
Clone Merge—An Eclipse plugin to abstract
near-clone C++ methods

Krishna Narasimhan
Institut für Informatik

Goethe University Frankfurt
krishna.nm86@gmail.com

Abstract—Software clones are prevalent. In the work of Laguë
et al. [2], they observe that 6.4% and 7.5% of the source code
in different versions of a large, mature code base are clones.
The work of Baxter et al. [1] reports even higher numbers,
sometimes exceeding 25%. We consider the prevalence of such
near miss clones to be strong indicators that copy-paste-modify is
a wide-spread development methodology. Even though clones are
prevalent, they are a significant development headache. Specially,
if bugs arise in one of the clones, they need to be fixed in all of the
clones. This problem is acknowledged in the work of Juergens et
al. [4] who say in their work that “cloning can be a substantial
problem during development and maintenance”, since “inconsistent
clones constitute a major source of faults”. A similar concern is
raised in practitioner literature [3] suggesting that clones should
be removed in some form or the other. We present a tool that
can be installed as a plugin to Eclipse CDT, the development
environment for C/C++. The research prototype comes with a
refactoring option called ”Copy Paste merge” refactoring, which
is available as a menu option in the modified version of the Eclipse
CDT.

I. OVERVIEW

Fig. 1. Eclipse refactoring option

The tool is inspired by the approach presented by Krishna
Narasimhan and Christoph Reichenbach in their paper titled
”Copy and Paste Redeemed” to appear in the same confer-
ence’s main track, ASE 2015. The overview of the approach
is simple. Each method definition suspected to be copy pasted
is provided as an input in the AST form to a a merge function.
We use the merge function to identify the nodes that are unique
to each subset of the ASTs. Using these unique nodes and
the ASTs they come from, merge points are generated. For
each merge point, a resolution pattern is decided based on
the type of the node. A resolution pattern is simply a code
transformation pattern that determines the appropriate way to
merge nodes. For examples, nodes containing constants can be
merged using an extra parameter to the function. The current
version of the prototype works on a single input file that
contains all the clone groups marked with pragma annotations
that specify which are the methods that are to be used as
input for the refactoring. The clone groups can be of any
size in terms of number of AST nodes. A clone group is a
group of methods which the developers consider to be near-
clones and believes should be abstracted. The input are to

be placed in a special file called ”input.cpp” inside a project
called ”astdifftest”. For more detailed instructions, refer to the
website. http://krishnanm86.wix.com/clonerge. The refactoring
creates or updates a file called ”input.cppmergedoutput.cpp”
which contains the clone groups merged into one function
called ”mergedFunction”. The function definitions of the clone
groups are replaced with calls to the merged function with
parameters and/or template parameters helping the merged
function as to how it decides the merge process. Currently,
four kinds of merges are supported:

1) Differences in Constants are resolved using an extra
parameter based on the type of the constant

2) Differences in Types are resolved using a template
parameter.

3) Differences in statements are resolved using a Switch
Statement

4) Differences in names (such as field names/ variable
names) are resolved using extra parameter. If the
name happens as part of a left hand side of an assign-
ment, corresponding pointer operations are added to
the caller and callee.

II. SCENARIOS

Here, let us see a few real scenarios where our tool might
be used. One for each type of difference:

A. Differences in Constants

Consider Figure 2 which is the input of a clone group with
differences of constants. For each of the constants in (action,
module and clientId), an extra parameter is introduced to the
merged function and that parameter is placed in the position
of the constants. And each of the calling functions, pass their
respective constants which can be seen in the output in 3.

B. Differences in Field names and Statements

Consider Figure 4 which is the input of a clone group
with differences of statements of calls to fn1 and fn2 and
also differences in field access of (x,y) and (cellDiv, cellMod).
For the statement difference, a switch statement is introduced
and an extra parameter denoting which function to switch
between. For the field accesses an extra parameter of unknown
template type is introduced and for (x,y), a pointer operation
is introduced because it happens in the LValue. The output can
be seen in 5.

http://krishnanm86.wix.com/clonerge


Fig. 2. Constant Difference - Input

III. RELATION TO OTHER TOOLS

As far as we are aware, this is the first tool that breaks
the barriers of using only grammatical information while per-
forming merges of near clones. There are refactoring options
that allow for extracting methods from common code. But
they are very trivial and work on exact differences. They
are not able to perform such type and other sophisticated
program analysis that we perform in order to find the points
of abstraction and performing an abstraction using abstraction
patterns like using a Template and Switch patterns. For a future
version of the tool, we plan to introduce a User selection,
where the user can choose between abstraction patterns. For
Example, using an If conditional branch instead of a Switch.
Or using a global field instead of an extra parameter. This
is easily possible because of the way the tool is built, using
merge points and resolution patterns which is described in a
complementary paper submitted to ASE 2015 titled ”Copy and
Paste redeemed”. In the terminology of Koschke et al. [5]),
they mention three types of clones, with Type-3 being the most

evolved and sophisticated of clones which have considerable
parts of their ASTs differing. Perhaps the most closely related
clone management approach to our algorithm is Cedar [7],
which targets Java and relies on Eclipse refactorings for
abstraction. Our approach is more general and does not rely on
existing refactorings like Extract Method. Unlike our approach,
Cedar is limited to Type-2 clones.

IV. IMPACT TO INDUSTRY

To the best of our knowledge, ours is the only work to
support merging the common Type-3 clones (inexact clones)
in a wide variety of cases. As Roy et al. [6] note, Type-3
clones are particularly common and frequently evolve out of
Type-1 and 2 clones. This already sets our tool potentially
in the forefront of industry application. In order to test the
quality of abstractions performed by our tool, we checked out
popular GitHub repositories and abstracted a few of their clone
groups using our tool. During the month of February 2015,
we picked the top trending repositories from GitHub, gathered



Fig. 3. Constant Difference - Output

Fig. 4. Statement and Field Name- Input



Fig. 5. Statement and Field Name- Output

clone groups using a simple Clone Detector implemented by
ourselves. We picked random clone groups, abstracted them
using our tool and submitted 10 Clone Groups abstracted as
pull requests. Out of these, 9 were merged back into the code.
We even got positive feedback from many of the Maintainers
including the ones from Google Protobuf and Oracle Nodedb
repositories. This indicates that people in the industry prefer
to have such abstractions in their code bases. This evaluation
also indicated that there is a common prevalence of copy-paste-
modify method of extending functionality which seems to be
easier. So, our tool can allow industry users to apply copy-
paste mode of refactoring which is easy and then use our tool
to abstract them into a preferred form of the final code. Our
pull requests can be found in Figure 6

V. WEBSITE

Here is a website, which has complete information about
test inputs, a sample video demonstrating a run of the tool
and also a downloadable version of the Eclipse CDT with the
refactoring pre installed and instructions on how to install and
use it.

http://krishnanm86.wix.com/clonerge

The link to the download of the tool is :

https://www.dropbox.com/l/EqsUNLh6oQagDo7HmDVcir

The link to a video demonstration of the tool is : http:
//youtu.be/vm8s0-TM0tY?hd=1

REFERENCES

[1] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and
Lorraine Bier. Clone detection using abstract syntax trees. In Proceedings
of the International Conference on Software Maintenance, ICSM ’98,
pages 368–, Washington, DC, USA, 1998. IEEE Computer Society.

[2] Bruno Laguë, Daniel Proulx, Ettore M. Merlo, Jean Mayrand, and
John Hudepohl. Assessing the benefits of incorporating function clone
detection in a development process. In Proc. Int’l Conf. Software
Maintenance (ICSM), pages 314–321. IEEE Computer Society Press,
1997.

[3] Andrew Hunt and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[4] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code
clones matter? In Software Engineering, 2009. ICSE 2009. IEEE 31st
International Conference on, pages 485–495, May 2009.

[5] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using
abstract syntax suffix trees. In Proceedings of the 13th Working Confer-
ence on Reverse Engineering, WCRE ’06, pages 253–262, Washington,
DC, USA, 2006. IEEE Computer Society.

[6] C.K. Roy, K.A. Schneider, and D.E. Perry. Understanding the evolution
of type-3 clones: An exploratory study. MSR 2013.

[7] Robert Tairas and Jeff Gray. Increasing clone maintenance support by
unifying clone detection and refactoring activities. Inf. Softw. Technol.,

54(12):1297–1307, December 2012.

http://krishnanm86.wix.com/clonerge
https://www.dropbox.com/l/EqsUNLh6oQagDo7HmDVcir
http://youtu.be/vm8s0-TM0tY?hd=1
http://youtu.be/vm8s0-TM0tY?hd=1


Fig. 6. Repositories with their pull request URLs. Each clone group represents one abstraction.We encourage the readers who choose to look at the pull
requests to go through the comments. Although some of the pull requests don’t explicitly have the status as ”merged”, like with the OracleDB and the MongoDB
repositories, the codes have actually been merged, indicated by the comments of the Maintainers.

Repository Clone
Groups

Status URL

oracle/node-oracledb 3 Accepted • https://github.com/oracle/node-oracledb/pull/28

mongodb/mongo 2 Accepted • https://github.com/mongodb/mongo/pull/927
• https://github.com/mongodb/mongo/pull/928

rethinkdb/rethinkdb 2 Accepted • https://github.com/rethinkdb/rethinkdb/pull/3820
• https://github.com/rethinkdb/rethinkdb/pull/3818

cocos2d/cocos2d-x 2 Accepted • https://github.com/cocos2d/cocos2d-x/pull/10539
• https://github.com/cocos2d/cocos2d-x/pull/10546

ideawu/ssdb 1 Rejected • https://github.com/ideawu/ssdb/pull/609

https://github.com/oracle/node-oracledb/pull/28
https://github.com/mongodb/mongo/pull/927
https://github.com/mongodb/mongo/pull/928
https://github.com/rethinkdb/rethinkdb/pull/3820
https://github.com/rethinkdb/rethinkdb/pull/3818
https://github.com/cocos2d/cocos2d-x/pull/10539
https://github.com/cocos2d/cocos2d-x/pull/10546
https://github.com/ideawu/ssdb/pull/609

