[image: image1.wmf]

[image: image2.wmf]

	
	Requirements for describing hardware targets to debuggers

	
	Anthony Berent – ARM Ltd

DRAFT – work in progress

Contents

31
About this document

1.1
References
3
1.2
Acknowledgements
3
1.3
Terms and abbreviations
3
2
Scope
3
3
Introduction
4
3.1
The need for target descriptions in debuggers
4
3.2
IP-XACT and debugger target descriptions
4
4
Requirement for target descriptions
5
4.1
Overview of requirements
5
4.2
Describing the hardware as seen by the target software
5
4.2.1
Describing processors
7
4.2.2
Describing peripherals
12
4.2.3
Describing registers
13
4.2.4
Describing relationships between components
25
4.3
Describing debugger access to the system
26
4.3.1
Describing access to the target
26
4.3.2
Describing debug facilities on the target
28
4.4
Describing the relationship between software debug information and the system
34
4.5
Other requirements
34

1 About this document

1.1 References

This document refers to the following documents.

	Ref
	Author(s)
	Title
	Availability

	1
	SPIRIT Consortium
	IP-XACT user guide version 1.2
	available from http://spiritconsortium.org

	2
	Aaron Spear (Mentor Graphics) on behalf of Eclipse DSDP project
	DSDP Target Definition Requirements
	available from http://www.eclipse.org/downloads/download.php?file=/dsdp/dd/Subgroups/SPIRIT/DSDP_target_definition_requirements_1.1.doc

1.2 Acknowledgements

Much of the material in this document (Requirement for target descriptions) derives from Aaron Spear’s document (ref 2).
1.3 Terms and abbreviations

This document uses the following terms and abbreviations.

	Term
	Meaning

	Software debugger (or debugger)
	A software tool controls, or allows a user to control, the execution of another software program (the target program), and allows the user to examine the internal state of the target program and the hardware used by the target program.

	Target system
	The hardware, or hardware model, on which a software debugger’s target program is running.

	IP-XACT
	A standard, developed by The SPIRIT Consortium, for describing the interfaces to digital IP components, and the high level structure of systems using such IP components.

2 Scope

This document describes the requirements for describing target systems to software debuggers for software running on embedded systems and examines the extent to which these requirements can be met by descriptions using the current IP-XACT standard.

This document assumes the target hardware is directly visible to and relevant to the behavior of the software being debugged. This will typically be true of, for example, operating system kernels, or drivers, but not of, for example, application software in running in the context of a fully featured operating system (e.g. Linux, Windows XP etc.). This document does not examine the needs of debuggers for such application software.

This document assumes that the debugger is running on separate hardware from the software being debugged. This is the typical usage model when debugging low level software. Much of the material in this document is, however, also relevant if the debugger is running on the target hardware.

This document does not discuss the debugging of software running on software models of the hardware. While this will have much in common with debugging on real hardware there will also be significant differences in the description of how the debugger accesses the target system.

This document takes as its base version 1.2 of the IP-XACT standard (ref 1).
This document does not examine the needs of hardware debug tools.

3 Introduction

3.1 The need for target descriptions in debuggers
Historically debuggers were written to run on a single type of system, with, as far as the software was concerned, a consistent environment. This may still apply to some application debuggers that only run on one O.S., but most modern debuggers are used with multiple different targets. When a debugger is used with multiple targets it needs to be configurable for each target. This configuration has to include, at least:
· How to connect the debugger to the target, or to particular target components.

· How to load software onto the target

· How to control the execution of software on the target.
· This includes setting breakpoints, stepping, and detecting the execution state of the program (e.g. whether it has stopped at a breakpoint).

· How to access registers and memory holding the values of the program variables.

· When the software is built the build tools (compiler, linker, etc.) will normally create a description of the relationship between the user visible variables and the target’s memory or registers. This description may be, for example, a DWARF description. By using this description, together with the target description, the debugger should be able to read and alter the values of program variables.
· How to access other memory or registers that are relevant to behavior of the software. These may include, for example, the registers of i/o devices.

· How to display the state of the hardware and software to the user. This goes from defining how to disassemble instruction in particular memory regions to, for example, whether to display a register as a fixed or floating point value.

Most current debuggers are configured through a mixture of loadable modules (e.g. disassembly modules for particular processor architectures) and configuration files. There is, however, at present no standard for these configuration files, and every debugger seems to have its own proprietary format. This means that every new system or IP component needs new configuration files written for every debugger used with it. In addition many of these formats were designed when typical systems had only one, or maybe two, processors and only a small number of peripherals; and do not scale well to more complex systems.
3.2 IP-XACT and debugger target descriptions

The IP-XACT standard provides an XML schema for describing the externally visible interfaces of IP components, and for describing the logical structure of designs containing these components. These descriptions include descriptions of the components’ memory mapped registers, address maps, and interconnections. While this is clearly not all the information needed in a debugger target description, it is a large part of it. As such IP-XACT seems a good basis for a standard for debugger target descriptions.
Assuming IP-XACT can be extended to fulfill the needs of debuggers it has a number of advantages over existing target description formats:

· It is a standard that could be used by many debuggers. This means that an IP creator need only create one description of the IP, rather than one for each debugger.

· It is a format used by EDA tools during the development of IP, and as such it should be easy for the EDA tools to generate the descriptions needed by debuggers. At present most target descriptions have to be hand written.

· It is an XML format. As such, even if EDA tools are not available, a number of standard tools already exist (XML editors and checkers, for example) that can edit, view, and analyze the data. There are also widely available packages for parsing XML files (e.g. Xerces) programmatically.

4 Requirement for target descriptions
This section attempts to define all the information that debuggers require about the hardware targets on which the software they are debugging runs. It also describes what of this information is available from IP-XACT target descriptions.
Many of the data items listed in this section is often only exists implicitly in the code of current debuggers. For example, rather than containing an explicit description of the operations required to set a breakpoint, a debugger may contain a SetBreakpoint function (or a set of such functions), which performs the actions required to set a breakpoint. In cases like this it is may be unclear whether it is practical or desirable to replace this implicit knowledge with an explicit description, and in particular whether it is possible to standardize such descriptions. The inclusion of such items in this section does not mean that I necessarily believe that they are suitable candidates for standardization.
4.1 Overview of requirements

A debugger target description must contain three types of information:

1 A description of the hardware of the system as seen by the software being debugged. This includes details of the processors and the peripherals, and of the processors’ views of the system, including, for example, their memory maps.

· Note that in many cases there will be multiple pieces of software being debugged, running on separate processors, each with its own view of the system, and the user will be interested in how these pieces of software interact through the hardware of the system. The description must be sufficiently rich to allow the user, and the debugger, to understand these interactions.
2 A description of how the debugger may access the hardware on the system. Some of this, including, for example, the structure of debug busses, may be part of the hardware description; but the debugger may also need additional information.
3 A description of the relationship between the debug information generated by the compilation tools and the actual hardware of the system. This includes, for example, mapping register ids (DWARF ids or similar) used in the debug information onto hardware registers.

4.2 Describing the hardware as seen by the target software
This part of the description must include:

· A description of the system’s processors

· A description of the system’s peripherals

· A description of the relationships between the processors and peripherals

Note that there are a variety of different ways of breaking down this description. For example, while IP-XACT breaks this down into components and interconnections between components, with the memory map being derived from this, some debuggers contain explicit descriptions of the complete memory map of each processor, with indications as to which parts of the memory map are shared with other processors.

4.2.1 Describing processors

	Number
	Requirement
	Justification
	Notes
	Support in IP-XACT

	1
	Type name of processor
	User information
	E.g. ARM1176JZFS
	Component types are defined by component files named, and referenced using VLNVs (Vendor, Library, Name, Version). There is, however, no way of associating a shorter name with a component.

CPUs within a component are untyped, however the inclusion of multiple CPUs within a single component probably means that users are expected to see the component as an indivisible unit.

	2
	Instance name of processor
	User information. Required to distinguish different processors of the same type
	E.g. “Application processor”
	Component instances are named in design files. CPU instances within a component are named,

	3
	Processor Architecture
	
	Should include details of optional architectural features (e.g. floating point units). This information implied by the type name of the processor, so, if described, should probably be described once for each processor type (rather than once for each processor instance).
	

	3.1
	Architecture name
	User information
	E.g. ARM
	None

	3.2
	Architecture version
	User information
	E.g. V7M
	None

	3.3
	Architected register details
	Debugger needs to know what registers should be shown to the user.
	See section 4.2.3
	

	3.4
	Processor execution modes
	
	Including, for example, exception modes, and secure v. non-secure execution
	

	3.4.1
	Modal and non-modal registers
	Debugger needs to know which registers are accessible in each mode to correctly present the state of the processor to the user, and to understand instructions.
	
	No direct support, however, it the state of a the processor can be read from a register the dependency mechanism can be used.

	3.4.2
	Mode switching operations and instructions
	Debugger may need these to access registers.
	
	Not described

	3.5
	Modal effects on address space access.
	Required to correctly understand memory references by the target program.
	
	Not described

	3.6
	Instruction set details
	
	
	

	3.6.1
	Instruction sets
	Debugger needs to understand that a processor may have multiple instruction sets in order to understand the instructions
	For example ARM processors may support both ARM and Thumb instruction sets.
	Not described

	3.6.2
	Instruction disassembly details
	Required to display memory as instructions to the user
	Disassembly format may depend on tool chain used.
	Not described

	3.6.3
	Instruction sizes
	Required (in some debug architectures) to allow single stepping.
	
	Not described

	3.6.4
	Instruction branch targets
	Required (in some debug architectures) to allow single stepping.
	Branch targets may be simple (e.g. an address) or calculated (e.g. from register values).
	None

	3.6.5
	Instruction effects
	Required for some advanced debugger functions, such as reconstructing register values from trace.
	Not required for all debuggers. It is not apparent how best to describe instruction effects in an architecturally and tool independent way
	None

	3.6.6
	Details of registers with special roles.
	Required to understand the instructions.
	For example, on ARM architectures, the debugger needs to understand that moving a value to R15 will change the PC.
	None

	3.7
	Memory architecture
	
	
	

	3.7.1
	Address space structure: what address spaces exist, and how do their addresses relate to one another
	Required to allow image loading, and correct setting of software breakpoints (if they can be set)
	Includes describing whether data and instruction address spaces are unified (Von Neumann architecture) or separated (Harvard architecture).
	IP-XACT is able to associate multiple (named) address spaces with a CPU. The relationships between the address spaces are described through the bus structure of the system. A single IP-XACT component may have multiple bus interfaces connecting to the same bus, each associated with a separate address space.

	3.7.2
	Address space identifier
	User information.
	Eg. INSTR, DATA
	

	3.7.3
	Address space addressing unit size in bits
	Required to understand addressing, particularly when the same physical memory or peripheral may be addressed by multiple address spaces (possibly in different processors)
	
	Supported

	3.7.4
	Addressable range
	Why is this required?
	Typically 2^32 addressing units.
	Supported.

	3.7.5
	Read and write sizes
	Are processor read and write sizes needed by the debugger?
	
	IP-XACT defines a width for each address space.

	3.7.6
	Endianess of address spaces. I.e. how the address of a read or write is modified when the size of the read or write does not match the size of the register.
	Needed to understand memory accesses.
	The actual requirement is that it should be possible to determine the relationship between values read or written by the processor, and the value that appears in memory or in a peripheral’s register. This however depends on the behavior of the processor, the peripheral, and possibly the bus or busses connecting them. See requirement 14.1.
	Endianess is supported, although limited to “big” and “little”.

	3.7.7
	Memory caching and buffering structure
	Required to allow correct setting of breakpoints in Harvard architectures, and correct handling of shared memory.
	Actually all a debugger needs to know is the synchronization points and rules for different address spaces, and how to force synchronization, but this is probably best represented in terms of the caching and buffering structure.
	Not supported

	4
	Architectural options
	
	
	

	4.1
	Optional subcomponents included
	Required for correct interpretation of instructions, and to present the correct register set.
	The optional subcomponents themselves are described as part of the description of the architecture. See requirement 3.
	Supported through hierarchical component descriptions and/or including the appropriate registers

	5
	Interfaces
	
	
	

	5.1
	Mapping of address spaces to bus interfaces
	Needed to calculate the processor’s memory maps, as seen by the software
	
	Supported in IP-XACT

4.2.2 Describing peripherals

	Number
	Requirement

	Justification
	Notes
	Support in IP-XACT

	6
	Name
	User information
	
	Both type name and instance name are provided, as for processors.

	7
	Description (for tool tip or similar)
	User information
	
	Not supported

	8
	List and details of registers
	Required to understand the memory map and for presentation to the user.
	See Section 4.2.3.
	

	9
	Memory blocks provided
	Required to understand memory map
	A memory block is logically simply a set of memory mapped registers, all with identical characteristics, at consecutive addresses. In practice, however, target descriptions will need a more efficient way of describing memory block than listing the registers.
	Supported in IP-XACT.

	10
	Flash memory programming information
	Required to allow loading of new software or modified data into flash memory.
	
	Not supported in IP-XACT.

4.2.3 Describing registers

	Number
	Requirement
	Justification
	Notes
	Support in IP-XACT

	11
	Register description, suitable for display in, for example, a tooltip.
	User information
	
	Supported (description field)

	12
	Unique register ids.
	Required as a short name for display to the user, and for referencing the register in commands etc.
	Example – R14_IRQ

Should match the name used in documentation of the peripheral, processor or processor architecture. Might be hierarchical (e.g. CP10/R1).

A register may have multiple ids (e.g. R15 and PC) but a particular id must uniquely identify a single register (i.e. there is a many to one mapping from ids to registers).
	Supported with hierarchical names.
Multiple ids not currently supported.

	13
	Register grouping - A register may be a part of a group of other registers with a name assigned to the group. This may be done by the register specifying a reference to the group to which it belongs, or more likely implied by scope: that is that the register is declared as a child of an enclosing group or peripheral.
	Is this simply grouping for display, or is it intended to be used in some other way?
	
	Not supported

	14
	Description of how the target software addresses the register.
	Required so that the debugger can understand the relationship between the instructions and the registers. The same, or closely related, information will often be needed to tell the debugger how to access the register.
	For memory mapped registers this will simply be an address or offset within an address space; for processor general purpose registers it will be a register number and possibly a mode. For other registers (e.g. co-processor registers) a more complex description may be needed.

There may be multiple ways of accessing the same register. In particular a memory mapped register may appear in multiple address spaces belonging to either the same or different processors.
	See below

	14.1
	Mapping into address spaces. For memory mapped registers the debugger needs to know how the bits of the register map onto each address space it appears in.
	
	This includes defining the register’s address; its endianess, and any effects of the differing access sizes and addressing units at the processor and the register. In its crudest form it could be a list of the form:

· Bit 1 of the register appears as bit 243 of the address space

· Bit 2 of the register appears as bit 451 of the address space

· Etc.

	IP-XACT supports:
· Defining a register’s address relative to a bus, and hence its address in each address space.

· Defining certain effects of different bus and register widths on access to a register

· Defining the endianess of a memory map (an addressable region accessed from one or more busses).

	14.2
	Register set and number. For general purpose registers within a processor this describes the software’s access to the register
	
	For processor registers certain register sets may only be accessible in certain modes. See requirement 3.4
	Not directly supported. This could be described in IP-XACT by regarding a register file as an internal memory map that is only accessible to the processor, but this is not an agreed interpretation of IP-XACT.

	14.3
	Other addressing information. In certain cases the software’s access to a register may be more complex than the register appearing in a memory map or a register set. The target description must be able to describe complex addressing information
	
	An example of this is ARM co-processor registers, which are only accessible using certain specific instructions.
	Not supported.

	15
	Width – Number of bits in the register
	Required to modify the register, and to present the value of the register correctly to the user.
	
	Supported in IP-XACT

	16
	Register value type
	Required for correct display and user editing of the value of the register
	E.g. Fixed point, floating point.

In practice this may not be well defined. The effective type might vary dynamically, and the user might want to select a display type different from the fundamental type of the register.

Temporary note: It is unclear to me at present how this relates to register fields.
	Not supported.

	17
	Access rules. Whether the register is read-only, read-write, write-only, or no access, and how the state of the system (in particular the value of other registers) changes this.
	Required to allow display and user editing of the value (if it is possible). Also, possibly, required to allow the debugger to flag issues in the target software.
	The access rules from the debugger may be different from the access rules from the target software.
	IP-XACT is able to define whether a register (or whole address block) is read-only, write-only, or read-write. This is, however, static; and cannot depend on the state of the system.

	18
	Volatility. The circumstances under which the value of the register may change outside the debugger’s control. This ranges from “hardware configuration register – never changes” to “may change at any time – even when the target is stopped at a breakpoint”
	Required so that the debugger knows how it may cache values. Also possibly of direct interest to the user.
	The range of volatility values needs more investigation.

The apparent volatility of a register may depend on mechanism the debugger uses to stop and control the target. For example an instruction counter will appear volatile to a debugger using debug monitor, but may not appear volatile to a debugger using hardware breakpoints. The description of volatility needs to be independent of the debugger.

Is there a need to describe the target software’s view of the register’s volatility, as well as the debugger’s view of its volatility?
	IP-XACT register descriptions have a “volatile” attribute, but this only takes on the values true or false, and its meaning is unclear.

	19
	Access side effects
	
	
	

	19.1
	Destructive reads: - reading the register changes its value
	The debugger should not read such a register except when there is an explicit user request
	E.g. reading a FIFO
	Not supported

	19.2
	Writes invalidate memory or other registers.
	Following a write to such a register the debugger must flush all cached memory values
	If possible this should include a description of what memory is invalidated
	Not supported

	19.3
	Write order or sequence significant
	The debugger must not buffer user requested writes or write to the register capriciously.
	E.g. writing to a FIFO
	Not supported

	19.4
	Access size significant.
	The debugger must use the correct access size for reads and writes, and must not split or merge reads or writes to different parts of the register.
	
	Not supported

	20
	Read/write value relationship. Does the value read from the register always match the last value written to it?
	If not, then the debugger cannot write back read values, and extra care is needed when displaying the value
	An example of the values not matching is a register that is reset to its default value by writing a fixed value to the register.

In some cases it may be preferable to represent a register in which the values don’t match as two registers; one a read only register, and the other a write only register, at the same address.
	Not supported

	21
	Dependencies
	
	
	

	21.1
	Existence dependencies: - The existence or accessibility of a register in dependent on the state of the system (in particular on the value of another register)
	Required to display the correct registers, and to know how to access them.
	Abstractly there could be said to be no difference between a register not existing and a register not being accessible; however a debugger will probably not want to display the register in the first case, and may want to display it with a “No access” value in the second.
	IP-XACT can state that the existence (or accessibility?) of a register is dependent upon the (optionally masked) value of another register. It cannot, however, list a set of values for which the register exists, unless these can be represented by a value and a mask.

	21.2
	Value dependencies – The value of a register is dependent of state of the system (in particular on the value of another register).
	
	A particular case of this is where two logical registers at different addresses, and with different ids, always have the same value, and actually access the same hardware.
	Not supported.

	22
	Bit fields
	
	Bit field descriptions serve two related but distinct purposes:

1. To describe a display/editing format for registers. For example, to name the condition code flags of the ARM CPSR

2. To describe the behavior and access rules for parts of a register, where these vary across a register.

At present these two roles are not fully distinguished, but maybe they should be.
	

	22.1
	Name
	User information
	
	As for registers

	22.2
	Description – for tooltip or similar
	User information
	
	As for registers

	22.3
	Which bits
	Defines the relationship of the bit field to the register
	In some cases a non-contiguous bit field may be required. For example, in the ARM architecture, the execution state bits (which could reasonably be regarded as one bit field) are bits 5 and 24.

Open issue: is there a need for bit fields that take bits from multiple registers? For example, in ARM CoreSight components the JEP106 code (identifying the designer) is spread across various bits of three different registers.
	IP-XACT only supports contiguous bit fields within a single register.

	22.4
	Transformations when reading or writing. In some bit fields which represent values the arrangement of the bits within the register may not be a simple binary value. The debugger needs to know how to transform the value into such a binary value.
	User viewing and editing of the value. Also, in some cases, the debugger internally may need to know how interpret the value (e.g. if it is a base address).
	
	Not supported.

	22.5
	Names for values
	User information
	
	Supported by enumerated values.

	22.6
	List of legal values. Values that can be written to the bit field.
	Editing of values
	The concept of an enumerated value incorporates both value naming and listing legal values; however in some cases one may want to name only a subset of the legal values.
	Supported by enumerated values. It is, however, unclear in IP-XACT if the listed values are the only possible values for a field, or simply a naming of selected values.

	22.7
	Access rules – as for registers
	
	In most cases a single operation will write the whole of a register. As such the definition of field access rules must distinguish between writes to fields being ignored, being illegal, or causing undefined behavior. It should also be possible to define that the only legal write to a field to write back the last value read.
	As for registers

	22.8
	Volatility – as for registers
	
	
	Not supported for individual register fields

	22.9
	Access side effects – as for registers
	
	
	Not supported

	22.10
	Read/write relationship –as for registers
	
	
	Not supported

	22.11
	Dependencies – as for registers
	
	
	Supported as for registers.

	23
	Access timing information.Time or number of cycles required, to read and write the register.
	For analyzing performance
	This information is most likely to apply to complete memory blocks rather than to single registers.
	Not supported.

4.2.4 Describing relationships between components
	Number
	Requirement
	Justification
	Notes
	Support in IP-XACT

	24
	Visibility of peripherals from processors
	
	
	Supported. IP-XACT describes this by describing the connections between the components (including buses). It also describes how the buses modify addressing.

	25
	Interactions between processors
	
	
	Not supported.

	25.1
	Shared memory synchronization. When does one processor or device see something written by another processor.
	
	
	

	25.2
	Atomicity of operations. What operations, or sequences of operations, by one processor or thread of execution, are atomic in the presence of other processors or threads of execution?
	
	
	

	26
	
	
	
	

4.3 Describing debugger access to the system
This section describes what a debugger needs to know about accessing and controlling the system. There are various different routes though which a debugger get control of target systems. These include, at least, debug hardware and software monitors running on the target hardware. Different debuggers, or even the same debugger at different times, may use different routes to access the same system. These different routes may give the debuggers very different debug facilities on the same target.

The following requirements describe what the debugger needs to know about the particular route it is using to access the target.

4.3.1 Describing access to the target
	Number
	Requirement
	Justification
	Notes
	Support in IP-XACT

	27
	Access routes to registers and memory
	The debugger needs to know how to access registers and memory so that it can:

· Display these to the user, either directly or translated into higher level abstractions (e.g. program variables).

· Allow the user to modify registers and memory.

· Load software into memory

· Set software breakpoints in memory (see section 4.3.2)
	
	Some of the required information can be described in IP-XACT. In a system in which the debugger can access memory without using a processor (e.g. ARM CoreSight systems) IP-XACT can describe the buses involved and addressing on those buses. In a system where memory access is only available through processor instructions the description of the software view of the target provides the information needed.

	27.1
	Debugger operations required to read or write the register or memory location.
	The basic information needed to access a memory location or register.
	In some cases this may be deduced from how the target software addresses the register or memory location (see requirement 14) In other cases the debugger may have its own way of accessing the register or memory location.
	

	27.2
	Usable while software running?
	The debugger may want to view or modify the contents of memory while the software is running, but this is only possible on certain systems.
	This gets more complex on multiprocessor or multithreaded system, where the answer may depend on which components of the software are running.
	

	27.3
	Side effects on software behavior
	The debugger, particularly if it is analyzing performance, may need to know that a doing a particular access could change the behavior or performance of the program.
	For example, to get a correct picture of the state of the system, the debugger may need to force a cache flush before reading memory
	

	27.4
	Atomicity of accesses. What accesses will be seen by the target software as atomic.
	In some cases, to understand or change the state of the system a debugger has to access multiple locations. If the state of the system can change between these accesses then the debugger may get incorrect information about the state of the system, or set the system to the wrong state.
	
	

	27.5
	Access rules – as for software access to registers. See requirement 17.
	The debugger needs to know what it can do to each location
	The rules when a debugger is accessing a particular register may be different from the rules when software running on the target is accessing the same register.
	

	27.6
	Access side effects – as for software access to registers. See requirement 19.
	The debugger needs to know which accesses are safe
	The side effects of a debugger may be different from the side effects of a target software access.
	

	28
	Access routes to debug hardware.
	The debugger needs to know how to access debug hardware. This includes, for example, hardware breakpoint units, cross-triggering control, and trace hardware.
	
	The debug bus and addressing structure can be described by IP-XACT.

4.3.2 Describing debug facilities on the target
The debug facilities and components on targets vary greatly, from, for example, software or hardware breakpoints supported by a monitor on the target to non-intrusive instruction trace units.
	Number
	Requirement
	Justification
	Notes
	Support in IP-XACT

	29
	Breakpoints & Watchpoints
	
	
	

	29.1
	Triggering events What events or types of events trigger this breakpoint (or watchpoint) type?
	Needed so that the debugger knows how it can use this breakpoint type.
	Examples:

1. Current instruction address

2. Memory writes to an address.
3. Writing a particular value

4. Performance counter reaching particular value.

To be useful the event descriptions must be precise, for example does a watchpoint react to all writes that modify a particular word of memory, or only writes with the configured address?
	None.

	29.2
	Configurable parameters. I.e. what can be configured about the breakpoint.
	Needed to give the debugger a full description of the functionality of the breakpoint.
	E.g. For a typical program breakpoint the address is configurable. For hardware trapping of exceptions there may be nothing configurable other than enabling or disabling.
	None

	29.3
	Operations to set/clear
	The debugger needs to know this before it can use the breakpoint
	For software breakpoints the debugger needs to know what instruction to write to memory.
	IP-XACT can describe how registers used to control a breakpoint are accessed, or how memory can be accessed; but does not describe the functionality of these registers.

	29.4
	Effect of triggering. This may vary from stopping the processor or system to causing an exception, or generating a trigger signal to some other component. It will often be configurable.
	
	
	None

	29.5
	Accuracy of triggering.
	
	A breakpoint that triggers on the requested instruction is far more useful, but far more expensive in hardware, than one that triggers a few cycles later.
	None

	29.6
	Does modifying memory clear the breakpoint?
	Needed so that the debugger knows if it has to reset the breakpoint after loading new software.
	In general it does for software breakpoints, but not for hardware breakpoints.

Temporary Note: There may be a more general requirement here to describe the side-effects of other operations on breakpoints.
	

	29.7
	Debug resources used.
	Needed so that the debugger knows what combinations of breakpoints it can expect to set.
	In some cases each breakpoint will be a dedicated resource, however in other cases a breakpoint may use a comparator shared with, for example, a trace unit. Note that software breakpoints in RAM will typically use no resources.
	None.

	29.8
	Debug resources available
	Ditto
	
	None, unless the resources correspond to registers described in IP-XACT.

	30
	Execution control
	
	
	

	30.1
	Start execution operations
	Basic debugger function
	
	None

	30.1.1
	Actions to start execution
	
	May depend on why the target is stopped. For example, if the target stopped at breakpoint the debugger may need to clear the breakpoint before execution can continue.
	

	30.1.2
	Which threads of execution are started
	
	May be configurable.
	

	30.1.3
	How well synchronized is it?
	
	In many cases the debugger would like to start or stop the whole system instantaneously, but this is only likely to possible in models.
	

	30.2
	Stop execution operations
	Required by most debuggers
	
	

	30.2.1
	Actions to stop execution
	
	
	

	30.2.2
	Which threads of execution are stopped
	
	May be configurable
	

	30.2.3
	How well synchronized is it?
	
	In many cases the debugger would like to start or stop the whole system instantaneously, but this is only likely to possible in models.

If stopping cannot be synchronized across threads of execution then the behavior of the system under debug may not reflect its normal behavior.
	

	30.3
	Single stepping support
	Used, if available, by many debuggers
	
	None

	30.3.1
	Actions to single step a thread of execution
	
	
	

	30.3.2
	Impact on other threads of execution. Do they stay stopped or running, step one instruction, stop, start, or do something else?
	
	
	

	30.3.3
	Effect of function calls
	
	Hardware single step will almost always step into function calls
	

	30.3.4
	Effect of exceptions
	
	Hardware single step may or may not step into exceptions. For example in secure TrustZone based system stepping in the insecure world will step over secure exceptions.
	

	31
	(Other debug facilities)
	
	To be added
	

4.4 Describing the relationship between software debug information and the system
Temporary Note: This needs considerably more investigation than has been done to date. As such this section is almost certainly incomplete.
	Number
	Requirement
	Justification
	Notes
	Support in IP-XACT

	32
	Mapping of software register identifiers (e.g. DWARF register ids) to hardware registers.
	Needed to understand software debug information
	May depend on state of processor; for example, on an ARM processor, the same library function could run in multiple modes using different stack registers.
	None, although with appropriate usage conventions this might be supportable using IP-XACT’s white box facilities.

4.5 Other requirements

	Number
	Requirement
	Justification
	Notes
	Support in IP-XACT

	33
	Debugger independence
	Write once
	
	Supported by the use of IP-XACT as a standard for debug target description

	34
	Avoid duplicating information
	Maintainability
	
	IP-XACT attempts to reduce duplication of information, but some information is duplicated.

� EMBED Word.Picture.8 ���

GENC-002982 v1.0
Copyright © 2006 ARM Limited. All rights reserved.

_1121523694.doc

