

 * @param propertyId is the id of the property to be saved

 * @param value is the value of the property

 * @throws CoreException when an error has occurred setting this property

 */

public void setProperty(Object context, String propertyId, Object value) throws CoreException;

/**

 * @param context is the context who is asking if this property is supported

 * @param propertyId

 * @return true if the peristable debug element wishes to handle persistence of

 * the specified property.

 */

public boolean supportsProperty(Object context, String propertyId);

/**

 * Add the property change listener to the persistable. The listener will

 * be notified when properties have changed from the peristable element.

 * @param listener is the listener to add

 */

public void addPropertyChangeListener(IPropertyChangeListener listener);

/**

 * Remove the property change listener from the persistable. The listener will

 * no longer be notified when properties are changed from the persistable element.

 * @param listener is the listener to remove

 */

public void removePropertyChangeListener(IPropertyChangeListener listener);

}
AbstractTableRendering defines the two properties to be persisted:
· PREF_ROW_SIZE – number of addressable units per line, expects the persistable element to return Integer as the property value. Client must return one of the following values: 1, 2, 4, 8, or 16.
· PREF_COLUMN_SIZE – number of addressable units per column, expects the persistable element to return Integer as the property value. Client must return one of the following values: 1, 2, 4, 8, or16.
Row size must be divisible by column size. Row size must also be greater than the column size.

When a table rendering is created, the rendering first checks the availability of synchronized row and column size settings from the synchronization service. If synchronization properties are available, it means another rendering is currently displaying the memory block and the rendering should follow the synchronized settings. If synchronization properties are not available, the rendering asks the memory block for an IPersistableDebugElement using the #getAdapter(…) interface. The persistable element provides the default row and column size to use. If the memory block does not implement the IPersistableDebugElement interface, AbstractTableRendering uses the global default settings to create the rendering. The defaults are 16 units per row and 4 units per column in this case.

[image: image1]
Figure 1 – Showing how properties are retrieved from IPersistableDebugElement
AbstractTableRendering will provide a new action in its context menu to allow users to customize the format settings. The action will bring up a dialog in which the user can define the default row and column size. When trying to save the preference, the dialog checks if the memory block provides an IPersistableDebugElement. If an IPersistableDebugElement is available, the dialog tells the persistable element to save the properties.
On the other hand, if a persistable element is not available, the properties will be stored by the debug platform. The platform generates a unique property id in the following format: <preference id>:<model identifier>. The properties will be saved in debug UI’s preference store. This is done to ensure that user can still save and restore their preferences even though the model does not implement the IPersistableDebugElement interface. Otherwise, the Memory View may appear to be broken as the user has no other way to save this preference. (It may look like a regression since the Memory View used to persist column size setting.)
[image: image2]
Figure 2 – Showing properties being stored using IPersistableDebugElement
The interface is provided to allow the model to define the default format of their table renderings. In addition, it makes these settings more flexible as it allows clients to save the settings by target type, launch configurations, environment, etc. The settings are not tied to a model.
Plan for 3.2
This is currently targeted for M4 as it requires new API.

Persistence of Memory Monitors and Renderings
The Memory View does not persist memory monitors and their renderings. This data is considered to be owned by the model. It is the model’s responsibility to save and restore this data correctly between debug sessions. Currently, it is difficult for a client to persist this information as there is no easy way to get to all the memory monitors and their renderings. Users must navigate through a web of interfaces in order to discover all the memory monitors and renderings that need to be saved
In order to persist a memory monitor and its rendering, this is what a client has to do:

1. Ask the Memory Block Manager for a list of memory blocks
2. For each workbench window, find all IMemoryRenderingSite. (i.e. all views that implement IMemoryRenderingSite or is an adapter to IMemoryRenderingSite)

3. From the view that implements IMemoryRenderingSite, ask for a list of memory rendering containers, IMemoryRenderingContainer.
4. From each of the memory rendering containers, ask for a list of renderings.

5. Match the renderings to each of the memory blocks and remember which container the memory rendering belongs to.
Clients must repeat the same process for all the Memory Views that are currently opened. They must go through each of the containers from a Memory View and “discover” what renderings are currently hosted by the container.

When restoring this data, clients must use their data and re-create the memory monitors with the correct debug context. In addition, clients must re-create the renderings into the correct containers for each of the Memory View.

Persisting memory monitors is not difficult. Clients can get a list of monitors from the Memory Block Manager.

Persisting memory renderings is difficult because information is scattered. Clients must go to different places to gather the necessary information.

We can make use of the IPersistableDebugElement interface to make persistence of the renderings simpler. IMemoryBlock will define a new property that stores a list of renderings that are currently displaying the memory block. The property will have the following format:
· Property Id: org.eclipse.debug.renderings

· Property Value: The property expects a value of an ArrayList. It stores a list of renderings that are currently displaying the memory block.

When a rendering is created, the rendering asks its memory block for an IPersistableDebugElement using #getAdapter(…). If the memory block provides a persistable element, the rendering queries for a list of renderings that are currently showing the memory block. If the persistable element returns null, it means that this rendering is the first rendering showing the memory block. The rendering creates an array list and will tell the persistable element to save this list. As more renderings are added for the same memory block, the renderings will continue to add itself to this array list. When a memory rendering is removed, the rendering removes itself from the array list.
When a debug session is terminated, clients may retrieve a list of memory blocks that are tied to the current debug session. If the memory block has implemented the IPersistableDebugElement interface, the memory block will already have a list of renderings that are currently displaying the memory block. From the renderings, the memory block can easily figure out where the memory rendering is hosted. (i.e. which view the rendering is hosted in, from which container, etc.) The memory block can save this information accordingly.

For this design to work, renderings must ensure that it register and deregister itself from the memory block using the IPersistableDebugElement interface. AbstractMemoryRendering will be modified to register and un-register to its memory block. Any renderings that subclass from AbstractMemoryRendering will get this support for free.
AbstractTableRendering

IMemoryBlock

IPersistableDebugElement

Model’s Preference Store

Debug UI

Model

1. Get persistable debug element

2. return persistable debug element

3. Get Property

4. Get Property from Preference Store

5. Return preference value

6. Return requested property

Model

Debug UI

Model’s Preference Store

IPersistableDebugElement

IMemoryBlock

AbstractTableRendering

1. Get persistable debug element

2. return persistable debug element

3. Save Property

4. Save Property to Preference Store

PAGE
8

