
Copy and Paste Redeemed

Krishna Narasimhan
Institut für Informatik

Goethe University Frankfurt
krishna.nm86@gmail.com

Christoph Reichenbach
Institut für Informatik

Goethe University Frankfurt
reichenbach@cs.uni-frankfurt.de

Abstract—Modern software development relies on code re-
use, which software engineers typically realise through hand-
written abstractions, such as functions, methods, or classes.
However, such abstractions can be challenging to develop and
maintain. One alternative form of re-use is copy-paste-modify,
a methodology in which developers explicitly duplicate source
code to adapt the duplicate for a new purpose. We observe
that copy-paste-modify can be substantially faster to use than
manual abstraction, and past research strongly suggests that it
is a popular technique among software developers.

We therefore propose that software engineers should forego
hand-written abstractions in favour of copying and pasting.
However, empirical evidence also shows that copy-paste-modify
complicates software maintenance and increases the frequency of
bugs. To address this concern, we propose a software tool that
merges together similar pieces of code and automatically creates
suitable abstractions. This allows software developers to get the
best of both worlds: custom abstraction together with easy re-use.

To demonstrate the feasibility of our approach, we have
implemented and evaluated a prototype merging tool for C++ on
a number of near-miss clones (clones with some modifications) in
popular Open Source packages. We found that maintainers find
our algorithmically created abstractions to be largely preferable
to existing duplicated code.

I. INTRODUCTION

As software developers add new features to their programs,
they often find that they must modify existing code. The
developers now face a choice: they can either introduce a (pos-
sibly complex) abstraction into the existing, working code, or
copy, paste, and modify that code. Introducing the abstraction
produces a smaller, more maintainable piece of code but alters
existing functionality on the operational level, carrying the risk
of introducing inadvertent semantic changes. Copying, pasting,
and modifying introduces duplication in the form of near miss
clones, which tend to decrease maintainability, but avoid the
risk of damaging existing functionality [10].

Duplication is wide-spread [2], [1], especially if we count
near miss clones (Type-3 clones in the terminology of Koschke
et al. [11]), i.e., clones with nontrivial modifications. How-
ever, duplication is unpopular in practitioner literature [8]
and “can be a substantial problem during development and
maintenance” [9] as “inconsistent clones constitute a source
of faults”. Similarly, we found evidence in an informal poll
among C++ developers that practitioners prefer abstraction
over duplication. This suggests that there is a re-use discrep-
ancy between what developers want and what they do.

Kapser and Godfrey [10] offer one possible explanation:
they claim that “code cloning can be used as a effective

and beneficial design practice” in a number of situations, but
observe that existing code bases include many clones that
do not fit their criteria for a ‘good clone’. We suggest an
alternative explanation, namely that developers view cloning as
an implementation technique rather than a design practice: they
would prefer abstraction, but find copy-paste-modify faster or
easier to use. In our informal poll among C++ developers, we
found evidence that supports this idea (Section II-A).

In this paper we propose a novel solution to the re-use
discrepancy that offers all the speed and simplicity of copy-
paste-modify together with the design benefits offered by
abstraction, by using a refactoring algorithm to merge similar
code semi-automatically. With our approach, developers re-
use code by copying, pasting, and modifying it, producing
near-clones (equivalent to near miss clones1). Developers then
invoke our tool to merge two or more near-clones back into
a single abstraction. Since there may be multiple ways to
introduce an abstraction (e.g., function parameters or template
parameters), our tool may ask the developer to choose which
abstractions they prefer during the merge. Our tool is easily
extensible, so that developers may add support for their own
abstractions (e.g., project-specific design patterns).

We find that our approach is not only effective at solv-
ing the aforementioned re-use discrepancy, but also produces
code that meets the qualitative standards of existing Open
Source projects. Moreover, our approach can improve over
manual abstraction in terms of correctness: as with other
automatic refactoring approaches, ensuring correctness only
requires validating the (small number of) constituents of the
automatic transformation mechanism [14], [16], as opposed to
the (unbounded number of) hand-written instances of manual
abstractions that we see without our tool.

Our contributions are as follows:

• We describe an algorithm that can automatically or
semi-automatically merge near-clones and introduces
user-selected abstractions.

• We describe common abstraction patterns for C++,
supported by our implementation.

• We report on initial experiences with our algorithm on
popular C++ projects drawn from Open Source reposi-
tories. We find that code merged by our approach is of
sufficiently high quality to be accepted as replacement
to unmerged code in the majority of cases.

1We prefer the term near-clones over near miss clones, as the notion of a
miss is only natural in clone detection but not in clone generation.

cos t t costFunct ion1 (coord s t a r t , end) {
cos t t dx = s t a r t . ne − end . ne ;
cos t t dy = s t a r t . se − end . se ;
return std::max(dx, dy);

}

cos t t costFunct ion2 (coord s t a r t , end) {
cos t t dx = s t a r t . ne − end . ne ;
cos t t dy = s t a r t . se − end . se ;
return std::hypot(dx, dy);

}

cos t t costFunctionM (coord s t a r t , end ,
bool chebyshev) {

cos t t dx = s t a r t . ne − end . ne ;
cos t t dy = s t a r t . se − end . se ;
i f (chebyshev) {

re turn s td : : max(dx , dy) ;
} e l s e {

re turn s td : : hypot (dx , dy) ;
}

}

Fig. 1. An example of merging two functions by introducing a boolean parameter and an if statement.

• We describe the results of an informal poll among
C++ programmers that involved a number of coding
tasks. While the poll has only a small sample size,
its findings show that copy-paste-modify can substan-
tially outperform manual abstraction in practice.

Section II further motivates our approach and briefly
sketches our algorithm. Section III describes our merge al-
gorithm. Section IV then discusses our implementation. Sec-
tion V presents our evaluation on Open Source software.
Section VI discusses related work, and Section VII concludes.

II. TOWARDS PRINCIPLED SOFTWARE DEVELOPMENT
WITH COPY-PASTE-MODIFY

Past work in clone detection has found that clones are wide-
spread [2], [11], [1]. We hypothesise that a key cause for this
prevalence of clones is that copy-paste-modify makes software
developers more productive, at least in the short term. To ex-
plore this hypothesis, we conducted a preliminary, exploratory
experiment with a group of graduate student volunteers.

A. Benefits of Copy-Paste-Modify

For our exploratory experiment, we selected five pairs of
C++ methods from the Google Protobuf 2, Facebook HHVM 3,
and Facebook RocksDB 4 Open Source repositories, randomly
choosing from a set of near-clones reported by a simple clone
detector (Section III-A). We then removed one of the methods
and asked five graduate students with 2 months, 3 months, and
1, 4, and 10 years of C++ programming experience (respec-
tively) to implement the missing functionality. We asked the
students with 3 months and 4 years of experience to modify
the existing method to support both the existing and the new
functionality (i.e., to perform manual abstraction), and the
remaining three students to use copy-paste-modify.

We found that the students using copy-paste-modify were
almost universally faster in completing their objectives (2–15
minutes) than the students who performed manual abstraction
(7–55 minutes, with three tasks left incomplete). We found
only one exception, where the best-performing student on
manual abstraction completed the task in the same time as

2https://github.com/google/protobuf
3https://github.com/facebook/hhvm
4https://github.com/facebook/rocksdb

the worst-performing student using copy-paste-modify. Since
the three students using copy-paste-modify finished first, we
asked them to also perform manual abstraction on a total of
five of the problems they had just solved — but despite their
familiarity with the code, they consistently performed worse
(taking more than twice as long as before) when completing
the exact same task again with manual abstraction. However,
developers showed a preference for having abstractions as a
result (in 12 cases, vs. 5 for copy-paste-modify, out of 20
responses, cf. Appendix VIII).

While our numbers are too small to be statistically signif-
icant, they are evidence that copy-paste-modify can be more
effective than manual abstraction at accomplishing re-use at
the method level.

B. Copy-Paste-Modify versus Manual Abstraction

To understand why copy-paste-modify might be easier,
consider function costFunction1 from Figure 1. This func-
tion (adapted, like the rest of the example, from the Ope-
nAge5 project), computes the Chebyshev distance of two two-
dimensional coordinates. The implementation consists of a
function header with formal parameters, a computation for the
intermediate values dx and dy, and finally a computation of the
actual Chebyshev distance from dx and dy.

At some point, a developer decides that they need a
different distance function, describing the beeline distance be-

tween two points (i.e.,
√

dx2 + dy2). Computing this distance
requires almost exactly the same steps as implemented in
costFunction1— except for calling the standard library function
std :: hypot instead of std :: max. At this point, the developer faces
a choice: they can copy and paste the existing code into a new
function (requiring only a copy, paste, and rename action) and
modify the call from std :: max to std :: hypot (a trivial one-word
edit), or they can manually alter function costFunction1 into
costFunctionM (depicted on the right in Figure 1) or a similar
function.

This migration requires introducing a new parameter, in-
troducing an if statement, adding a new line to handle the
new case, and updating all call sites with the new parameter
(perhaps using a suitable automated refactoring). Intellectually,

5http://openage.sft.mx/

https://github.com/google/protobuf
https://github.com/facebook/hhvm
https://github.com/facebook/rocksdb
http://openage.sft.mx/

the programmer must reason about altering the function’s
control flow, formal parameters, and any callers that expect
the old functionality, whereas with copy-paste-modify, they
only needed to concern themselves with the exact differences
between what already existed and what they now needed.

We observe that it is possible to devise an algorithm
that takes costFunction1 and costFunction2 and abstracts them
into a common costFunctionM, taking care that any callers
still continue to work correctly. Note that there are other
possible solutions for costFunctionM. The one illustrated here is
straightforward, but different code and different requirements
may call for different solutions. For example, we could pass
std :: hypot or std :: max as function parameters, wrap them into
delegates, or pass an enumeration parameter to support addi-
tional metrics within this one function. The ‘best’ abstraction
mechanism may depend on style preferences, performance
considerations, and plans for future extension; we thus opt
to rely on user interaction to choose the most appropriate
abstraction mechanism for a given situation.

III. MERGING ALGORITHM

To merge two or more such functions (or, analogously,
methods), we examine and transform their abstract syntax trees
(ASTs). We refer to the sets of ASTs for multiple functions as
clone groups. Our merge algorithm first computes the pairwise
differences between each of the ASTs in one clone group, then
collects differences that are shared among multiple clones, and
finally merges the differences by resolving them through one
of several resolution patterns.

A. Linking Near-Clones through Robust Tree Edit Distance

We detect differences between ASTs through the Robust
Tree Edit Distance (RTED) algorithm [13]. RTED computes
the nodes that we need to add to or remove from one AST to
obtain another; its output is an edit list, i.e., a list of delete,
insert or rename operations:

• delete a node and connect its children to its parent,
maintaining the order.

• insert a node between two adjacent sibling nodes.

• rename the label of a node, essentially replacing one
node by another.

B. Identifying Common Differences

We consider any node that occurs in an edit list to not
be shared between the two ASTs. To illustrate how we use
this information, we will use the code from Figure 4 as a
running example. This somewhat synthetic example presents
three unlikely merge candidates — the functions are both suf-
ficiently small and sufficiently dissimilar that users might not
be inclined to merge them. However, the example showcases
special cases in our algorithm and illustrates that our approach
works even for code with a large degree of variation.

Our algorithm now considers the ASTs of the three func-
tions (upper half of Figure 5) and determines the following:

1) The set of nodes that are common to all the ASTs
(i.e., which do not occur in any edit lists), which the

algorithm will place in the merged tree unaltered. In
the example in Figure 5, this set contains the nodes
{a, x, y, z}.

2) All other nodes, together with:
a) The alternative choices for such nodes that

we must merge. These alternatives must have
matching node types (e.g., statement, expres-
sion, . . .), or our algorithm will abort.

b) The ASTs that each of the alternatives be-
longs to.

Consider the nodes ‘b’ from ASTs 1 and 2 and the node
‘b2’ from AST 3 in Figure 5. These nodes are competing for
the same place in the target AST, but they are not identical;
we refer to such nodes as merge candidates. Node ‘b’ is an
example of a node that appears in multiple ASTs without
occurring in all of them. We first identify such partially shared
nodes from our edit lists: these nodes show up in some
edit lists, but not in all of them. We use the notion of a
Unique Set (U in the Figure 2) to describe the nodes that are
uniquely shared among a particular subset of ASTs. Consider
the example in Figure 5. The nodes ‘b’ and ‘c’ are present only
in AST1 and AST2. We write U(AST1,AST2) to describe
nodes that are present precisely in the two specified ASTs
but in none of the other ASTs that we are considering. Since
there are no further nodes that are unique to AST1 and AST2,
U(AST1,AST2) = {b, c}.

Whenever we have merge candidates competing for an AST
node, we introduce a special operator into the output AST to
facilitate the merge. However, we only need those operators in
places where there is actual disagreement between what node
should be there. These places are precisely the roots of the
subtrees that are not shared between all ASTs. For this purpose,
we further filter the Unique Sets into Rootsets. The Rootset of
a set of nodes N is the minimal set Rootset(N) ⊆ N such
that all nodes n ∈ N have an ancestor in Rootset(N). (We
consider n to be an ancestor of itself for our purposes.) The
minimal Rootset is unique because otherwise there would be
at least one node with two parents, which is not possible in an
AST. The Rootset consists of all the nodes in the set that have
no parent nodes that are also in the set. Figure 3 illustrates an
example computation of these sets for the ASTs in Figure 5.

Figure 2 summarises at a high level how our algorithm
identifies the various sets in Figure 3. We observe precisely
one Unique Set that is different from its Rootset. This is
because the node ‘b’ the a parent of the node ‘c’ and so
the Rootset of that subset {AST1,AST2} can be reduced to
just ‘b’. We assume that there are mechanisms to retrieve the
information about the position of every node, apart from its
label. With that information, we gather that node ‘b’ from the
set {AST1,AST2} and node ‘b2’ from the set {AST3} are
merge candidates.

C. Merge Algorithm

Given the Unique Sets and Rootsets, we first construct an
intersection tree, which is simply the intersection of all ASTs
(i.e., the common nodes and tree edges). Consider the common
nodes generated from Figure 3, {a, x, y, z}. The algorithm
adds these nodes as-is, as illustrated in Figure 5.Our algorithm

Overview of the steps in the ‘Identifying Common Differences’
phase:

1) We begin with a set of all ASTs in our clone group,
ASTall.

2) For each set of ASTS s ⊆ ASTall, we compute the
unique set U(s). Unique Sets describe the nodes that
are present in all ASTs in s, but not in any ASTs in
ASTall \ s.

3) We compute the Rootset of each computed Unique
Set. Rootset(ndSet) of a set of nodes is the minimal
set of nodes belonging to ndSet such that every node
in ndSet has an ancestor in Rootset(ndSet).

Fig. 2. Overview of the preliminary phase.

ASTall = {AST1,AST2,AST3}

U(AST1) = {d, f1} Rootset = {d, f1}
U(AST2) = {e, f2} Rootset = {e, f2}
U(AST3) = {b2, f3, n} Rootset = {b2, f3, n}
U(AST1,AST2) = {b, c} Rootset = {b}

Fig. 3. Example sets generated by the common difference identification phase

assumes that every node in the Rootsets presents an opportu-
nity to merge. For each such node, the algorithm gathers the
nodes that need to be merged at the same child position with
the same parent node, and introduces a merge point. In our
example, node ‘b’ from the Rootset for {AST1AST2} and
node ‘b2’ from the Rootset for {AST3} would be candidates
for merging, as both are competing for the position of the first
child of node ‘a’. We introduce a merge point (‘MP(12, 3)’)
at that position, and attach ‘b’ and ‘b2’ as children.

Another example is the conditional introduction of node
‘n’. This introduction is unique to AST3, but it moves node

1 void f unc t i on1 ()
2 {
3 b (c , d) ;
4 y = f1 ;
5 x (z) ;
6 }

1 void f unc t i on2 ()
2 {
3 b (c , e) ;
4 y = f2 ;
5 x (z) ;
6 }

1 void f unc t i on3 ()
2 {
3 b2 () ;
4 n () ;
5 y = f3 ;
6 x (z) ;
7 }

1 void fnMerged (i n t f unc t i on Id , i n t fValue , i n t bParam)
2 {
3 i f (f u n c t i o n I d == 1 | | f u n c t i o n I d == 2)
4 {
5 b (c , bParam) ;
6 }
7 i f (f u n c t i o n I d == 3)
8 {
9 b2 () ;

10 n () ;
11 }
12 y = fValue ;
13 x (z) ;
14 }

Fig. 4. Example of a three-way merge supported by our tool.

1

a

b

c d

y f1 x

z

2

a

b

c e

y f2 x

z

3

a

b2 n y f3 x

z

merge

a

MP(12, 3)

b

c MP(1,2)

d e

b2

MP(3)

n

y MP(1,2,3)

f1 f2 f3

x

z

Fig. 5. Example merge

‘y’ to child position 3 of node ‘a’. Our algorithm automatically
compensates to ensure that ‘f1’, ‘f2’, and ‘f3’ are now merged
at child position 4, even though they appear as the third child
of ‘a’ in AST1 and AST2.

Finally, we eliminate merge points by applying resolution
patterns. A resolution pattern is a code transformation pattern
to resolve the merging of certain types of nodes at given merge
points. A resolution pattern will return a node to be inserted
at the merge point under consideration. Additionally, it can
transform other parts of the AST. The merging algorithm is
therefore not a fully automatic process. It identifies merge
points and for each merge point, the user picks a resolution
pattern that effects the merge at that point. The algorithm
identifies the merge points separately from the resolution pat-
terns because some resolution patterns may apply to multiple
merge points. Table I lists the resolution patterns that our
prototype system supports, together with the node types they
are applicable to.

Consider the example of replacing the same integer con-
stant in multiple points. The algorithm offers resolution pat-
terns based on the node type for each merge point. For
example, if the nodes under consideration in a particular
position are all constants, we can introduce introduce an extra
parameter of the type of the constant and pass the constant as
the parameter value. Another possibility would be to introduce
a global field that could be assigned the constant. We split
resolution patterns into a ‘merge-substitution’ part and a ‘fix-
up’ part.

The merge-substitution part contains the merged node
that is to be inserted into the merged method. This merge-
substitution part replaces the merge point in the AST. The fix-
up part handles other modifications that need to be performed.
These modifications could involve handling call sites or in-
troducing parameters to the merged method or even changing
other classes and introducing super-classes. While we could
only use a single transformation for each resolution pattern,

TABLE I. AVAILABLE RESOLUTION PATTERNS AS OPTIONS
PRESENTED TO THE USER

Type of Node Possible Resolution Patterns
(Caller w/ Callee)

Statement Switch, Conditional Branch with
Extra Parameter, Field

Literal Extra Parameter, Field
Type of an argument Template Parameter
Identifier Template Parameter, Extra Param-

eter

we find that discussing the merge-substitution part separately
is helpful in understanding each pattern.

Consider again our example in Figure 4. When we merge
the ASTs generated for function1 through function3, we
obtain a merged AST as in the lower half of Figure 5. If we
then pick suitable resolution patterns, we obtain the function
fnMerged from Figure 4.

In the following subsections, we discuss resolution patterns
that we implemented to evaluate our approach. Although our
approach is generic and theoretically can be applied to any
AST chunks, we merged method definitions and replaced the
existing definitions with calls to the merged method. Since the
merging process involves creating a new merged method and
introducing sensible calls to the merged method, we generate
a merged version of the parameters. A merged version of the
parameters is simply a combined list of the parameters of the
individual methods. Two parameters are equal if their types,
names and type qualifiers specifiers are equal. We maintain
a map of the individual parameters to their positions in the
merged parameters to generate appropriate calls. For each
of the following resolution patterns, we describe the merge
resolution and the fix-up part.

We illustrate our resolution patterns with examples taken
from Open Source projects hosted at Github. We picked these
four patterns by studying clone groups containing various near-
clone methods and selecting the four patterns that we found to
cover the largest subset of the cases that we considered. We
found them to be fully sufficient for the examples that we had
randomly selected for evaluation. The examples presented here
are abbreviated for space reasons. In the examples, the nodes
highlighted in red indicate the unique nodes in each function
and the nodes highlighted in blue indicate the nodes emerging
from the merge resolution.

1) Pattern: Switch Statement with Extra Parameter: This
resolution can be applied if the nodes to be merged are all
statements. We then construct the following switch statement:
Merge-Resolution:

switch choice {
case 1: stmt1; break;

. . .
case k: stmtk; break;
}

where choice is a fresh function/method parameter, stmti
is one statement alternative taken from a Unique Set, and i is
a unique number identifying the Unique Set.

Fix-up: We add choice as an additional formal parameter

to the surrounding method or function and modify the cor-
responding call sites to supply their own AST Ids as actual
parameters. Consider the function snippets

1 j o b j e c t
2 funct ion openROnly JLjava (
3 JNIEnv∗ env , j o b j e c t jdb , . .) {
4 rocksdb : : DB∗ db = n u l l p t r ;
5 rocksdb : : Status s ;
6 /∗ About 50 l i n e s o f common code ∗ /
7 s = rocksdb::DB::OpenForReadOnly(∗opt, db path,

8 column families, &handles, &db);
9 re turn n u l l ;

10 }
11

12 j o b j e c t
13 funct ion open JLjava (
14 JNIEnv∗ env , j o b j e c t jdb , . .) {
15 re turn
16 rocksdb : : DB∗ db = n u l l p t r ;
17 rocksdb : : Status s ;
18 /∗ About 50 l i n e s o f common code ∗ /
19 s = rocksdb::DB::Open(∗opt, db path,

20 column families, &handles, &db);
21 re turn n u l l ;
22 }

Our pattern merges these snippets by introducing a switch
statement to choose between the two options. Modulo variable
renaming and indentation, this produces the following output
(with the generated switch statement in lines 23–31):

1 j o b j e c t
2 funct ion openROnly JLjava (
3 JNIEnv∗ env , j o b j e c t jdb , . .) {
4 re turn
5 function open ROnly JLjava (
6 env , jdb , . . , 1) ;
7 }
8

9 j o b j e c t
10 funct ion open JLjava (
11 JNIEnv∗ env , j o b j e c t jdb , . .) {
12 re turn
13 function open ROnly JLjava (
14 env , jdb , . . , 2) ;
15 }
16

17 j o b j e c t
18 function open ROnly JLjava (
19 JNIEnv∗ env , j o b j e c t jdb , . . , i n t openType) {
20 rocksdb : : DB∗ db = n u l l p t r ;
21 rocksdb : : Status s ;
22 /∗ About 50 l i n e s o f common code ∗ /
23 switch(openType) {
24 case 1:
25 s = rocksdb::DB::OpenForReadOnly(∗opt,

26 db path,column families, &handles,&db);

27 break;
28 case 2:
29 s = rocksdb::DB::Open(∗opt,

30 db path,column families, &handles,&db);

31 break; }

32 re turn n u l l ;
33 }

2) Pattern: Pass Extra Parameter for Literal Expressions:
This resolution can be applied if the nodes to be merged
are all literal expressions. Literal expressions are nodes that
have a constant value and type. We require that each of
these constants are of the same type. The merge-resolution
is a simple identifier expression that switches between the
corresponding constants based on the values passed to value,
a fresh parameter. We resolve this pattern with an identifier
expression, which is a node that contains a name of a field or
a variable.
Merge-Resolution: value
Fix-up: We add value as additional formal parameter to the
surrounding method or function and modify existing call sites
to supply their own constants as actual parameters input. Con-
sider the following function snippets, taken from the Oracle’s
Node-OracleDB project6:

1 Handle<Value>
2 Connection : : Ge tC l i en t Id
3 (Local<St r ing> proper ty ,
4 c o n s t Accessor Info& i n f o)
5 {
6 . . .
7 i f (! njsConn−>i s V a l i d)
8 . . .
9 e l s e

10 msg =
11 NJSMessages : : getErrorMsg
12 (er rWr i teOnly , ”clientId”) ;
13 NJS SET EXCEPTION(msg . c s t r () ,
14 (i n t) msg . leng th ()) ;
15 re turn Undefined () ;
16 }
17

18 Handle<Value>
19 Connection : : GetModule (L
20 Local<St r ing> proper ty ,
21 c o n s t Accessor Info& i n f o)
22 {
23 . . .
24 i f (! njsConn−>i s V a l i d)
25 . . .
26 e l s e
27 msg =
28 NJSMessages : : getErrorMsg
29 (er rWr i teOnly , ”module”) ;
30 NJS SET EXCEPTION(msg . c s t r () ,
31 (i n t) msg . leng th ()) ;
32 re turn Undefined () ;
33 }
34

35 Handle<Value>
36 Connection : : GetAct ion
37 (Local<St r ing> proper ty ,
38 c o n s t Accessor Info& i n f o)
39 {
40 . . .
41 i f (! njsConn−>i s V a l i d)
42 . . .
43 e l s e
44 msg =

6https://github.com/oracle/node-oracledb/

45 NJSMessages : : getErrorMsg
46 (er rWr i teOnly , ”action”) ;
47 NJS SET EXCEPTION(msg . c s t r () ,
48 (i n t) msg . leng th ()) ;
49 re turn Undefined () ;
50 }

Our tool would identify that the calls to getClientId, getModule
and getAction are resolvable using an extra parameter. Modulo
variable renaming and indentation, this produces the following
output, the Id Expression errorMsg produced in line 13:

1 Handle<Value>
2 Connection : : GetProperty
3 (Local<St r ing> proper ty ,
4 c o n s t Accessor Info& in fo ,
5 s t r i n g errorMsg)
6 {
7 . . .
8 i f (! njsConn−>i s V a l i d)
9 . . .

10 e l s e
11 msg =
12 NJSMessages : : getErrorMsg
13 (er rWr i teOnly , errorMsg) ;
14 NJS SET EXCEPTION(msg . c s t r () ,
15 (i n t) msg . leng th ()) ;
16 re turn Undefined () ;
17 }
18

19 Handle<Value>
20 Connection : : Ge tC l i en t Id
21 (Local<St r ing> proper ty ,
22 c o n s t Accessor Info& i n f o)
23 {
24 re turn
25 Connection : : GetProperty
26 (proper ty , i n fo , ” c l i e n t I d ”) ;
27 }
28

29 /∗ The methods getModule and getAc t ion
30 are cons t ruc ted to be s i m i l a r to g e t C l i e n t ∗ /

3) Pattern: Templates for Type Expressions: We can apply
this resolution if the nodes to be merged all represent types.
We again introduce a fresh identifier expression, type.
Merge-Resolution: type
Fix-up: The fix-up introduces a new formal template type
parameter to the function definition for type parameter type.
Consider the function snippets taken from the RethinkDB
project7

1 cJSON ∗cJSON CreateIntArray
2 (int ∗numbers , i n t count) {
3 . . .
4 f o r (i n t i =0;a && i<count ; i ++) {
5 . . .
6 }
7 a−> t a i l = p ;
8 re turn a ;
9 }

10

11 cJSON ∗cJSON CreateDoubleArray
12 (double ∗numbers , i n t count) {

7https://github.com/rethinkdb/rethinkdb/

https://github.com/oracle/node-oracledb/
https://github.com/rethinkdb/rethinkdb/

13 . . .
14 f o r (i n t i =0;a && i<count ; i ++) {
15 . . .
16 }
17 a−> t a i l = p ;
18 re turn a ;
19 }

Our tool would identify that we can merge the calls to
CreateIntArray and CreateDoubleArray by introducing a
template type parameter. Modulo variable renaming and in-
dentation, this produces the following output:

1 template<typename T>
2 cJSON
3 ∗cJSON CreateNumArray
4 (T numbers , i n t count) {
5 . . .
6 f o r (i n t i =0;a && i<count ; i ++) {
7 . . .
8 }
9 a−> t a i l = p ;

10 re turn a ;
11 }
12

13 cJSON ∗cJSON CreateIntArray
14 (i n t ∗numbers , i n t count) {
15 re turn cJSON CreateNumArray
16 (numbers , count) ;
17 }
18

19 cJSON ∗cJSON CreateDoubleArray
20 (double ∗numbers , i n t count) {
21 re turn cJSON CreateNumArray
22 (numbers , count) ;
23 }

4) Pattern: Pass Extra Parameter for Identifiers: This
resolution can be applied if the nodes to be merged are all
variable identifiers (identifier expression nodes), i.e., hold the
name of a field or a variable. We require that each of these
variables is of the same type.The merge-resolution is a simple
id expression that switches between the corresponding variable
names based on the values passed to the ‘value’, a fresh
parameter.
Merge-Resolution: value
The resolution here is very similar to the pattern 2, except
that our algorithm promotes lvalues to pointer-type parameters
whenever needed. Passing identifiers is more challenging than
passing literals. An interesting scenario in this pattern is
when the variable is assigned before reference. Consider the
following example:

1 void fn1 ()
2 {
3 i n t x = 10;
4 i n t y = x + 1;
5 }
6 void fn1 ()
7 {
8 i n t z = 10;
9 i n t y = z + 1;

10 }

Our algorithm handles this case by identifying two different
merge points each for the identifiers x and z and performing
a post processing step to link the definition and reference of
the variable.
Fix-up: We add value as additional formal parameter of
the type of the identifiers being merged and modify the
corresponding call sites to supply their own identifiers as
actual parameters. Consider the function snippets taken from
Facebook’s HHVM project8:

1

2 Type typeDiv (Type t1 , Type t2)
3 { i f (auto t =
4 eval const divmod (t1 , t2 , cellDiv))
5 re turn ∗ t ;
6 re turn T I n i t P r i m ; }
7 Type typeMod (Type t1 , Type t2)
8 { i f (auto t =
9 eval const divmod (t1 , t2 , cellMod))

10 re turn ∗ t ;
11 re turn T I n i t P r i m ; }

Our tool would identify that the calls typeDiv and typeMod
can be merged by introducing an extra parameter. Modulo
variable renaming and indentation, this produces the following
output:

1

2 template<class CellOp>
3 Type typeModDiv
4 (Type t1 , Type t2 , CellOp fun) {
5 i f (auto t =
6 eval const divmod (t1 , t2 , fun))
7 re turn ∗ t ;
8 re turn T I n i t P r i m ;
9 }

10

11 Type typeDiv (Type t1 , Type t2)
12 { re turn typeModDiv (t1 , t2 , c e l l D i v) ; }
13 Type typeMod (Type t1 , Type t2)
14 { re turn typeModDiv (t1 , t2 , cel lMod) ; }

IV. IMPLEMENTATION

We implemented the distance calculator, the algorithms and
the framework on top of Eclipse CDT9. We adapted an existing
implementation of RTED10 and modified it to fit our CDT AST
representation. The existing implementation worked on in-
order representations of trees with String nodes. We replaced
the nodes to contain information about AST node types and
content. We supplied the source file with the clone groups as
input to an Eclipse environment setup to include the merging as
a Refactoring menu option. We marked the potential candidates
using pragma annotations. The result was a new file with the
marked functions merged and the original functions calling
the new merged function with the common functionality. We
copied the result file back to the repository, overwriting the
original version of the file and the repository was built, tested
and run. We also identified potential candidates for merging

8https://github.com/facebook/hhvm/
9https://eclipse.org/cdt/
10http://www.inf.unibz.it/dis/projects/tree-edit-distance/download.php

https://github.com/facebook/hhvm/
https://eclipse.org/cdt/
http://www.inf.unibz.it/dis/projects/tree-edit-distance/download.php

using our modified edit distance calculator. We explain the
details of the actual identification and the merges in the
evaluation sectionV.

We have made prototype publicly available11.

V. EVALUATION

We evaluated our approach by exploring the following
research question:

RQ: Are the abstractions performed by our algorithm of
sufficient quality for production level code?
In order to evaluate this question, we first looked for clone
group candidates to merge. We explored popular Github
repositories, identified potential candidates for merging, and
abstracted the identified candidates using our approach. We
finally submitted the abstracted code back to the developers
through pull requests, to see how many of them were of
sufficient quality to be introduced back in their production
code. We then performed a total of 18 abstractions of clone
groups and sent them as pull requests to trending Github
repositories. Table II lists the repositories that we looked at
for our evaluation, the URLs of the pull requests, the number
of clone groups abstracted per repository, and the status of the
pull requests.

A. Identifying and Merging Clone Groups

The most promising clone group candidates for our ap-
proach are those with near-clones. Unfortunately, these are are
particularly difficult to find for traditional clone detectors. We
therefore used edit distance as a metric for identifying potential
clone groups. Edit distance is a metric that we can compute
with the RTED algorithm (Section III-A) by simply measuring
the length of an edit list.

We started with the repositories in Table II and collected
all function/method pairs belonging to the same source file.
We then calculated the edit distance of each pair. For each
function pair, we first determined the bigger function (by AST
node count). We then marked the function pair as a potential
clone group code if the number of nodes in the bigger function
(#fnBigger)) was greater than a customisable thresholdn and
if the ratio of the edit distance to #fnBigger was less than a
customisable thresholdr.

We then randomly picked function pairs (potential clone
groups) out of the candidates. For each function pair we
manually explored other related functions that we also found
listed as near-clones. Whenever our developer intuition sug-
gested that these additional functions were similar enough in
behaviour and structure, we added them to the clone group, as
a developer would do when using our tool in practice. Each
clone group contained 2–4 functions. Note that this process
was purely for evaluation purposes, as the focus of our work
is on merging, and not on clone detection. We then merged
the clone groups, used a predetermined resolution pattern for
each node type before submitting the pull requests:

• We resolved differences in statements using switch
statements and an extra parameter specifying the AST
statement to branch to (Pattern 1)

11http://sepl.cs.uni-frankfurt.de/copy-paste.html

• We resolved differences in literal expressions (con-
stants) by passing additional parameters (Pattern 2)

• We resolved differences in type expressions using
templates (Pattern 3)

• We resolved differences in identifier expressions using
additional parameters (promoted to pointers for LVal-
ues), and formal parameters specifying the name or
the address of the variable (Pattern 4)

We also performed minor manual changes. These include:

• Providing meaningful names to parameters. Our tool
generated random fresh names based on the position
of the merge points.

• Adding function prototypes to header files.

The manual changes are standard refactorings that are not
central to our approach.

B. Results

We performed our initial evaluation (Phase 1) using an
early version of our merging tool that could perform only
merges of pairs of functions and did not support multiple
resolution patterns for the same pair. During Phase 1, we ran
our distance calculator on the top trending C++ repositories
in Github during the month of December 2014, and selected
potential clone groups after setting thresholdr to 0.5 and
thresholdn to infinity, meaning that we accepted functions of
all sizes. We submitted 8 abstractions as pull requests and
all but one of the clone group abstractions were rejected or
pending. The results of the pull requests highlighted areas of
improvement in our first prototype.

TABLE III. PHASE 1 RESULTS

Submitted Accepted Rejected Pending
8 1 3 4

We performed our second evaluation (Phase 2) using a
complete version of the our merging tool, capable of merging
an arbitrary number of functions/methods at the same time.
This version also supported resolving multiple merge points
with different node types. During Phase 2, we ran our distance
calculator on the top trending repositories during the month of
February 2015. We set thresholdr to 0.15 and thresholdn to
100. We changed the thresholds building on experience from
Phase 1 in order to focus on clone groups that would save more
lines of code when abstracted. The thresholds were thus set to
very strict numbers, meaning the clones were very similar to
each other and tied to methods of substantial sizes. We then
submitted 10 abstractions as pull requests, summarised in the
table below, and found that all of them were accepted, except
for one:

TABLE IV. PHASE 2 RESULTS

Submitted Accepted Rejected Pending
10 9 1 0

http://sepl.cs.uni-frankfurt.de/copy-paste.html

TABLE II. REPOSITORIES WITH THEIR PULL REQUEST URLS. EACH CLONE GROUP REPRESENTS ONE ABSTRACTION. WE ENCOURAGE READERS WHO
CHOOSE TO LOOK AT THE PULL REQUESTS TO GO THROUGH THE COMMENTS. WHILE SOME OF THE PULL REQUESTS DON’T EXPLICITLY HAVE THEIR

STATUS LISTED AS ‘MERGED’, AS WITH THE ORACLEDB AND THE MONGODB REPOSITORIES, THE CODES HAVE ACTUALLY BEEN MERGED, AS INDICATED
BY MAINTAINER COMMENTS.

Repository Phase Clone
Groups

Status URL

oracle/node-oracledb 2 3 Accepted • https://github.com/oracle/node-oracledb/pull/28

mongodb/mongo 2 2 Accepted • https://github.com/mongodb/mongo/pull/927
• https://github.com/mongodb/mongo/pull/928

rethinkdb/rethinkdb 2 2 Accepted • https://github.com/rethinkdb/rethinkdb/pull/3820
• https://github.com/rethinkdb/rethinkdb/pull/3818

cocos2d/cocos2d-x 2 2 Accepted • https://github.com/cocos2d/cocos2d-x/pull/10539
• https://github.com/cocos2d/cocos2d-x/pull/10546

ideawu/ssdb 2 1 Rejected • https://github.com/ideawu/ssdb/pull/609
facebook/rocksdb 1 1 Pending • https://github.com/facebook/rocksdb/pull/440/
openexr/openexr 1 3 Pending • https://github.com/openexr/openexr/pull/147
facebook/hhvm 1 1 Rejected • https://github.com/facebook/hhvm/pull/4490

google/protobuf 1 2 1 Accepted
1 Rejected

• https://github.com/google/protobuf/pull/128/
• https://github.com/google/protobuf/pull/126

SFTtech/openage 1 1 Rejected • https://github.com/SFTtech/openage/pull/176

We conclude that the repository maintainers found our code
to be of sufficient quality (including readability and maintain-
ability) for inclusion. Specifically, we observed no negative
comments regarding readability in any of the comments that
we received.

C. Analysis of Rejected and Pending Results

We present the results of the pending and rejected pull
requests summarised in Table II and provide our analysis on
the same.

1) Pending results: Below, we note feedback to pull re-
quests that were neither accepted nor rejected. Let us first
discuss the pending pull request from RocksDB. The exact
comment from the head maintainer of the project was:
Great stuff, now its only one commit (after the squash)! Waiting
for OK from @anon1 or @anon2 (since they maintain this
code) before merging.
We interpret that the pull request was met with positive review.
We did check with the maintainers of the repository to no avail.
We suspect that developers have many tasks and only one of
them is attending to pull requests; our patch may not be their
top priority.

The other pending pull request was from the OpenExr
repository. The request merged 3 clone groups at once, and
received a mixture of responses. One maintainer requested an
explanation of the advantages. Another maintainer expressed
scepticism over the performance overhead of such an ab-
straction, as it was a low level function. A third maintainer
requested a unit test of the introduced abstraction before a
merge. We could not satisfy these requests due to a lack
of understanding of the semantics of the functions we had
merged. All these activities took place over a 3 month period.

2) Rejected results: Of the five rejected clone group ab-
stractions, four were rejected because the maintainers felt that

not enough lines were saved. We did not receive an explanation
for the remaining rejected clone group abstraction for the
ideawu/ssdb repository.

VI. RELATED WORK

Our work is inspired by existing work on clone detection:
Laguë et al. [2] find that between 6.4% and 7.5% of the
source code in different versions of a large, mature code
base are clones. They only count clones that are exact copies
(Type-1 clones, in the terminology of Koschke et al. [11]),
or copies modulo alpha-renaming (Type-2 clones). Baxter et
al. [1] report even higher numbers, sometimes exceeding 25%,
on different code bases and with a different technique for clone
detection that also counts near miss clones (or Type-3 clones),
which are substantially related pieces of software in which
small parts of the AST subtree may differ. We consider the
prevalence of such near miss clones to be strong indicators that
copy-paste-modify is a wide-spread development methodology.

Other related work on clone detection focuses on detect-
ing clones and near-clones to identify faults [9] and enable
refactoring [3]. Similar to CCFinder/Gemini [3], our tool
specifically looks for near-clones to merge; however, our focus
is not on detecting near-clones in unknown code, but rather
on merging deliberate and known clones. As our evaluation
shows, our approach is effective on general clones.

The other closely related work is refactoring [6]. As in prior
work, we break our transformations into individual, atomic
components [14], [16], namely merges (which may be nested
and require individual interaction) and fixups for existing code
to use the refactored code.

Other work on clone management include tracking tools
like CloneBoard [4] and Clone tracker [5]. While CloneBoard
provides the ability to organise clones and to some extent

https://github.com/oracle/node-oracledb/pull/28
https://github.com/mongodb/mongo/pull/927
https://github.com/mongodb/mongo/pull/928
https://github.com/rethinkdb/rethinkdb/pull/3820
https://github.com/rethinkdb/rethinkdb/pull/3818
https://github.com/cocos2d/cocos2d-x/pull/10539
https://github.com/cocos2d/cocos2d-x/pull/10546
https://github.com/ideawu/ssdb/pull/609
https://github.com/facebook/rocksdb/pull/440/
https://github.com/openexr/openexr/pull/147
https://github.com/facebook/hhvm/pull/4490
https://github.com/google/protobuf/pull/128/
https://github.com/google/protobuf/pull/126
https://github.com/SFTtech/openage/pull/176

suggest the types of clones and possible resolution mecha-
nisms, clone board lacks the ability to actually perform an
abstraction and merge clones into a common functionality.
Another approach to handling clones is linked editing [18].
Linked editing, unlike our approach, maintains the clones as
they are, but allows editing of multiple clones simultaneously.
This has the advantage of preserving code ‘as is’, but the
disadvantage of requiring continued tool usage for future
evolution. Linked editing shares our view that copy-paste-
modify is an effective way to evolve software, but disagrees on
how clones should be managed; it is an open question which
of the two approaches is more effective for long-term software
maintenance.

Perhaps the most closely related clone management ap-
proach to our algorithm is Cedar [17], which targets Java
and relies on Eclipse refactorings for abstraction. Unlike our
approach, Cedar is limited to Type-2 clones. To the best of
our knowledge, ours is the only work to support merging the
common Type-3 clones (inexact clones) in a wide variety of
cases. As Roy et al. [15] note, Type-3 clones are particularly
common and frequently evolve out of Type-1 and 2 clones.

While our work ignores the C preprocessor [12] in C++,
there is prior work on supporting the C preprocessor in C [7].
This work could be adapted to C++ to enable our system to
support preprocessor-based abstraction patterns.

VII. CONCLUSIONS

Managing code clones is a significant problem, given the
amount of copied and pasted production level code. This
suggests that developers find re-use through code clones useful
in practice, even when they know that re-use through manual
abstraction would yield superior and more maintainable code;
we find this confirmed both by prior work and by an informal
poll that we conducted among C++ developers. We propose to
close the gap between re-use through copy-paste based clones
and abstraction through semi-automatic refactoring. We have
implemented a prototype of a suitable refactoring tool that
identifies parts of clones that can be merged, and proposes
suitable resolution patterns to merge them to the user. The
user then makes the design decision of how to merge. We
have evaluated this approach by implementing a prototype
merging tool and applying a select set of resolution patterns
to near-clones in popular Github repositories. We submitted
the merged code back to the developers via pull requests and
observed that the original developers found more than 50%
(90% with the most recent version of our tool) of our changes
to be desirable, merging them back into their code bases.

VIII. APPENDIX: PROGRAMMER POLL

This appendix summarises our informal poll. We asked five
students (Table V) to perform re-use tasks with copy-paste-
modify and with manual abstraction; Table VI summarises
the amount of time taken to complete the tasks. Whenever
one student performed both copy-paste-modify and manual
abstraction, the student first completed the copy-paste-modify
tasks. We later polled students whether they would prefer
for the outcome to have been copy-paste-modified code or
abstracted code. Four students responded; we summarise their
responses for each task in Figure 6.

TABLE V. STUDENT EXPERIENCE LEVELS.

Student #1 #2 #3 #4 #5
Experience 10 yr 3 mo 4 yr 1 yr 2 mo

TABLE VI. AMOUNT OF TIME USED FOR EXTENDING
FUNCTIONALITY.

Task #1 #2 #3 #4 #5
A C A C A C A C A C

1 7 3 7 DNF 3 2
2 7 2 4 55 4 4
3 6 18 30 16 7 10
4 3 14 DNS 16 2 4
5 7 25 DNS 15 20 14

DNF- Did not Finish
DNS- Did not Start
A - Abstraction
C - Copy-Paste

task 1 task 2 task 3 task 4 task 5

0

2

4

#r
es

po
ns

es

favour abstraction favour copy-paste undecided

Fig. 6. Preferred results after extending functionality. Out of the 20 answers
we received, 3 were undetermined, 5 preferred copy-pasted code, and 12
preferred abstracted code.

REFERENCES

[1] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna,
and Lorraine Bier. Clone detection using abstract syntax trees. In
Proceedings of the International Conference on Software Maintenance,
ICSM ’98, pages 368–, Washington, DC, USA, 1998. IEEE Computer
Society.

[2] Bruno Laguë, Daniel Proulx, Ettore M. Merlo, Jean Mayrand, and
John Hudepohl. Assessing the benefits of incorporating function clone
detection in a development process. In Proc. Int’l Conf. Software
Maintenance (ICSM), pages 314–321. IEEE Computer Society Press,
1997.

[3] Eunjong Choi, Norihiro Yoshida, Takashi Ishio, Katsuro Inoue, and
Tateki Sano. Extracting code clones for refactoring using combinations
of clone metrics. In Proceedings of the 5th International Workshop on
Software Clones, IWSC ’11, pages 7–13, New York, NY, USA, 2011.
ACM.

[4] M. de Wit, A. Zaidman, and A. van Deursen. Managing code clones
using dynamic change tracking and resolution. ICSM 2009.

[5] E. Duala-Ekoko and M. P. Robillard. Clonetracker: Tool support for
code clone management. ICSM 2008.

[6] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

[7] Paul Gazzillo and Robert Grimm. SuperC: Parsing all of C by taming
the Preprocessor. SIGPLAN Not., 47(6):323–334, June 2012.

[8] Andrew Hunt and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[9] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code
clones matter? In Software Engineering, 2009. ICSE 2009. IEEE 31st
International Conference on, pages 485–495, May 2009.

[10] Cory J. Kapser and Michael W. Godfrey. cloning considered harmful
considered harmful: patterns of cloning in software. Empirical Software
Engineering, 13(6):645–692, 2008.

[11] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection
using abstract syntax suffix trees. In Proceedings of the 13th Work-
ing Conference on Reverse Engineering, WCRE ’06, pages 253–262,
Washington, DC, USA, 2006. IEEE Computer Society.

[12] Flavio Medeiros, Christian Kästner, Mrcio Ribeiro, Sarah Nadi, and
Rohit Gheyi. The love/hate relationship with the C Preprocessor: An
Interview Study. ECOOP 2015.

[13] M.Pawlik and N.Augsten. RTED: A Robust Algorithm for the Tree

Edit Distance. In Proceedings of the VLDB Endowment, Vol. 5, No. 4,
2011.

[14] Christoph Reichenbach, Devin Coughlin, and Amer Diwan. Program
Metamorphosis. In European Conference on Object-Oriented Program-
ming (ECOOP), pages 394–418, Berlin, Heidelberg, 2009. Springer-
Verlag.

[15] C.K. Roy, K.A. Schneider, and D.E. Perry. Understanding the evolution
of Type-3 clones: An exploratory study. MSR 2013.

[16] Max Schäfer, Mathieu Verbaere, Torbjörn Ekman, and Oege de Moor.
Stepping stones over the refactoring rubicon. pages 369–393. 2009.

[17] Robert Tairas and Jeff Gray. Increasing clone maintenance support by
unifying clone detection and refactoring activities. Inf. Softw. Technol.,
54(12):1297–1307, December 2012.

[18] M. Toomim, A. Begel, and S. L. Graham. Managing duplicated code
with linked editing. VLHCC 2004.

