
Proposal for:
1 Business Process Model and Notation (BPMN), v2.0

OMG Document bmi/2009-05-03

Proposal for:

Business Process Model and Notation (BPMN)
Specification 2.0

V0.9.14

(revised submission draft)

May 22, 2009

In response to: Business Process Model and Notation RFP (OMG Document bmi/2007-06-05)

Submission Team

OMG Submitters

Axway

International Business Machines

MEGA International

Oracle

SAP AG

Unisys

Co-Authors

BizAgi

Bruce Silver Associates

IDS Scheer

Model Driven Solutions

Software AG

TIBCO Software

Proposal for:
Business Process Model and Notation (BPMN), v2.0 2

The following companies provided valuable review, feedback and support:
Accenture

Active Endpoints

Adaptive

Capgemini

Enterprise Agility

France Telecom

Insubria University

Intalio

Metastorm

Nortel

Red Hat Software

Vangent

Copyrights
Copyright © 2009, Axway

Copyright © 2009, BizAgi

Copyright © 2009, Bruce Silver Associates

Copyright © 2009, IDS Scheer

Copyright © 2009, IBM Corp.

Copyright © 2009, MEGA International

Copyright © 2009, Model Driven Solutions

Copyright © 2009, Oracle

Copyright © 2009, SAP AG

Copyright © 2009, Software AG

Copyright © 2009, TIBCO Software

Copyright © 2009, Unisys

Permission to copy, display, perform, modify and distribute the Business Process Model and Notation (BPMN)
2.0 Specification (the “Specification”, which includes WSDL and schema documents), and to authorize others to
do the foregoing, in any medium without fee or royalty is hereby granted for the purpose of developing and
evaluating the Specification.

Axway, BizAgi, Bruce Silver Associates, IDS Scheer, International Business Machines, MEGA International,
Model Driven Solutions, Oracle, SAP AG, Software AG, TIBCO Software and Unisys (collectively, the
“Authors”) each will grant a license to third parties, under royalty-free and otherwise reasonable,
non-discriminatory terms and conditions, to their respective essential patent claims that they deem necessary to
implement the Specification.

Proposal for:
3 Business Process Model and Notation (BPMN), v2.0

DISCLAIMERS:

THE SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE;
THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT
THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SPECIFICATION OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

You may remove these disclaimers from your modified versions of the Specification provided that you
effectively disclaim all warranties and liabilities on behalf of all copyright holders in the copies of any such
modified versions you distribute.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or publicity
pertaining to the Specification or its contents without specific, written prior permission. Title to copyright in the
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 4

Table of Contents
Business Process Model and Notation (BPMN) Specification 2.0 .. 1
Table of Contents .. 4
Table of Figures..10
Table of Tables ...18
Introduction ..25

Submitting Organizations ...25
Supporting Organizations ...25
Submission Contacts ...26
Acknowledgements...26
Status of the Document ...26
IPR and Patents...26
Typographical Conventions ..26
Proof of Concept ...27
Responses to RFP Requirements ...27
Guide to the Submission ...27

1. Scope ..28
2. Conformance ..28

2.1. Process Modeling Conformance ..29
2.1.1. BPMN Process Types ..29
2.1.2. BPMN Process Elements ...29
2.1.3. Visual Appearance ..29
2.1.4. Structural Conformance ...30
2.1.5. Process Semantics ...30
2.1.6. Attributes and Model Associations ..30
2.1.7. Extended and Optional Elements ...31
2.1.8. Visual Interchange ...31

2.2. Process Execution Conformance ...31
2.2.1. Execution Semantics ...31
2.2.2. Import of Process Diagrams ...31

2.3. BPEL Process Execution Conformance ...32
2.4. Choreography Modeling Conformance ..32

2.4.1. BPMN Choreography Types ..32
2.4.2. BPMN Choreography elements ...32
2.4.3. Visual Appearance ..32
2.4.4. Choreography Semantics ...32
2.4.5. Visual Interchange ...33

2.5. Summary of BPMN Conformance Types ..33
3. Normative References ...34

3.1. Normative ...34
3.2. Non-Normative ...34

4. Terms and Definitions ...37
5. Symbols ..37
6. Additional Information ..37

6.1. Conventions ..37

Proposal for:
5 Business Process Model and Notation (BPMN), v2.0

6.2. Typographical and Linguistic Conventions and Style ..37
6.3. Abbreviations ..38
6.4. Structure of this Document ..39

7. Overview ..40
7.1. BPMN Scope ..41

7.1.1. Uses of BPMN ..42
7.2. BPMN Elements ...46

7.2.1. Basic BPMN Modeling Elements ..48
7.2.2. Extended BPMN Modeling Elements ..51

7.3. BPMN Diagram Types ..63
7.4. Use of Text, Color, Size, and Lines in a Diagram ..63
7.5. Flow Object Connection Rules ..64

7.5.1. Sequence Flow Connections Rules ..64
7.5.2. Message Flow Connection Rules ...65

7.6. BPMN Extensibility ..66
7.7. BPMN Example ..66

8. BPMN Core Structure ...70
8.1. Infrastructure ...72

8.1.1. Definitions...72
8.1.2. Import ...74
8.1.3. Infrastructure Package XML Schemas ...75

8.2. Foundation ..75
8.2.1. Base Element ...76
8.2.2. Documentation ..77
8.2.3. Extensibility ..77
8.2.4. External Relationships ...82
8.2.5. Root Element ...85
8.2.6. Foundation Package XML Schemas ..85

8.3. Common Elements ..86
8.3.1. Artifacts ..86
8.3.2. Callable Element ...95
8.3.3. Correlation ..96
8.3.4. Conversation Association .. 103
8.3.5. Error .. 104
8.3.6. Events ... 105
8.3.7. Expressions ... 106
8.3.8. Flow Element .. 108
8.3.9. Flow Elements Container... 109
8.3.10. Gateways ... 110
8.3.11. Interaction Specification .. 112
8.3.12. Item Definition .. 113
8.3.13. Message .. 115
8.3.14. Message Flow.. 119
8.3.15. Participants .. 124
8.3.16. Resources .. 129
8.3.17. Sequence Flow .. 130

Proposal for:
Business Process Model and Notation (BPMN), v2.0 6

8.3.18. Common Package XML Schemas .. 133
8.4. Services... 139

8.4.1. Interface .. 140
8.4.2. EndPoint.. 141
8.4.3. Operation .. 141
8.4.4. Service Package XML Schemas .. 141

9. Collaboration .. 143
9.1. Basic Collaboration Concepts .. 146

9.1.1. Use of BPMN Common Elements ... 146
9.2. Pool and Participant .. 146

9.2.1. Lanes ... 149
9.3. Collaboration .. 149
9.4. Choreography within Collaboration ... 149
9.5. Collaboration Package XML Schemas .. 152

10. Process .. 153
10.1. Basic Process Concepts ... 157

10.1.1. Types of BPMN Processes... 157
10.1.2. Use of BPMN Common Elements ... 159

10.2. Activities ... 159
10.2.1. Resource Assignment .. 163
10.2.2. Performer .. 165
10.2.3. Tasks ... 165
10.2.4. Human Interactions ... 176
10.2.5. Sub-Processes .. 184
10.2.6. Call Activity .. 196
10.2.7. Global Task ... 198
10.2.8. Loop Characteristics .. 199
10.2.9. XML Schema for Activities ... 205

10.3. Items and Data .. 211
10.3.1. Data Modeling ... 211
10.3.2. Execution Semantics for Data .. 232
10.3.3. Usage of Data in XPath Expressions .. 232
10.3.4. XML Schema for Data .. 235

10.4. Events ... 239
10.4.1. Concepts.. 240
10.4.2. Start Event ... 244
10.4.3. End Event .. 252
10.4.4. Intermediate Event .. 256
10.4.5. Event Definitions ... 266
10.4.6. Handling Events .. 283
10.4.7. Scopes ... 289
10.4.8. Events Package XML Schemas ... 290

10.5. Gateways .. 295
10.5.1. Sequence Flow Considerations .. 297
10.5.2. Exclusive Gateway .. 298
10.5.3. Inclusive Gateway ... 300
10.5.4. Parallel Gateway ... 302

Proposal for:
7 Business Process Model and Notation (BPMN), v2.0

10.5.5. Complex Gateway ... 304
10.5.6. Event-Based Gateway.. 307
10.5.7. Gateway Package XML Schemas .. 312

10.6. Compensation ... 314
10.6.1. Compensation Handler .. 314
10.6.2. Compensation Triggering .. 315
10.6.3. Relationship between Error Handling and Compensation ... 316

10.7. Lanes .. 316
10.8. Process Instances, Unmodeled Activities, and Public Processes....................................... 320
10.9. Auditing .. 323
10.10. Monitoring .. 324
10.11. Process within Collaboration ... 324
10.12. Process Package XML Schemas .. 325

11. Conversation ... 328
11.1. Conversation Container ... 334
11.2. Conversation Node .. 335
11.3. Communication ... 336
11.4. Sub-Conversation .. 336
11.5. Call Conversation .. 337
11.6. Global Communication ... 338
11.7. Communication Link... 338
11.8. Conversation Package XML Schemas ... 339

12. Choreography ... 342
12.1. Basic Choreography Concepts ... 344
12.2. Data .. 347
12.3. Use of BPMN Common Elements ... 347

12.3.1. Sequence Flow .. 348
12.3.2. Artifacts .. 349
12.3.3. Correlations ... 349

12.4. Choreography Activities .. 349
12.4.1. Choreography Task ... 350
12.4.2. Choreography Sub-Process .. 356
12.4.3. Call Choreography Activity ... 361
12.4.4. Global Choreography Task .. 363
12.4.5. Looping Activities ... 364
12.4.6. The Sequencing of Activities ... 364

12.5. Events ... 369
12.5.1. Start Events ... 369
12.5.2. Intermediate Events ... 371
12.5.3. End Events .. 374

12.6. Gateways .. 375
12.6.1. Exclusive Gateway .. 375
12.6.2. Event-Based Gateway.. 380
12.6.3. Inclusive Gateway ... 383
12.6.4. Parallel Gateway ... 389
12.6.5. Complex Gateway ... 392

Proposal for:
Business Process Model and Notation (BPMN), v2.0 8

12.6.6. Chaining Gateways .. 393
12.7. Choreography within Collaboration ... 394
12.8. XML Schema for Choreography ... 395

13. BPMN Notation and Diagrams .. 398
13.1. Diagram Interchange ... 398
13.2. BPMN Diagram Definition Library ... 398

13.2.1. BPMN Diagram Definitions .. 398
13.2.2. BPMN Node Definition ... 401
13.2.3. BPMN Compartment Definitions... 401
13.2.4. BPMN Connectors .. 404
13.2.5. BPMN Shapes ... 408
13.2.6. BPMN Label ... 425

14. BPMN Execution Semantics ... 426
14.1. Process Instantiation and Termination ... 427
14.2. Activities ... 427

14.2.1. Sequence Flow Considerations .. 428
14.2.2. Activity ... 429
14.2.3. Task .. 432
14.2.4. Sub-Process/Call Activity .. 432
14.2.5. Ad-Hoc Sub-Process ... 433
14.2.6. Loop Activity .. 434
14.2.7. Multiple Instances Activity .. 434

14.3. Gateways .. 436
14.3.1. Parallel Gateway (Fork and Join) ... 436
14.3.2. Exclusive Gateway (Exclusive Decision (data-based) and Exclusive Merge) 437
14.3.3. Inclusive Gateway (Inclusive Decision and Inclusive Merge) 438
14.3.4. Event-based Gateway (Exclusive Decision (event-based)) 439
14.3.5. Complex Gateway (related to Complex Condition and Complex Merge) 440

14.4. Events ... 442
14.4.1. Start Events ... 442
14.4.2. Intermediate Events ... 442
14.4.3. Intermediate Boundary Events ... 442
14.4.4. Event Sub-Processes .. 443
14.4.5. Compensation .. 443
14.4.6. End Events .. 445

15. Mapping BPMN Models to WS-BPEL .. 447
15.1. Basic BPMN-BPEL Mapping .. 448

15.1.1. Process .. 449
15.1.2. Activities ... 450
15.1.3. Events ... 456
15.1.4. Gateways and Sequence Flow .. 463
15.1.5. Handling Data ... 467

15.2. Extended BPMN-BPEL Mapping .. 470
15.2.1. End Events .. 470
15.2.2. Loop/Switch Combinations From a Gateway ... 471
15.2.3. Interleaved Loops .. 472
15.2.4. Infinite Loops .. 475

Proposal for:
9 Business Process Model and Notation (BPMN), v2.0

15.2.5. BPMN Elements that Span Multiple WSBPEL Sub-Elements 475
16. Exchange Formats ... 477

16.1. Interchanging Incomplete Models ... 477
16.2. XSD .. 477
16.3. XMI .. 478
16.4. XSLT Transformation between XSD and XMI .. 478

Annex A ... 479
Responses to RFP Requirements ... 479

Mandatory Requirements .. 479
Optional Requirements ... 480
Issues to be Discussed ... 481

Changes from BPMN V1.2 ... 481
Annex B ... 482

Diagram Interchange... 482
Overview 482
Metamodel Description ... 483
Class Description .. 484

Diagram Definition ... 490
Overview 490
Metamodel Description ... 491
Class Descriptions .. 491

Annex C ... 498
Glossary ... 498

Proposal for:
Business Process Model and Notation (BPMN), v2.0 10

Table of Figures
Figure 7-1 – Example of a private Business Process .. 42
Figure 7-2 – Example of a public Process .. 43
Figure 7-3 – An example of a Collaborative Process .. 44
Figure 7-4 – An example of a Choreography ... 44
Figure 7-5 – An example of a Conversation diagram ... 45
Figure 7-6 – An example of a Collaboration diagram with black-box Pools 67
Figure 7-7 – An example of a stand-alone Choreography diagram ... 68
Figure 8-1 – A representation of the BPMN Core and Layer Structure ... 70
Figure 8-2 – Class diagram showing the core packages .. 71
Figure 8-3 – Class diagram showing the organization of the core BPMN elements 72
Figure 8-4 – Definitions class diagram ... 73
Figure 8-5 – Classes in the Infrastructure package ... 76
Figure 8-6 – Extension class diagram... 78
Figure 8-7 – External Relationship Metamodel .. 83
Figure 8-8 – Artifacts Metamodel .. 87
Figure 8-9 – An Association .. 88
Figure 8-10 – The Association Class Diagram .. 88
Figure 8-11 – A Directional Association ... 89
Figure 8-12 – An Association of Text Annotation ... 89
Figure 8-13 – A Group Artifact ... 90
Figure 8-14 – A Group around Activities in different Pools .. 90
Figure 8-15 – The Group class diagram... 91
Figure 8-16 – A Text Annotation ... 93
Figure 8-17 – CallableElement class diagram .. 95
Figure 8-18 – The Correlation Class Diagram .. 98
Figure 8-19 – The ConversationAssociation class diagram .. 103
Figure 8-20 – Error class diagram .. 104
Figure 8-21 – Event class diagram ... 105
Figure 8-22 – Expression class diagram ... 106
Figure 8-23 – FlowElement class diagram ... 108
Figure 8-24 – FlowElementContainers class diagram ... 109
Figure 8-25 – Gateway class diagram .. 111
Figure 8-26 – InteractionSpecification class diagram ... 112
Figure 8-27 – ItemDefinition class diagram ... 114
Figure 8-28 – A Message ... 115
Figure 8-29 – An non-initiating Message ... 115
Figure 8-30 –Messages shown Associated with Message Flow .. 116
Figure 8-31 –Messages Association overlapping Message Flow .. 116
Figure 8-32 –Messages shown Associated with a Choreography Task ... 117
Figure 8-33 –Messages shown Associated with a Send Task .. 117
Figure 8-34 – The Message class diagram .. 118
Figure 8-35 – A Message Flow .. 119
Figure 8-36 – A Message Flow with an Attached Message .. 119
Figure 8-37 – A Message Flow passing through a Choreography Task .. 120

Proposal for:
11 Business Process Model and Notation (BPMN), v2.0

Figure 8-38 – The Message Flow Class Diagram ... 121
Figure 8-39 – MessageFlowAssociation class diagram... 123
Figure 8-40 – The Participant Class Diagram ... 124
Figure 8-41 – A Pool with a Multiple Participant ... 126
Figure 8-42 – The Participant Multiplicity class diagram ... 127
Figure 8-43 – ParticipantAssociation class diagram ... 128
Figure 8-44 – Resource class diagram .. 129
Figure 8-45 – A Sequence Flow ... 130
Figure 8-46 – A Conditional Sequence Flow.. 131
Figure 8-47 – A Default Sequence Flow .. 131
Figure 8-48 – SequenceFlow class diagram ... 132
Figure 8-49 – The Service class diagram.. 140
Figure 9-1 – Classes in the Collaboration package ... 143
Figure 9-2 – A Pool ... 146
Figure 9-3 – Message Flow connecting to the boundaries of two Pools .. 147
Figure 9-4 – Message Flow connecting to Flow Objects within two Pools 148
Figure 9-5 – Main (Internal) Pool without boundaries .. 148
Figure 9-6 – A Pool with a Multi-Instance Participant Marker ... 149
Figure 9-7 – An example of a Choreography within a Collaboration .. 150
Figure 9-8 – Choreography within Collaboration class diagram.. 151
Figure 10-1 – An Example of a Process ... 153
Figure 10-2 – Process class diagram .. 154
Figure 10-3 – Process Details class diagram .. 155
Figure 10-4 – Example of a private Business Process... 158
Figure 10-5 – Example of a public Process .. 159
Figure 10-6 – Activity class diagram ... 160
Figure 10-7 – The class diagram for assigning Resources .. 163
Figure 10-8 – A Task object .. 166
Figure 10-9 – Task markers ... 166
Figure 10-10 – The Task class diagram .. 167
Figure 10-11 – A Service Task Object ... 168
Figure 10-12 – The Service Task class diagram ... 169
Figure 10-13 – A Send Task Object ... 170
Figure 10-14 – A Receive Task Object .. 173
Figure 10-15 – A User Task Object ... 174
Figure 10-16 – A Manual Task Object ... 174
Figure 10-17 – A Business Rule Task Object ... 175
Figure 10-18 – A Script Task Object.. 175
Figure 10-19 – Manual Task class diagram .. 177
Figure 10-20 – User Task class diagram .. 178
Figure 10-21 – HumanPerformer class diagram ... 180
Figure 10-22 – Procurement Process Example ... 182
Figure 10-23 – A Sub-Process object (collapsed) ... 185
Figure 10-24 – A Sub-Process object (expanded) ... 185
Figure 10-25 – Expanded Sub-Process used as a “Parallel Box” .. 186
Figure 10-26 – Collapsed Sub-Process Markers ... 187

Proposal for:
Business Process Model and Notation (BPMN), v2.0 12

Figure 10-27 – The Sub-Process class diagram .. 187
Figure 10-28 – An Event Sub-Process object (Collapsed) .. 189
Figure 10-29 – An Event Sub-Process object (expanded) ... 189
Figure 10-30 – An example that includes Event Sub-Processes .. 190
Figure 10-31 – A Transaction Sub-Process .. 191
Figure 10-32 – A collapsed Ad-Hoc Sub-Process... 193
Figure 10-33 – An expanded Ad-Hoc Sub-Process .. 193
Figure 10-34 – An Ad-Hoc Sub-Process for writing a book chapter ... 195
Figure 10-35 – An Ad-Hoc Sub-Process with data and sequence dependencies 196
Figure 10-36 – A Call Activity object calling a Global Task .. 197
Figure 10-37 – A Call Activity object calling a Process (Collapsed) .. 197
Figure 10-38 – A Call Activity object calling a Process (Expanded) .. 197
Figure 10-39 – The Call Activity class diagram ... 198
Figure 10-40 – Global Tasks class diagram .. 199
Figure 10-40 – LoopCharacteristics class diagram ... 200
Figure 10-41 – A Task object with a Standard Loop Marker .. 201
Figure 10-42 – A Sub-Process object with a Standard Loop Marker... 201
Figure 10-43 – Activity Multi-Instance marker for parallel instances ... 202
Figure 10-44 – Activity Multi-Instance marker for sequential instances ... 202
Figure 10-45 – ItemAware class diagram ... 212
Figure 10-46 – DataObject class diagram ... 213
Figure 10-47 – A DataObject ... 214
Figure 10-48 – A DataObject that is a collection .. 214
Figure 10-49 – A Data Store .. 215
Figure 10-50 – DataStore class diagram ... 216
Figure 10-51 – Property class diagram ... 217
Figure 10-52 – InputOutputSpecification class diagram ... 219
Figure 10-53 – A DataInput ... 220
Figure 10-54 – Data Input class diagram .. 221
Figure 10-55 – A Data Output ... 222
Figure 10-56 – Data Output class diagram ... 223
Figure 10-57 – InputSet class diagram ... 225
Figure 10-58 – OutputSet class diagram... 227
Figure 10-59 – DataAssociation class diagram ... 228
Figure 10-60 – A Data Association .. 229
Figure 10-61 – A Data Association used for an Outputs and Inputs into an Activities 229
Figure 10-62 – A Data Object shown as an output and an inputs .. 231
Figure 10-63 – A Data Object associated with a Sequence Flow .. 232
Figure 10-64 – The Event Class Diagram .. 240
Figure 10-65 - Start Event.. 244
Figure 10-66 - End Event ... 252
Figure 10-67 – Intermediate Event ... 256
Figure 10-68 – EventDefinition Class Diagram .. 269
Figure 10-69 – Cancel Events .. 270
Figure 10-70 – Compensation Events .. 270
Figure 10-71 – CompensationEventDefinition Class Diagram ... 271
Figure 10-72 – Conditional Events... 272

Proposal for:
13 Business Process Model and Notation (BPMN), v2.0

Figure 10-73 – ErrorEventDefinition Class Diagram ... 273
Figure 10-74 – Error Events... 273
Figure 10-75 – EscalationEventDefinition Class Diagram .. 275
Figure 10-76 – Escalation Events ... 275
Figure 10-77 – Link Events ... 276
Figure 10-78 – Link Events Used as Off-Page Connector .. 277
Figure 10-79 – Process with Long Sequence Flow ... 278
Figure 10-80 – Process with Link Intermediate Events Used as Go To Objects 278
Figure 10-81 – Link Events Used for looping .. 278
Figure 10-82 – MessageEventDefinition Class Diagram .. 279
Figure 10-83 – Message Events ... 279
Figure 10-84 – Multiple Events ... 280
Figure 10-85 – None Events .. 281
Figure 10-86 – Multiple Events ... 281
Figure 10-87 – SignalEventDefinition Class Diagram .. 282
Figure 10-88 – Signal Events ... 282
Figure 10-89 – Terminate Event .. 283
Figure 10-90 – Timer Events ... 283
Figure 10-91 – Exclusive start of a Process .. 284
Figure 10-92 – A Process initiated by an Event-Based Gateway .. 284
Figure 10-93 – Event synchronization at Process start.. 285
Figure 10-94 – Example of inline Event Handling via Event Sub-Processes................................... 286
Figure 10-95 – Example of boundary Event Handling.. 287
Figure 10-96 – A Gateway ... 295
Figure 10-97 – The Different types of Gateways .. 296
Figure 10-98 – Gateway class diagram .. 297
Figure 10-99 – An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator

 .. 298
Figure 10-100 – A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator

 .. 299
Figure 10-101 – Exclusive Gateway class diagram .. 300
Figure 10-102 – An example using an Inclusive Gateway .. 301
Figure 10-103 – Inclusive Gateway class diagram ... 302
Figure 10-104 – An example using an Parallel Gateway .. 303
Figure 10-105 – An example of a synchronizing Parallel Gateway ... 303
Figure 10-106 – Parallel Gateway class diagram .. 304
Figure 10-107 – An example using a Complex Gateway .. 305
Figure 10-108 – Complex Gateway class diagram ... 306
Figure 10-109 – Event-Based Gateway .. 307
Figure 10-110 – An Event-Based Gateway example using Message Intermediate Events 308
Figure 10-111 – An Event-Based Gateway example using Receive Tasks 309
Figure 10-112 – Exclusive Event-Based Gateway to start a Process ... 309
Figure 10-113 – Parallel Event-Based Gateway to start a Process .. 310
Figure 10-114 – Event-Based Gateway class diagram .. 311
Figure 10-115 – Compensation through a boundary Event ... 314
Figure 10-116 – Monitoring Class Diagram ... 315

Proposal for:
Business Process Model and Notation (BPMN), v2.0 14

Figure 10-117 – Two Lanes in a Vertical Pool .. 317
Figure 10-118 – Two Lanes in a horizontal Pool ... 317
Figure 10-119 – An Example of Nested Lanes .. 318
Figure 10-120 – The Lane class diagram ... 319
Figure 10-121 – One Process supporting to another ... 322
Figure 10-122 – Auditing Class Diagram ... 323
Figure 10-123 – Monitoring Class Diagram ... 324
Figure 11-1 – A Conversation diagram .. 328
Figure 11-2 – A Conversation diagram where the Conversation is expanded into Message Flow ... 329
Figure 11-3 – Conversation diagram depicting several conversations between Participants in a

related domain ... 330
Figure 11-4 – Conversational view choreographies .. 331
Figure 11-5 – The Conversation Metamodel ... 333
Figure 11-6 – A ConversationContainer element ... 335
Figure 11-7 – A Communication element ... 336
Figure 11-8 – A compound Conversation element ... 337
Figure 11-9 – A Call Conversation calling a GlobalCommunication .. 337
Figure 11-10 – A Call Conversation calling a Conversation ... 337
Figure 11-11 – A Conversation Link element .. 339
Figure 11-12 – Where Conversation Links are derived in the metamodel 339
Figure 12-1 – The Choreography metamodel ... 343
Figure 12-2 – An example of a Choreography.. 345
Figure 12-3 – A Collaboration diagram logistics example .. 346
Figure 12-4 – The corresponding Choreography diagram logistics example 347
Figure 12-5 – The use of Sequence Flow in a Choreography .. 348
Figure 12-6 – The metamodel segment for a Choreography Activity .. 350
Figure 12-7 – A Collaboration view of Choreography Task elements .. 351
Figure 12-8 – A Choreography Task .. 351
Figure 12-9 – A Choreography Task .. 352
Figure 12-10 – A two-way Choreography Task.. 352
Figure 12-11 – A Choreography Task .. 353
Figure 12-12 – Choreography Task Markers .. 354
Figure 12-13 – The Collaboration view of a looping Choreography Task 354
Figure 12-14 – The Collaboration view of a Multi-Instance Choreography Task 355
Figure 12-15 – A Choreography Task with a multiple Participant ... 355
Figure 12-16 – A Collaboration view of a Choreography Task with a multiple Participant 356
Figure 12-17 – A Choreography Sub-Process .. 357
Figure 12-18 – A Collaboration view of a Choreography Sub-Process ... 357
Figure 12-19 – An expanded Choreography Sub-Process ... 358
Figure 12-20 – A Collaboration view of an expanded Choreography Sub-Process 359
Figure 12-21 –Choreography Sub-Process (Collapsed) with More than Two (2) Participants 360
Figure 12-22 – Choreography Sub-Process Markers .. 360
Figure 12-23 – Choreography Sub-Process Markers .. 361
Figure 12-24 – A Call Choreography Activity calling a Global Choreography Task....................... 362
Figure 12-25 – A Call Choreography Activity calling a Choreography (Collapsed) 362
Figure 12-26 – A Call Choreography Activity calling a Choreography (expanded) 362
Figure 12-27 – The Call Choreography Activity class diagram .. 363

Proposal for:
15 Business Process Model and Notation (BPMN), v2.0

Figure 12-28 – A valid sequence of Choreography Activities ... 365
Figure 12-29 – The corresponding Collaboration for a valid Choreography sequence 366
Figure 12-30 – A valid sequence of Choreography Activities with a two-way Activity 366
Figure 12-31 – The corresponding Collaboration for a valid Choreography sequence with a two-way

Activity .. 367
Figure 12-32 – An invalid sequence of Choreography Activities .. 368
Figure 12-33 – The corresponding Collaboration for an invalid Choreography sequence 369
Figure 12-34 – An example of the Exclusive Gateway ... 376
Figure 12-35 – The relationship of Choreography Activity Participants across the sides of the

Exclusive Gateway shown through a Collaboration .. 377
Figure 12-36 – Different Receiving Choreography Activity Participants on the output sides of the

Exclusive Gateway .. 378
Figure 12-37 – The corresponding Collaboration view of the above Choreography Exclusive Gateway

configuration.. 379
Figure 12-38 – An example of an Event Gateway .. 381
Figure 12-39 – The corresponding Collaboration view of the above Choreography Event Gateway

configuration.. 382
Figure 12-40 – An example of a Choreography Inclusive Gateway configuration 384
Figure 12-41 – The corresponding Collaboration view of the above Choreography Inclusive Gateway

configuration.. 385
Figure 12-42 – An example of a Choreography Inclusive Gateway configuration 386
Figure 12-43 – The corresponding Collaboration view of the above Choreography Inclusive Gateway

configuration.. 387
Figure 12-44 – Another example of a Choreography Inclusive Gateway configuration 388
Figure 12-45 – The corresponding Collaboration view of the above Choreography Inclusive Gateway

configuration.. 389
Figure 12-46 – The relationship of Choreography Activity Participants across the sides of the Parallel

Gateway... 390
Figure 12-47 – The corresponding Collaboration view of the above Choreography Parallel Gateway

configuration.. 391
Figure 12-48 – An example of a Choreography Complex Gateway configuration 392
Figure 12-49 – The corresponding Collaboration view of the above Choreography Complex Gateway

configuration.. 393
Figure 12-50 – An example of a Choreography Process combined with Black Box Pools 394
Figure 12-51 – An example of a Choreography Process combined with Pools that contain Processes

 .. 395
Figure 13-1 – BPMN Diagram Definitions .. 398
Figure 13-2 – BPMN Compartment Definitions ... 402
Figure 13-3 – A Pool ... 403
Figure 13-4 – Lanes within a Pool ... 403
Figure 13-5 – BPMN Connectors class diagram ... 405
Figure 13-6 – A Sequence Flow ... 406
Figure 13-7 – A Data Association .. 406
Figure 13-8 – A Message Flow .. 406
Figure 13-9 – Associations .. 407
Figure 13-10 – Compensation Flow from a Compensation Intermediate Event 408

Proposal for:
Business Process Model and Notation (BPMN), v2.0 16

Figure 13-11 – BPMN Shapes class diagram ... 408
Figure 13-12 – An Activity .. 409
Figure 13-13 – A Gateway ... 409
Figure 13-14 – The Gateway shape class diagram .. 410
Figure 13-15 – An Event ... 410
Figure 13-16 – The Event shape class diagram .. 411
Figure 13-17 – A Data Object .. 411
Figure 13-18 – A Collection Data Object ... 411
Figure 13-19 – The Data Object shape class diagram ... 412
Figure 13-20 – A Data Object .. 412
Figure 13-21 – The Data Store shape class diagram ... 413
Figure 13-22 – A Data Input .. 413
Figure 13-23 – A Collection Data Input ... 413
Figure 13-24 – The Data Input shape class diagram ... 414
Figure 13-25 – A Data Output ... 414
Figure 13-26 – A Collection Data Output .. 414
Figure 13-27 – The Data Output shape class diagram... 415
Figure 13-28 – A Message ... 415
Figure 13-29 – The Message shape class diagram .. 416
Figure 13-30 – A Choreography Task .. 416
Figure 13-31 – The Choreography Task shape class diagram ... 417
Figure 13-32 – A Group... 417
Figure 13-33 – The Group shape class diagram .. 418
Figure 13-34 – A Text Annotation ... 418
Figure 13-35 – The Text Annotation shape class diagram .. 419
Figure 13-36 – A Sub-Process object (collapsed) ... 419
Figure 13-37 – A Sub-Process object (expanded) ... 420
Figure 13-38 – The Sub-Process shape class diagram .. 420
Figure 13-39 – A Call Activity object calling a Process (Collapsed) .. 421
Figure 13-40 – A Call Activity object calling a Process (Expanded) .. 422
Figure 13-41 – The Call Activity shape class diagram ... 422
Figure 13-42 – A Communication shape .. 423
Figure 13-43 – The ConversationCommunication shape class diagram .. 423
Figure 13-44 – A Sub-Conversation shape ... 424
Figure 13-45 – The SubConversation shape class diagram ... 424
Figure 13-46 – A Call Conversation object calling a GlobalCommunication 424
Figure 13-47 – A Call Conversation object calling a Conversation ... 424
Figure 13-48 – The CallConversation shape class diagram... 425
Figure 13-49 – The BPMN Label class diagram... 425
Figure 14-1 – Behavior of multiple outgoing sequence flow of an Activity 428
Figure 14-2 – The Lifecycle of a BPMN Activity ... 430
Figure 14-3 – Merging and Branching Sequence Flow for a Parallel Gateway 436
Figure 14-4 – Merging and Branching Sequence Flow for an Exclusive Gateway 437
Figure 14-5 – Merging and Branching Sequence Flow for an Inclusive Gateway 438
Figure 14-6 – Merging and branching Sequence Flow for an Event-Based Gateway 439
Figure 14-7 – Merging and branching Sequence Flow for a Complex Gateway 440
Figure 15-1 – A BPMN orchestration process and its block hierarchy .. 448

Proposal for:
17 Business Process Model and Notation (BPMN), v2.0

Figure 15-2 – An example of distributed token recombination ... 471
Figure 15-3 – An example of a loop from a decision with more than two alternative paths 472
Figure 15-4 – An example of interleaved loops .. 473
Figure 15-5 – An example of the WSBPEL pattern for substituting for the derived Process 474
Figure 15-6 – An example of a WSBPEL pattern for the derived Process 474
Figure 15-7 – An example – An infinite loop ... 475
Figure 15-8 – An example – Activity that spans two paths of a WSBPEL structured element 476
Figure 16-1 – The relationship between DI, DD and a BPMN’s abstract-syntax metamodels 483
Figure 16-2 – Diagram Interchange (DI) Metamodel ... 484
Figure 16-3 – Various points of a Connector .. 488
Figure 16-4 – Diagram Definition (DD) Metamodel .. 491

Proposal for:
Business Process Model and Notation (BPMN), v2.0 18

Table of Tables
Table 2-1 – Types of BPMN Conformance ...33
Table 7-1 - Basic Modeling Elements ...48
Table 7-2 – BPMN Extended Modeling Elements ...51
Table 7-3 – Sequence Flow Connection Rules ..65
Table 7-4 – Message Flow Connection Rules ...66
Table 8-1 – Definitions attributes and model associations ...73
Table 8-2 – Import attributes ..74
Table 8-3 – Definitions XML schema ...75
Table 8-4 – Import XML schema ..75
Table 8-5 – BaseElement attributes and model associations ..77
Table 8-6 – Documentation attributes ...77
Table 8-7 – Extension attributes and model associations ...79
Table 8-8 – ExtensionDefinition attributes and model associations ...79
Table 8-9 – ExtensionAttributeDefinition attributes ..80
Table 8-10 – ExtensionAttributeValue model associations ..80
Table 8-11 – Extension XML schema ...81
Table 8-12 – Example Core XML schema ..81
Table 8-13 – Example Extension XML schema ..82
Table 8-14 – Sample XML instance ..82
Table 8-15 – Relationship attributes ..84
Table 8-16 – Reengineer XML schema ...84
Table 8-17 – BaseElement XML schema ..85
Table 8-18 – RootElement XML schema ..86
Table 8-19 – Relationship XML schema ...86
Table 8-20 –Association attributes and model associations ...89
Table 8-21 –Group model associations ...91
Table 8-22 –Category model associations ...92
Table 8-23 –CategoryValue attributes and model associations ..92
Table 8-24 –Text Annotation attributes ...93
Table 8-25 – Artifact XML schema ..93
Table 8-26 – Association XML schema ..94
Table 8-27 – Category XML schema ..94
Table 8-28 – Group XML schema ..94
Table 8-29 – Text Annotation XML schema ...95
Table 8-30 – CallableElement attributes and model associations ...96
Table 8-31 – InputOutputBinding model associations ...96
Table 8-32 – CorrelationKey model associations ..99
Table 8-33 – CorrelationProperty model associations ...99
Table 8-34 – CorrelationPropertyRetrievalExpression model associations 100
Table 8-35 – CorrelationSubscription model associations ... 100
Table 8-36 – CorrelationPropertyBinding model associations ... 101
Table 8-37 – Correlation Key XML schema ... 101
Table 8-38 – Correlation Property XML schema ... 101
Table 8-39 – Correlation Property Binding XML schema ... 102

Proposal for:
19 Business Process Model and Notation (BPMN), v2.0

Table 8-40 – Correlation Property Retrieval Expression XML schema ... 102
Table 8-41 – Correlation Subscription XML schema .. 102
Table 8-42 – ConversationAssociation Model Associations .. 104
Table 8-43 – Error model associations .. 105
Table 8-44 – FormalExpression attributes and model associations .. 107
Table 8-45 – FlowElement attributes and model associations .. 108
Table 8-46 – FlowElementsContainer model associations ... 110
Table 8-47 – Gateway attributes ... 111
Table 8-48 – InteractionSpecification attributes and model associations ... 112
Table 8-49 – ItemDefinition attributes & model associations .. 114
Table 8-50 – Message attributes and model associations ... 118
Table 8-51 – Message Flow attributes and model associations .. 121
Table 8-52 – MessageFlowAssociation attributes and model associations 123
Table 8-53 – Participant attributes and model associations .. 125
Table 8-54 – PartnerEntity attributes... 126
Table 8-55 – PartnerRole attributes ... 126
Table 8-56 – ParticipantMultiplicity attributes .. 127
Table 8-57 – ParticipantMultiplicity Instance attributes .. 127
Table 8-58 – ParticipantAssociation model associations ... 129
Table 8-59 – Resource attributes and model associations .. 130
Table 8-60 – ResourceParameter attributes and model associations... 130
Table 8-61 – SequenceFlow attributes and model associations .. 132
Table 8-62 – FlowNode model associations .. 133
Table 8-63 – CallableElement XML schema ... 134
Table 8-64 – ConversationAssociation XML schema .. 134
Table 8-65 – Error XML schema .. 134
Table 8-66 – Expression XML schema ... 134
Table 8-67 – FlowElement XML schema .. 135
Table 8-68 – FlowNode XML schema .. 135
Table 8-69 – FormalExpression XML schema .. 135
Table 8-70 – InputOutputBinding XML schema ... 136
Table 8-71 – ItemDefinition XML schema ... 136
Table 8-72 – Message XML schema ... 136
Table 8-73 – MessageFlow XML schema ... 137
Table 8-74 – MessageFlowAssociation XML schema ... 137
Table 8-75 – Participant XML schema .. 137
Table 8-76 – ParticipantAssociation XML schema ... 138
Table 8-77 – PartnerEntity XML schema .. 138
Table 8-78 – PartnerRole XML schema .. 138
Table 8-79 – Resources XML schema... 138
Table 8-80 – SequenceFlow XML schema .. 139
Table 8-81 – Interface attributes and model associations ... 141
Table 8-82 – Operation attributes and model associations ... 141
Table 8-83 – interface XML schema ... 141
Table 8-84 – operation XML schema .. 142
Table 8-85 – endPoint XML schema ... 142

Proposal for:
Business Process Model and Notation (BPMN), v2.0 20

Table 9-1 – Collaboration Attributes and Model Associations ... 144
Table 9-2 – Collaboration XML schema ... 152
Table 10-1 – Process Attributes & Model Associations ... 156
Table 10-2 – Process Instance Attributes .. 157
Table 10-3 – Activity attributes and model associations .. 160
Table 10-4 – Activity instance attributes ... 162
Table 10-5 – ActivityResource model associations ... 164
Table 10-6 – ResourceAssignmentExpression model associations.................................... 164
Table 10-7 – ResourceParameterBinding model associations ... 165
Table 10-8 – Service Task model associations .. 169
Table 10-9 – Send Task model associations .. 172
Table 10-10 – Receive Task attributes and model associations .. 173
Table 10-11 – Business Rule Task attributes and model associations .. 175
Table 10-12 – Script Task attributes ... 176
Table 10-13 – User Task attributes and model associations ... 179
Table 10-14 – User Task Instance attributes ... 179
Table 10-15 – ManualTask XML schema ... 181
Table 10-16 – UserTask XML schema .. 181
Table 10-17 – HumanPerformer XML schema ... 182
Table 10-18 – PotentialOwner XML schema .. 182
Table 10-19 – XML serialization of Buyer process ... 183
Table 10-20 – Sub-Process attributes .. 188
Table 10-21 – Transaction Sub-Process attributes and model associations 192
Table 10-22 – Ad-hoc Sub-Process model associations ... 194
Table 10-23 – CallActivity model associations ... 198
Table 10-24 – Loop Activity Instance attributes ... 200
Table 10-25 – StandardLoopCharacteristics attributes and model associations 201
Table 10-26 – MultiInstanceLoopCharacteristics attributes and model associations 202
Table 10-27 – Multi-instance Activity Instance attributes ... 204
Table 10-28 – ComplexBehaviorDefinition attributes and model associations 205
Table 10-29 – Activity XML schema .. 205
Table 10-30 – ActivityResource XML schema ... 206
Table 10-31 – AdHocSubProcess XML schema.. 206
Table 10-32 – BusinessRuleTask XML schema .. 206
Table 10-33 – CallActivity XML schema ... 207
Table 10-34 – GlobalBusinessRuleTask XML schema.. 207
Table 10-35 – GlobalScriptTask XML schema ... 207
Table 10-36 – LoopCharacteristics XML schema ... 207
Table 10-37 – MultiInstanceLoopCharacteristics XML schema .. 208
Table 10-38 – ReceiveTask XML schema... 208
Table 10-39 – ScriptTask XML schema .. 209
Table 10-40 – SendTask XML schema ... 209
Table 10-41 – ServiceTask XML schema ... 209
Table 10-42 – StandardLoopCharacteristics XML schema .. 210
Table 10-43 – SubProcess XML schema ... 210
Table 10-44 – Task XML schema ... 210
Table 10-45 – Transaction XML schema .. 211

Proposal for:
21 Business Process Model and Notation (BPMN), v2.0

Table 10-46 – ItemAwareElement model associations .. 212
Table 10-47 – DataObject attributes .. 213
Table 10-48 – DataState attributes and model associations ... 214
Table 10-49 – Data Store attributes ... 216
Table 10-50 – Data Store attributes ... 217
Table 10-51 – Property attributes .. 217
Table 10-52 – InputOutputSpecification Attributes and Model Associations 220
Table 10-53 – DataInput attributes and model associations ... 222
Table 10-54 – DataOutput attributes and associations ... 224
Table 10-55 – InputSet attributes and model associations ... 226
Table 10-56 – OutputSet attributes and model associations ... 227
Table 10-57 – DataAssociation model associations ... 230
Table 10-58 – Assignment attributes ... 230
Table 10-59 – XPath Extension Function for Data Objects ... 233
Table 10-60 – XPath Extension Function for Data Inputs and Data Outputs 233
Table 10-61 – XPath Extension Functions for Properties .. 234
Table 10-62 – XPath Extension Functions for Instance Attributes ... 234
Table 10-63 – Assignment XML schema .. 235
Table 10-64 – DataAssociation XML schema ... 235
Table 10-65 – DataInput XML schema ... 235
Table 10-66 – DataInputAssociation XML schema ... 236
Table 10-67 – InputOutputSpecification XML schema ... 236
Table 10-68 – DataObject XML schema ... 236
Table 10-69 – DataState XML schema ... 237
Table 10-70 – DataOutput XML schema .. 237
Table 10-71 – DataOutputAssociation XML schema .. 237
Table 10-72 – InputSet XML schema ... 238
Table 10-73 – OutputSet XML schema ... 238
Table 10-74 – Property XML schema ... 238
Table 10-75 – CatchEvent attributes and model associations .. 242
Table 10-76 – ThrowEvent attributes and model associations ... 243
Table 10-77 – Top-Level Process Start Event Types .. 246
Table 10-78 – Sub-Process Start Event Types .. 247
Table 10-79 – Event Sub-Process Start Event Types .. 248
Table 10-80 – Start Event attributes .. 251
Table 10-81 – End Event Types ... 253
Table 10-82 – Intermediate Event Types in Normal Flow .. 257
Table 10-83 – Intermediate Event Types Attached to an Activity Boundary 260
Table 10-84 – Boundary Event attributes .. 264
Table 10-85 – Possible Values of the cancel Activity Attribute.. 264
Table 10-86 – Types of Events and their Markers ... 268
Table 10-87 – CompensationEventDefinition attributes and model associations 272
Table 10-88 – ConditionalEventDefinition model associations ... 273
Table 10-89 – ErrorEventDefinition attributes and model associations .. 274
Table 10-90 – EscalationEventDefinition attributes and model associations 276
Table 10-91 – LinkEventDefinition attributes ... 279

Proposal for:
Business Process Model and Notation (BPMN), v2.0 22

Table 10-92 – MessageEventDefinition model associations .. 280
Table 10-93 – SignalEventDefinition model associations .. 282
Table 10-94 – TimerEventDefinition model associations .. 283
Table 10-95 – BoundaryEvent XML schema .. 290
Table 10-96 – CancelEventDefinition XML schema ... 290
Table 10-97 – CatchEvent XML schema .. 290
Table 10-98 – CancelEventDefinition XML schema ... 291
Table 10-99 – CompensateEventDefinition XML schema ... 291
Table 10-100 – ConditionalEventDefinition XML schema.. 291
Table 10-101 – ErrorEventDefinition XML schema .. 291
Table 10-102 – Escalation XML schema .. 292
Table 10-103 – EscalationEventDefinition XML schema .. 292
Table 10-104 – Event XML schema ... 292
Table 10-105 – EventDefinition XML schema .. 292
Table 10-106 – IntermediateCatchEvent XML schema ... 292
Table 10-107 – IntermediateThrowEvent XML schema .. 293
Table 10-108 – LinkEventDefinition XML schema .. 293
Table 10-109 – MessageEventDefinition XML schema .. 293
Table 10-110 – Signal XML schema ... 293
Table 10-111 – SignalEventDefinition XML schema .. 294
Table 10-112 – StartEvent XML schema .. 294
Table 10-113 – TerminateEventDefinition XML schema .. 294
Table 10-114 – ThrowEvent XML schema ... 294
Table 10-115 – TimerEventDefinition XML schema .. 295
Table 10-116 – ExclusiveGateway Attributes & Model Associations .. 300
Table 10-117 – InclusiveGateway Attributes & Model Associations ... 302
Table 10-118 – Complex Gateway model associations .. 306
Table 10-119 – Instance Attributes related to the Complex Gateway ... 307
Table 10-120 – EventBasedGateway Attributes & Model Associations .. 311
Table 10-121 – ComplexGateway XML schema ... 312
Table 10-122 – EventBasedGateway XML schema .. 312
Table 10-123 – ExclusiveGateway XML schema .. 313
Table 10-124 – Gateway XML schema ... 313
Table 10-125 – InclusiveGateway XML schema ... 313
Table 10-126 – ParallelGateway XML schema ... 313
Table 10-127 – LaneSet attributes and model associations .. 319
Table 10-128 – Lane attributes and model associations ... 320
Table 10-129 – Process XML schema ... 325
Table 10-130 – Auditing XML schema ... 326
Table 10-131 – GlobalTask XML schema... 326
Table 10-132 – Lane XML schema ... 326
Table 10-133 – LaneSet XML schema .. 327
Table 10-134 – Monitoring XML schema ... 327
Table 10-135 – Performer XML schema ... 327
Table 11-1 – Conversation Model Associations .. 334
Table 11-2 – ConversationContainer Model Associations ... 335
Table 11-3 – ConversationNode Model Associations .. 336

Proposal for:
23 Business Process Model and Notation (BPMN), v2.0

Table 11-4 – Communication Model Associations .. 336
Table 11-5 – Sub-Conversation Model Associations ... 337
Table 11-6 – Communication Model Associations .. 338
Table 11-7 – GlobalCommunication Model Associations ... 338
Table 11-9 – Communication XML schema.. 340
Table 11-10 – Conversation XML schema .. 340
Table 11-11 – Conversation Node XML schema ... 340
Table 11-12 – Global Communication XML schema .. 341
Table 11-13 – Sub-Conversation XML schema ... 341
Table 12-1 – Choreography Model Associations ... 344
Table 12-2 – Choreography Activity Model Associations ... 350
Table 12-3 – Choreography Task Model Associations .. 356
Table 12-4 – Call Choreography Activity Model Associations .. 363
Table 12-5 – Global Choreography Task Model Associations ... 364
Table 12-6 – Use of Start Events in Choreography .. 370
Table 12-7 – Use of Intermediate Events in Choreography ... 371
Table 12-8 – Use of End Events in Choreography ... 374
Table 12-9 – Choreography XML schema .. 396
Table 12-10 – GlobalChoreographyTask XML schema .. 396
Table 12-11 – ChoreographyActivity XML schema .. 396
Table 12-12 – ChoreographyTask XML schema ... 397
Table 12-13 – CallChoreographyActivity XML schema ... 397
Table 12-14 – ChoreographySubProcess XML schema ... 397
Table 13-1 – ProcessDiagram children.. 399
Table 13-2 – CollaborationDiagram children .. 400
Table 13-3 – ChoreographyDiagram children ... 400
Table 13-4 – Conversation children .. 401
Table 13-5 – BPMNNode styles ... 401
Table 13-6 – BPMNCompartment styles... 402
Table 13-7 – PoolCompartment children... 403
Table 13-8 – LaneCompartment children .. 404
Table 13-9 – ChoreographyCompartment children .. 404
Table 13-10 – BPMNConnector children .. 405
Table 13-11 – EmbeddedSubProcessShape styles ... 421
Table 13-12 – EmbeddedSubProcessShape children ... 421
Table 13-13 – CalledSubProcessShape styles ... 423
Table 14-1 – Parallel Gateway Execution Semantics ... 436
Table 14-2 – Exclusive Gateway Execution Semantics ... 437
Table 14-3 – Inclusive Gateway Execution Semantics .. 438
Table 14-4 – Event-Based Gateway Execution Semantics ... 439
Table 14-5 – Semantics of the Complex Gateway ... 441
Table 15-1 – Common Activity Mappings to WS-BPEL ... 450
Table 15-2 – Expressions mapping to WS-BPEL .. 470
Table A-1 – Mandatory Requirements .. 479
Table A-2 – Optional Requirements .. 480
Table A-3 – Issues to be Discussed ... 481

Proposal for:
Business Process Model and Notation (BPMN), v2.0 24

Table 16-4 – View attributes and model associations .. 485
Table 16-5 – Diagram attributes and model associations ... 486
Table 16-6 – Node attributes and model associations .. 487
Table 16-7 – Connector attributes and model associations .. 487
Table 16-8 – Bendpoint attributes and model associations .. 489
Table 16-9 – Style attributes and model associations... 489
Table 16-10 – NamedElement attributes ... 491
Table 16-11 – Package model associations ... 492
Table 16-12 – ViewDefinition attributes and model associations .. 493
Table 16-13 – NamedElement model associations .. 495
Table 16-14 – ChildDefinition attributes and model associations .. 496
Table 16-15 – StyleDefinition attributes and model associations ... 497
Table 16-16 – Constraint attributes and model associations .. 497

Proposal for:
25 Business Process Model and Notation (BPMN), v2.0

Introduction

This section presents information regarding the RFP response.

Submitting organizations

Supporting organizations

Submission contacts

Acknowledgements

Status of this document

Proof of Concept

Typographical Conventions

Guide to the submission

Submitting Organizations
The following companies are formal submitting members of OMG:

Axway

International Business Machines

MEGA International

Oracle

SAP AG

Unisys

Supporting Organizations
The following organizations support this specification but are not formal submitters:

Accenture

Adaptive

BizAgi

Bruce Silver Associates

Capgemini

Enterprise Agility

France Telecom

IDS Scheer

Intalio

Proposal for:
Business Process Model and Notation (BPMN), v2.0 26

Metastorm

Model Driven Solutions

Nortel

Red Hat Software

Software AG

TIBCO Software

Vangent

Submission Contacts
Martin Chapman, Oracle, martin.chapman@oracle.com

Dave Ings, IBM, ings@ca.ibm.com

Ivana Trickovic, SAP, ivana.trickovic@sap.com

Acknowledgements
The following persons were members of the core teams that contributed to the content specification: Anurag
Aggarwal, Mike Amend, Sylvain Astier, Alistair Barros, Mariano Benitez, Conrad Bock, Martin Chapman,
Rouven Day, David Frankel, Dave Ings, Pablo Irassar, Oliver Kieselbach, Matthias Kloppmann, Jana Koehler,
Frank Michael Kraft, Frank Leymann, Antoine Lonjon, Sumeet Malhotra, Jeff Mischkinsky, Ralf Mueller,
Karsten Ploesser, Michael Rowley, Suzette Samoojh, Vishal Saxena, Bruce Silver, Meera Srinivasan, Ivana
Trickovic, Hagen Voelzer, Franz Weber, and Stephen A. White.

In addition, the following persons contributed valuable ideas and feedback that improved the content and the
quality of this specification: Justin Brunt, Peter Carlson, Manoj Das, Sumeet Malhotra, Neal McWhorter, Vadim
Pevzner, Pete Rivett, Jesus Sanchez, Sebastian Stein, and Prasad Yendluri.

Status of the Document
This document is an initial specification for review and comment by OMG members.

IPR and Patents
The submitters intend to contribute this work to OMG on a RF on RAND basis.

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 11 pt.: Standard body text

Verdana – 11 pt.: Key BPMN elements

mailto:martin.chapman@oracle.com
mailto:ings@ca.ibm.com
mailto:ivana.trickovic@sap.com

Proposal for:
27 Business Process Model and Notation (BPMN), v2.0

Times/Times New Roman - 11 pt., italic: Additional BPMN elements or concepts

Helvetica/Arial - 11 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 11 pt. Programming language elements or BPMN element attributes/model associations.

Helvetica/Arial - 11 pt: Exceptions

Note: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Proof of Concept
The submitters of this specification have extensive experience in building business process management tools
and in implementing previous versions of the Business Process Modeling Notation specification. This
specification incorporates experience the submitters have gained so far and includes proven design principles.
Proof of concept implementations for this version have started and will continue in parallel with the FTF work.

Responses to RFP Requirements
See Annex A.

Guide to the Submission
The submission is organized into the following sections: Those sections are normative that are
indicated as such, below.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 28

1. Scope

The Object Management Group (OMG) has developed a standard Business Process Modeling Notation
(BPMN). The primary goal of BPMN is to provide a notation that is readily understandable by all business users,
from the business analysts that create the initial drafts of the processes, to the technical developers responsible
for implementing the technology that will perform those processes, and finally, to the business people who will
manage and monitor those processes. Thus, BPMN creates a standardized bridge for the gap between the
business process design and process implementation.

Another goal, but no less important, is to ensure that XML languages designed for the execution of business
processes, such as WSBPEL (Web Services Business Process Execution Language), can be visualized with a
business-oriented notation.

This specification represents the amalgamation of best practices within the business modeling community to
define the notation and semantics of Collaboration diagrams, Process diagrams, and Choreography
diagrams. The intent of BPMN is to standardize a business process modeling notation in the face of many
different modeling notations and viewpoints. In doing so, BPMN will provide a simple means of communicating
process information to other business users, process implementers, customers, and suppliers.

The membership of the OMG has brought forth expertise and experience with many existing notations and has
sought to consolidate the best ideas from these divergent notations into a single standard notation. Examples of
other notations or methodologies that were reviewed are UML Activity Diagram, UML EDOC Business
Processes, IDEF, ebXML BPSS, Activity-Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and
Event-Process Chains (EPCs).

2. Conformance

Software may claim compliance or conformance with BPMN 2.0 if and only if the software fully matches the
applicable compliance points as stated in the specification. Software developed only partially matching the
applicable compliance points may claim only that the software was based on this specification, but may not
claim compliance or conformance with this specification. The specification defines four types of conformance
namely Process Modeling Conformance, Process Execution Conformance, BPEL Process Execution
Conformance and Choreography Modeling Conformance.

The implementation claiming conformance to Process Modeling Conformance type is not required to support
Choreography Modeling Conformance type and vice-versa. Similarly, the implementation claiming Process
Execution Conformance type is not required to be conformant to the Process Modeling and Choreography
Conformance types.

The implementation claiming conformance to the Process Modeling Conformance type shall comply with all
of the requirements set forth in Section 2.1. The implementation claiming conformance to the Process
Execution Conformance type shall comply with all of the requirements set forth in Section 2.2. The
implementation claiming conformance to the BPEL Process Execution Semantics Conformance type shall
comply with all of the requirements set forth in Section 2.3.The implementation claiming conformance to the
Choreography Conformance type shall comply with all of the requirements set forth in Section 2.4. The
implementation is said to have BPMN Complete Conformance if it complies with all of the requirements stated
in Sections 2.1, 2.2, 2.3, and 2.4.

Proposal for:
29 Business Process Model and Notation (BPMN), v2.0

2.1. Process Modeling Conformance
The next eight (8) sections describe Process Modeling Conformance.

2.1.1. BPMN Process Types

The implementations claiming Process Modeling Conformance must support the following BPMN packages:

The BPMN core elements, which include those defined in the Infrastructure, Foundation, Common, and
Service packages (see page 70).

Process diagrams, which include the elements defined in the Process, Activities, Data, and Human
Interaction packages (see page 153).

Collaboration diagrams, which include Pools and Message Flow (see page 143).

Conversation diagrams, which include Pools, Communications, and Communication Links
(see page 328).

2.1.2. BPMN Process Elements

The Process Modeling Conformance type set consists of Collaboration and Process diagram elements,
including all Task types, embedded Sub-Processes, CallActivity, all Gateway types, all Event types
(Start, Intermediate, and End), Lane, Participants, Data Object (including DataInput and
DataOutput), Message, Group, Text Annotation, Sequence Flow (including conditional and default
flows), Message Flow, Conversations (limited to grouping Message Flow, and associating
correlations), Correlation, and Association (including Compensation Association). The set also
includes markers (Loop, Multi-Instance, Transaction, Compensation) for Tasks and embedded
Sub-Processes).

Note: Implementations are not expected to support Choreography modeling elements such as
Choreography Task and Choreography Sub-Process.

2.1.3. Visual Appearance

A key element of BPMN is the choice of shapes and icons used for the graphical elements identified in this
specification. The intent is to create a standard visual language that all process modelers will recognize and
understand. An implementation that creates and displays BPMN Process Diagrams shall use the graphical
elements, shapes, and markers illustrated in this specification.

Note – There is flexibility in the size, color, line style, and text positions of the defined graphical elements,
except where otherwise specified (see Page 63).

The following extensions to a BPMN Diagram are permitted:

New markers or indicators MAY be added to the specified graphical elements. These markers or
indicators could be used to highlight a specific attribute of a BPMN element or to represent a new
subtype of the corresponding concept.

A new shape representing a kind of Artifact may be added to a Diagram, but the new Artifact shape
SHALL NOT conflict with the shape specified for any other BPMN element or marker.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 30

Graphical elements may be colored, and the coloring may have specified semantics that extend the
information conveyed by the element as specified in this standard.

The line style of a graphical element may be changed, but that change SHALL NOT conflict with any
other line style required by this specification.

An extension SHALL NOT change the specified shape of a defined graphical element or marker. (e.g.,
changing a square into a triangle, or changing rounded corners into squared corners, etc.).

2.1.4. Structural Conformance

An implementation that creates and displays BPMN diagrams shall conform to the specifications and
restrictions with respect to the connections and other diagrammatic relationships between graphical elements.
Where permitted or required connections are specified as conditional and based on attributes of the
corresponding concepts, the implementation shall ensure the correspondence between the connections and the
values of those attributes.

Note – In general, these connections and relationships have specified semantic interpretations, which specify
interactions among the process concepts represented by the graphical elements. Conditional relationships based
on attributes represent specific variations in behavior. Structural conformance therefore guarantees the correct
interpretation of the diagram as a specification of process, in terms of flows of control and information.
Throughout the document, structural specifications will appear in paragraphs using a special shaped bullet:
Example: A TASK MAY be a target for Sequence Flow; it can have multiple incoming Flows. An
incoming Flow MAY be from an alternative path and/or parallel paths.

2.1.5. Process Semantics

This specification defines many semantic concepts used in defining Processes, and associates them with
graphical elements, markers, and connections. To the extent that an implementation provides an interpretation of
the BPMN diagram as a semantic specification of Process, the interpretation shall be consistent with the
semantic interpretation herein specified. In other words, the implementation claiming BPMN Process
Modeling Conformance has to support the semantics surrounding the diagram elements expressed in Section
10.

Note – The implementations claiming Process Modeling Conformance are not expected to support the BPMN
execution semantics described in Section 14.

2.1.6. Attributes and Model Associations

This specification defines a number of attributes and properties of the semantic elements represented by the
graphical elements, markers, and connections. Some of these attributes are purely representational and are so
marked, and some have required representations. Some attributes are specified as mandatory, but have no
representation or only optional representation. And some attributes are specified as optional. For every attribute
or property that is specified as mandatory, a conforming implementation SHALL provide some mechanism by
which values of that attribute or property can be created and displayed. This mechanism SHALL permit the user
to create or view these values for each BPMN element specified to have that attribute or property. Where a
graphical representation for that attribute or property is specified as required, that graphical representation
SHALL be used. Where a graphical representation for that attribute or property is specified as optional, the
implementation MAY use either a graphical representation or some other mechanism. If a graphical
representation is used, it SHALL be the representation specified. Where no graphical representation for that
attribute or property is specified, the implementation MAY use either a graphical representation or some other

Proposal for:
31 Business Process Model and Notation (BPMN), v2.0

mechanism. If a graphical representation is used, it SHALL NOT conflict with the specified graphical
representation of any other BPMN element.

2.1.7. Extended and Optional Elements

A conforming implementation is not required to support any element or attribute that is specified herein to be
non-normative or informative. In each instance in which this specification defines a feature to be “optional,” it
specifies whether the option is in:

how the feature shall be displayed

whether the feature shall be displayed

whether the feature shall be supported

A conforming implementation is not required to support any feature whose support is specified to be optional. If
an implementation supports an optional feature, it SHALL support it as specified. A conforming implementation
SHALL support any “optional” feature for which the option is only in whether or how it shall be displayed.

2.1.8. Visual Interchange

One of the main goals of this specification is to provide an interchange format that can be used to exchange
BPMN definitions (both domain model and diagram layout) between different tools. The implementation should
support the metamodel for Process types specified in Section 13.1 to enable portability of process diagrams so
that users can take business process definitions created in one vendor’s environment and use them is another
vendor’s environment.

2.2. Process Execution Conformance
The next two (2) sections describe Process Execution Conformance.

2.2.1. Execution Semantics
The BPMN execution semantics have been fully formalized in this version of the specification. The
tool claiming BPMN Execution Conformance type MUST fully support and interpret the
operational semantics and Activity life-cycle specified in Section 14.2.2. Non-operational elements
listed in Section 14 MAY be ignored by implementations claiming BPMN Execution
Conformance type. Conformant implementations MUST fully support and interpret the underlying
metamodel.

Note: The tool claiming Process Execution Conformance type is not expected to support and interpret
Choreography models. The tool claiming Process Execution Conformance type is not expected to support
Process Modeling Conformance.

2.2.2. Import of Process Diagrams
The tool claiming Process Execution Conformance type must support import of BPMN Process diagram
types including its definitional Collaboration (see Table 10-1).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 32

2.3. BPEL Process Execution Conformance
Special type of Process Execution Conformance that supports the BPMN mapping to WS-BPEL as specified in
Section 15.1 can claim BPEL Process Execution Conformance.

Note: The tool claiming BPEL Process Execution Conformance must fully support Process Execution
Conformance. The tool claiming BPEL Process Execution Conformance is not expected to support and
interpret Choreography models. The tool claiming BPEL Process Execution Conformance is not expected
to support Process Modeling Conformance.

2.4. Choreography Modeling Conformance
The next five (5) sections describe Choreography Conformance.

2.4.1. BPMN Choreography Types
The implementations claiming Choreography Conformance type must support the following BPMN
packages:

The BPMN core elements, which include those defined in the Infrastructure, Foundation, Common, and
Service packages (see Chapter 70).

Choreography diagrams, which includes the elements defined in the Choreography, and
Choreography packages (see Chapter 10).

Collaboration diagrams, which include Pools and Message Flow (see Chapter 143).

2.4.2. BPMN Choreography elements
The Choreography Conformance set includes Message, Choreography Task, Global Choreography
Task, Choreography Sub-Process (expanded and collapsed), certain types of Start Events (e.g., None,
Timer, Conditional, Signal, and Multiple), certain types of Intermediate Events (None, Message
attached to Activity boundary, Timer – normal as well as attached to Activity boundary, Timer used in
Event Gateways, Cancel attached to an Activity boundary, Conditional, Signal, Multiple, Link, etc)
and certain types of End Events (None and Terminate), and Gateways. In addition, to enable
Choreography within Collaboration it should support Pools and Message Flow.

2.4.3. Visual Appearance

An implementation that creates and displays BPMN Choreography Diagrams shall use the graphical
elements, shapes and markers as specified in the BPMN specification. The use of text, color, size and lines for
Choreography diagram types are listed in Section 7.4.

2.4.4. Choreography Semantics
The tool claiming Choreography Conformance should fully support and interpret the graphical and execution
semantics surrounding Choreography diagram elements and Choreography diagram types.

Proposal for:
33 Business Process Model and Notation (BPMN), v2.0

2.4.5. Visual Interchange
The implementation should support import/export of Choreography diagram types and Collaboration
diagram types that depict Choreography within collaboration as specified in Section 9.4 to enable
portability of Choreography definitions, so that users can take BPMN definitions created in one vendor’s
environment and use them is another vendor’s environment.

2.5. Summary of BPMN Conformance Types
Table 2-1 summarizes the requirements for BPMN Conformance.

Table 2-1 – Types of BPMN Conformance

Category Process Modeling
Conformance

Process
Execution
Conformance

BPEL Process
Execution
Conformance

Choreography
Conformance

Visual
representation
of BPMN
Diagram
Types

Process diagram types

and

Collaboration diagram
types depicting
collaborations among
Process diagram types.

N/A N/A Choreography diagram
types

and

Collaboration diagram
types depicting collaboration
among Choreography
diagram types.

BPMN
Diagram
Elements that
need to be
supported.

All Task types,
embedded
Sub-Process, Call
Activity, all Event
types, all Gateway
types, Pool, Lane,
Data Object (including
DataInput and
DataOutput),
Message, Group,
Artifacts, markers for
Tasks and
Sub-Processes,
Sequence Flow,
Associations, and
Message Flow.

N/A N/A Message, Choreography
Task, Global
Choreography Task,
Choreography
Sub-Process (expanded and
collapsed), certain types of
Start, Intermediate, and
End Events, Gateways,
Pools and Message Flow.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 34

Import/Export
of diagram
types

Yes for Process and
Collaboration
diagrams that depict
Process within
Collaboration.

Yes for
Process
diagrams

Yes for Process
diagrams

Yes for Choreography and
Collaboration diagrams
depicting choreography
within Collaboration.

Support for
Graphical
syntax and
semantics

Process and
Collaboration
diagrams that depict
Process within
Collaboration.

N/A N/A Choreography and
Collaboration diagrams
depicting Choreography
within Collaboration.

Support for
Execution
Semantics

N/A Yes for
Process
diagrams

Yes for Process
diagrams

Choreography execution
semantics

3. Normative References

3.1. Normative
RFC-2119

Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, IETF RFC 2119, March 1997
http://www.ietf.org/rfc/rfc2119.txt

3.2. Non-Normative
Activity Service

Additional Structuring Mechanism for the OTS specification, OMG, June 1999
http://www.omg.org

J2EE Activity Service for Extended Transactions (JSR 95), JCP
http://www.jcp.org/jsr/detail/95.jsp

BPEL4People

WS-BPEL Extension for People (BPEL4People) 1.0, June 2007
http://www.active-endpoints.com/active-bpel-for-people.htm

http://www.active-endpoints.com/active-bpel-for-people.htm

http://www.adobe.com/devnet/livecycle/articles/bpel4people_overview.html

http://dev2dev.bea.com/arch2arch/

http://www-128.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/

http://www.oracle.com/technology/tech/standards/bpel4people/

https://www.sdn.sap.com/irj/sdn/bpel4people

http://www.ietf.org/rfc/rfc2119.txt
http://www.omg.org/
http://www.jcp.org/jsr/detail/95.jsp
http://www.active-endpoints.com/active-bpel-for-people.htm
http://www.active-endpoints.com/active-bpel-for-people.htm
http://www.adobe.com/devnet/livecycle/articles/bpel4people_overview.html
http://dev2dev.bea.com/arch2arch/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/
http://www.oracle.com/technology/tech/standards/bpel4people/
https://www.sdn.sap.com/irj/sdn/bpel4people

Proposal for:
35 Business Process Model and Notation (BPMN), v2.0

Business Process Definition Metamodel

OMG, May 2008,
http://www.omg.org/docs/dtc/08-05-07.pdf

Business Process Modeling

Jean-Jacques Dubray, “A Novel Approach for Modeling Business Process Definitions,” 2002
http://www.ebpml.org/ebpml2.2.doc

Business Transaction Protocol

OASIS BTP Technical Committee, June, 2002
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf

Dublin Core Meta Data

Dublin Core Metadata Element Set, Dublin Core Metadata Initiative
http://dublincore.org/documents/dces/

ebXML BPSS

Jean-Jacques Dubray, “A new model for ebXML BPSS Multi-party Collaborations and Web Services
Choreography,” 2002
http://www.ebpml.org/ebpml.doc

OMG UML

Unified Modeling Language Specification V2.1.2: Superstructure, OMG, Nov 2007,
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF

Open Nested Transactions

Concepts and Applications of Multilevel Transactions and Open Nested Transactions, Gerhard Weikum,
Hans-J. Schek, 1992
http://citeseer.nj.nec.com/weikum92concepts.html

RDF

RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft
http://www.w3.org/TR/rdf-schema/

SOAP 1.2

SOAP Version 1.2 Part 1: Messaging Framework, W3C Working Draft
http://www.w3.org/TR/soap12-part1/

SOAP Version 1.2 Part21: Adjuncts, W3C Working Draft
http://www.w3.org/TR/soap12-part2/

UDDI

Universal Description, Discovery and Integration, Ariba, IBM and Microsoft, UDDI.org.
http://www.uddi.org

http://www.omg.org/docs/dtc/08-05-07.pdf
http://www.ebpml.org/ebpml2.2.doc
http://dublincore.org/documents/dces/
http://www.ebpml.org/ebpml.doc
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://citeseer.nj.nec.com/weikum92concepts.html
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.uddi.org/

Proposal for:
Business Process Model and Notation (BPMN), v2.0 36

URI

Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, IETF
RFC 2396, August 1998
http://www.ietf.org/rfc/rfc2396.txt

WfMC Glossary

Workflow Management Coalition Terminology and Glossary.
http://www.wfmc.org/standards/docs.htm

Web Services Transaction

(WS-Transaction) 1.1, OASIS, 12 July 2007,
http://www.oasis-open.org/committees/ws-tx/

Workflow Patterns

Russell, N., ter Hofstede, A.H.M., van der Aalst W.M.P, & Mulyar, N. (2006). Workflow Control-Flow
Patterns: A Revised View. BPM Center Report BPM-06-22, BPMcentre.org
http://www.workflowpatterns.com/

WSBPEL

Web Services Business Process Execution Language (WSBPEL) 2.0, OASIS Standard, April 2007
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

WS-Coordination

Web Services Coordination (WS-Coordination) 1.1, OASIS Standard, July 2007
http://www.oasis-open.org/committees/ws-tx/

WSDL

Web Services Description Language (WSDL) 2.0, W3C Proposed Recommendation, June 2007
http://www.w3.org/TR/wsdl20/

WS-HumanTask

Web Services Human Task (WS-HumanTask) 1.0, June 2007
http://www.active-endpoints.com/active-bpel-for-people.htm

http://www.adobe.com/devnet/livecycle/articles/bpel4people_overview.html

http://dev2dev.bea.com/arch2arch/

http://www-128.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/

http://www.oracle.com/technology/tech/standards/bpel4people/

https://www.sdn.sap.com/irj/sdn/bpel4people

XML 1.0 (Second Edition)

Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et al., eds., W3C, 6 October 2000
http://www.w3.org/TR/REC-xml

http://www.ietf.org/rfc/rfc2396.txt
http://www.wfmc.org/standards/docs.htm
http://www.oasis-open.org/committees/ws-tx/
http://www.workflowpatterns.com/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.oasis-open.org/committees/ws-tx/
http://www.active-endpoints.com/active-bpel-for-people.htm
http://www.adobe.com/devnet/livecycle/articles/bpel4people_overview.html
http://dev2dev.bea.com/arch2arch/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/
http://www.oracle.com/technology/tech/standards/bpel4people/
https://www.sdn.sap.com/irj/sdn/bpel4people
http://www.w3.org/TR/REC-xml

Proposal for:
37 Business Process Model and Notation (BPMN), v2.0

XML-Namespaces

Namespaces in XML, Tim Bray et al., eds., W3C, 14 January 1999
http://www.w3.org/TR/REC-xml-names

XML-Schema

XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah
Mendelsohn, W3C, 2 May 2001
http://www.w3.org/TR/xmlschema-1//

XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001
http://www.w3.org/TR/xmlschema-2/

XPath

XML Path Language (XPath) 1.0, James Clark and Steve DeRose, eds., W3C, 16 November 1999
http://www.w3.org/TR/xpath

XPDL

Workflow Management Coalition XML Process Definition Language, version 2.0.
http://www.wfmc.org/standards/docs.htm

4. Terms and Definitions

See Annex D - Glossary.

5. Symbols

There are no symbols defined in this specification.

6. Additional Information

6.1. Conventions
The section introduces the conventions used in this document. This includes (text) notational conventions and
notations for schema components. Also included are designated namespace definitions.

6.2. Typographical and Linguistic Conventions and Style
This specification incorporates the following conventions:

The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “MUST NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this document are to be
interpreted as described in RFC-2119.

http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xmlschema-1//
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath
http://www.wfmc.org/standards/docs.htm

Proposal for:
Business Process Model and Notation (BPMN), v2.0 38

A term is a word or phrase that has a special meaning. When a term is defined, the term name is
highlighted in bold typeface.

A reference to another definition, section, or specification is highlighted with underlined typeface and
provides a link to the relevant location in this specification.

A reference to a graphical element is highlighted with a capitalized word and will be presented with the
Verdana font (e.g., Sub-Process).

A reference to a non-graphical element or BPMN construct is highlighted by being italicized and will be
presented with the Times New Roman font (e.g., Participant).

A reference to an attribute or model association will be presented with the Courier New font (e.g.,
Expression).

A reference to a WSBPEL element, attribute, or construct is highlighted with an italic lower-case word,
usually preceded by the word “WSBPEL” and will be presented with the Courier New font (e.g.,
WSBPEL pick).

Non-normative examples are set off in boxes and accompanied by a brief explanation.

XML and pseudo code is highlighted with mono-spaced typeface. Different font colors may be used
to highlight the different components of the XML code.

The cardinality of any content part is specified using the following operators:
o <none> — exactly once
o [0..1] — 0 or 1
o [0..*] — 0 or more
o [1..*] — 1 or more

Attributes separated by | and grouped within { and } — alternative values
o <value> — default value
o <type> — the type of the attribute

6.3. Abbreviations
The following abbreviations may be used throughout this document:

This abbreviation Refers to

WSBPEL Web Services Business Process Execution Language (see WSBPEL). This
abbreviation refers specifically to version 2.0 of the specification.

WSDL Web Service Description Language (see WSDL). This abbreviation refers
specifically to the W3C Technical Note, 15 March 2001, but is intended to support
future versions of the WSDL specification

Proposal for:
39 Business Process Model and Notation (BPMN), v2.0

6.4. Structure of this Document
Section 7 discusses the scope of the specification and provides a summary of the elements introduced in
subsequent sections of the document.

Section 8 introduces the BPMN Core that includes basic BPMN elements required for constructing various
Business Processes, including collaborations, orchestration Processes and Choreographies.

Elements needed for modeling of Collaborations, orchestration Processes, Conversations, and
Choreographies are introduced in sections 9, 10, 11 and 12, respectively.

Section 13 introduces the BPMN visual diagram model. Section 14 defines the execution semantics for
Process orchestrations in BPMN 2.0. Section 15 discusses a mapping of a BPMN model to WS-BPEL that is
derived by analyzing the BPMN objects and the relationships between these objects. Exchange formats and an
XSLT transformation between them are provided in section 16.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 40

7. Overview

There has been much activity in the past few years in developing web service-based XML execution languages
for Business Process Management (BPM) systems. Languages such as WSBPEL provide a formal mechanism
for the definition of business processes. The key element of such languages is that they are optimized for the
operation and inter-operation of BPM Systems. The optimization of these languages for software operations
renders them less suited for direct use by humans to design, manage, and monitor Business Processes.
WSBPEL has both graph and block structures and utilizes the principles of formal mathematical models, such as
pi-calculus1. This technical underpinning provides the foundation for business process execution to handle the
complex nature of both internal and B2B interactions and take advantage of the benefits of Web services. Given
the nature of WSBPEL, a complex Business Process could be organized in a potentially complex, disjointed,
and unintuitive format that is handled very well by a software system (or a computer programmer), but would be
hard to understand by the business analysts and managers tasked to develop, manage, and monitor the Process.
Thus, there is a human level of “inter-operability” or “portability” that is not addressed by these web
service-based XML execution languages.

Business people are very comfortable with visualizing Business Processes in a flow-chart format. There are
thousands of business analysts studying the way companies work and defining Business Processes with
simple flow charts. This creates a technical gap between the format of the initial design of Business
Processes and the format of the languages, such as WSBPEL, that will execute these Business Processes.
This gap needs to be bridged with a formal mechanism that maps the appropriate visualization of the Business
Processes (a notation) to the appropriate execution format (a BPM execution language) for these Business
Processes.

Inter-operation of Business Processes at the human level, rather than the software engine level, can be
solved with standardization of the Business Process Modeling Notation (BPMN). BPMN provides a multiple
diagrams, which are designed for use by the people who design and manage Business Processes. BPMN
also provides a mapping to an execution language of BPM Systems (WSBPEL). Thus, BPMN would provide a
standard visualization mechanism for Business Processes defined in an execution optimized business
process language.

BPMN provides businesses with the capability of understanding their internal business procedures in a graphical
notation and will give organizations the ability to communicate these procedures in a standard manner. Currently,
there are scores of Process modeling tools and methodologies. Given that individuals will move from one
company to another and that companies will merge and diverge, it is likely that business analysts are required to
understand multiple representations of Business Processes—potentially different representations of the
same Process as it moves through its lifecycle of development, implementation, execution, monitoring, and
analysis. Therefore, a standard graphical notation will facilitate the understanding of the performance
Collaborations and business transactions within and between the organizations. This will ensure that
businesses will understand themselves and participants in their business and will enable organizations to adjust
to new internal and B2B business circumstances quickly. BPMN follows the tradition of flowcharting notations
for readability and flexibility. In addition, the BPMN execution semantics is fully formalized. The OMG is using
the experience of the business process notations that have preceded BPMN to create the next generation notation
that combines readability, flexibility, and expandability.

1 See Milner, 1999, “Communicating and Mobile Systems: the -Calculus,” Cambridge University Press. ISBN 0 521 64320 1 (hc.)
ISBN 0 521 65869 1 (pbk.)

Proposal for:
41 Business Process Model and Notation (BPMN), v2.0

BPMN will also advance the capabilities of traditional business process notations by inherently handling B2B
Business Process concepts, such as public and private Processes and Choreographies, as well as
advanced modeling concepts, such as exception handling, transactions, and compensation.

7.1. BPMN Scope
This specification provides a notation and model for Business Processes and an interchange format that can
be used to exchange BPMN Process definitions (both domain model and diagram layout) between different
tools. The goal of the specification is to enable portability of Process definitions, so that users can take
Process definitions created in one vendor’s environment and use them is another vendor’s environment.

The BPMN 2.0 specification extends the scope and capabilities of the BPMN 1.2 in several areas:

Formalizes the execution semantics for all BPMN elements

Defines an extensibility mechanism for both Process model extensions and graphical extensions

Refines Event composition and correlation

Extends the definition of human interactions

Defines a Choreography model

This specification also resolves known BPMN 1.2 inconsistencies and ambiguities.

BPMN is constrained to support only the concepts of modeling that are applicable to Business Processes.
This means that other types of modeling done by organizations for business purposes is out of scope for BPMN.
Therefore, the following are aspects that are out of the scope of this specification:

Definition of organizational models and resources

Modeling of functional breakdowns

Data and information models

Modeling of strategy

Business rules models

Since these types of high-level modeling either directly or indirectly affects Business Processes, the
relationships between BPMN and other high-level business modeling can be defined more formally as BPMN
and other specifications are advanced.

While BPMN shows the flow of data (Messages), and the association of data artifacts to Activities, it is not a
data flow language. In addition, operational simulation, monitoring and deployment of Business Processes
are out of scope of this specification.

BPMN 2.0 may be mapped to more than one platform dependent process modeling language, e.g. WS-BPEL
2.0. This document includes a mapping of a subset of BPMN to WS-BPEL 2.0. Mappings to other emerging
standards are considered to be separate efforts.

The specification utilizes other standards for defining data types, expressions and service operations. These
standards are XML Schema, XPath, and WSDL, respectively.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 42

7.1.1. Uses of BPMN
Business Process modeling is used to communicate a wide variety of information to a wide variety of
audiences. BPMN is designed to cover many types of modeling and allows the creation of end-to-end Business
Processes. The structural elements of BPMN allow the viewer to be able to easily differentiate between
sections of a BPMN Diagram. There are three basic types of sub-models within an end-to-end BPMN model:

Processes (Orchestration), including:

o Private Non-executable (internal) Business Processes

o Private Executable (internal) Business Processes

o Public Processes

Choreographies

Collaborations, which may include Processes and/or Choreographies

o A view of Conversations

Private (Internal) Business Processes

Private Business Processes are those internal to a specific organization. These Processes have been
generally called workflow or BPM Processes (see Figure 10-4). Another synonym typically used in the Web
services area is the Orchestration of services. There are two (2) types of private Processes: executable and
non-executable. An executable Process is a Process that has been modeled for the purpose of being executed
according to the semantics defined in Chapter 14 (see page 426). Of course, during the development cycle of the
Process, there will be stages where the Process does not have enough detail to be “executable.” A
non-executable Process is a private Process that has been modeled for the purpose of documenting Process
behavior at a modeler-defined level of detail. Thus, information required for execution, such as formal condition
expressions are typically not included in a non-executable Process.

If a swimlanes-like notation is used (e.g., a Collaboration, see below) then a private Business Process will
be contained within a single Pool. The Process flow is therefore contained within the Pool and cannot cross
the boundaries of the Pool. The flow of Messages can cross the Pool boundary to show the interactions that
exist between separate private Business Processes.

Figure 7-1 – Example of a private Business Process

Public Processes

A public Process represents the interactions between a private Business Process and another Process or
Participant (see Figure 10-5). Only those Activities that are used to communicate to the other Participant(s)
are included in the public Process. All other “internal” Activities of the private Business Process are not
shown in the public Process. Thus, the public Process shows to the outside world the Message Flow and
the order of those Message Flow that are required to interact with that Process. Public Processes can be

Proposal for:
43 Business Process Model and Notation (BPMN), v2.0

modeled separately or within a Collaboration to show the flow of Messages between the public Process
Activities and other Participants. Note that the public type of Process was named “abstract” in BPMN 1.2.

Figure 7-2 – Example of a public Process

Collaborations

A Collaboration depicts the interactions between two or more business entities. A Collaboration contains
two (2) or more Pools, representing the Participants in the Collaboration. The Message exchange between
the Participants is shown by a Message Flow that connects two (2) Pools (or the objects within the Pools).
The Messages associated with the Message Flow may also be shown. The Collaboration can be shown as
two or more public Processes communicating with each other (see Figure 7-3). With a public Process, the
Activities for the Collaboration participants can be considered the “touch-points” between the participants.
The corresponding internal (executable) Processes are likely to have much more Activity and detail than
what is shown in the public Processes. Or a Pool may be empty, a “black box.” Choreographies may be
shown “in between” the Pools as they bisect the Message Flow between the Pools. All combinations of
Pools, Processes, and a Choreography are allowed in a Collaboration.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 44

Figure 7-3 – An example of a Collaborative Process

Choreographies

A self-contained Choreography (no Pools or Orchestration) is a definition of the expected behavior,
basically a procedural contract, between interacting Participants. While a normal Process exists within a Pool,
a Choreography exists between Pools (or Participants).

The Choreography looks similar to a private Business Process since it consists of a network of
Activities, Events, and Gateways (see Figure 7-4). However, a Choreography is different in that the
Activities are interactions that represent a set (1 or more) of Message exchanges, which involves two (2) or
more Participants. In addition, unlike a normal Process, there is no central controller, responsible entity or
observer of the Process.

Figure 7-4 – An example of a Choreography

Conversations

The Conversation diagram is similar to a Collaboration diagram. However, the Pools of a
Conversation are not allowed to contain a Process and a Choreography is not allowed to be placed in
between the Pools of a Conversation diagram. A Conversation is the logical relation of Message

Proposal for:
45 Business Process Model and Notation (BPMN), v2.0

exchanges. The logical relation, in practice, often concerns a business object(s) of interest, e.g. “Order,”
“Shipment and Delivery,” or “Invoice.”

Message exchanges are related to each other and reflect distinct business scenarios. For example, in logistics,
stock replenishments involve the following types scenarios: creation of sales orders; assignment of carriers for
shipments combining different sales orders; crossing customs/quarantine; processing payment and investigating
exceptions. Thus, a Conversation diagram, as shown in Figure 7-5, shows Communications (as
hexagons) between Participants (Pools). This provides a “bird’s eye” perspective of the different
Conversations which relate to the domain.

Delivery / Dispatch
Plan

Delivery
Negotiations

Shipment Schedule

Delivery / Dispatch
Plan

Delivery / Dispatch
Plan

SupplierRetailer

Consignee

Consolidator

Customs/
Quarantine

Shipper

Insurance

Carrier
(Land, Sea, Rail, or Air)

Breakdown
Service Locative Service

Carrier Planning

Coverage
Notification

Clearance Pre-
Notification

Truck Breakdown
Provision

Arrival/Pickup
Confirmation

Traffic Optimization
Guidance

Figure 7-5 – An example of a Conversation diagram

Diagram Point of View

Since a BPMN Diagram may depict the Processes of different Participants, each Participant may view the
Diagram differently. That is, the Participants have different points of view regarding how the Processes will
apply to them. Some of the Activities will be internal to the Participant (meaning performed by or under control

Proposal for:
Business Process Model and Notation (BPMN), v2.0 46

of the Participant) and other Activities will be external to the Participant. Each Participant will have a different
perspective as to which are internal and external. At runtime, the difference between internal and external
Activities is important in how a Participant can view the status of the Activities or trouble-shoot any problems.
However, the Diagram itself remains the same. Figure 7-3, above, displays a Business Process that has two
points of view. One point of view is of a Patient, the other is of the Doctor’s office. The Diagram shows the
Activities of both participants in the Process, but when the Process is actually being performed, each
Participant will only have control over their own Activities. Although the Diagram point of view is important
for a viewer of the Diagram to understand how the behavior of the Process will relate to that viewer, BPMN
will not currently specify any graphical mechanisms to highlight the point of view. It is open to the modeler or
modeling tool vendor to provide any visual cues to emphasize this characteristic of a Diagram.

Understanding the Behavior of Diagrams

Throughout this document, we discuss how Sequence Flow is used within a Process. To facilitate this
discussion, we employ the concept of a token that will traverse the Sequence Flow and pass through the
elements in the Process. A token is a theoretical concept that is used as an aid to define the behavior of a
Process that is being performed. The behavior of Process elements can be defined by describing how they
interact with a token as it “traverses” the structure of the Process. However, modeling and execution tools that
implement BPMN are not required to implement any form of token.

A Start Event generates a token that must eventually be consumed at an End Event (which may be implicit
if not graphically displayed). The path of tokens should be traceable through the network of Sequence Flow,
Gateways, and Activities within a Process.

Note: A token does not traverse the Message Flow since it is a Message that is passed down a Message
Flow (as the name implies).

7.2. BPMN Elements
It should be emphasized that one of the drivers for the development of BPMN is to create a simple and
understandable mechanism for creating Business Process models, while at the same time being able to
handle the complexity inherent to Business Processes. The approach taken to handle these two conflicting
requirements was to organize the graphical aspects of the notation into specific categories. This provides a small
set of notation categories so that the reader of a BPMN diagram can easily recognize the basic types of elements
and understand the diagram. Within the basic categories of elements, additional variation and information can be
added to support the requirements for complexity without dramatically changing the basic look and feel of the
diagram. The five (5) basic categories of elements are:

Flow Objects

Data

Connecting Objects

Swimlanes

Artifacts

Flow Objects are the main graphical elements to define the behavior of a Business Process. There are three
(3) Flow Objects:

Proposal for:
47 Business Process Model and Notation (BPMN), v2.0

Events

Activities

Gateways

Data is represented with the five (5) elements:

Data Objects

Data Inputs

Data Outputs

Data Stores

Properties

There are four (4) ways of connecting the Flow Objects to each other or other information. There are four (4)
Connecting Objects:

Sequence Flow

Message Flow

Association

Data Association

There are two (2) ways of grouping the primary modeling elements through “Swimlanes:”

Pools

Lanes

Artifacts are used to provide additional information about the Process. There are two (2) standardized
Artifacts, but modelers or modeling tools are free to add as many Artifacts as required. There may be
additional BPMN efforts to standardize a larger set of Artifacts for general use or for vertical markets. The
current set of Artifacts includes:

Group

Text Annotation

Proposal for:
Business Process Model and Notation (BPMN), v2.0 48

7.2.1. Basic BPMN Modeling Elements
Table 7-1 displays a list of the basic modeling elements that are depicted by the notation.

Table 7-1 - Basic Modeling Elements

Element Description Notation

Event An Event is something that “happens” during
the course of a Process (see page 239) or a
Choreography (see page 369). These
Events affect the flow of the model and
usually have a cause (trigger) or an impact
(result). Events are circles with open centers
to allow internal markers to differentiate
different triggers or results. There are three
types of Events, based on when they affect
the flow: Start, Intermediate, and End.

Activity An Activity is a generic term for work that
company performs (see page 159) in
Process. An Activity can be atomic or
non-atomic (compound). The types of
Activities that are a part of a Process Model
are: Sub-Process and Task, which are
rounded rectangles. Activities are used in
both standard Processes and in
Choreographies.

Gateway A Gateway is used to control the divergence
and convergence of Sequence Flow in a
Process (see page 295) and in a
Choreography (see page 375). Thus, it will
determine branching, forking, merging, and
joining of paths. Internal markers will indicate
the type of behavior control.

Sequence Flow A Sequence Flow is used to show the order
that Activities will be performed in a Process
(see page 129) and in a Choreography (see
page 348).

Proposal for:
49 Business Process Model and Notation (BPMN), v2.0

Message Flow A Message Flow is used to show the flow of
Messages between two Participants that are
prepared to send and receive them (see page
119). In BPMN, two separate Pools in a
Collaboration Diagram will represent the two
Participants (e.g., PartnerEntities and/or
PartnerRoles).

Association An Association is used to link information
and Artifacts with BPMN graphical elements
(see page 88). Text Annotations (see page
93) and other Artifacts (see page 86) can be
Associated with the graphical elements. An
arrowhead on the Association indicates a
direction of flow (e.g., data), when
appropriate.

Pool A Pool is the graphical representation of a
Participant in a Collaboration (see page
146). It is also acts as a “swimlane” and a
graphical container for partitioning a set of
Activities from other Pools, usually in the
context of B2B situations.

Lane A Lane is a sub-partition within a Process,
sometimes within a Pool, and will extend the
entire length of the Process, either vertically
or horizontally (see on page 149). Lanes are
used to organize and categorize Activities.

Data Object Data Objects provide information about what
Activities require to be performed and/or
what they produce (see page 213), Data
Objects can represent a singular object or a
collection of objects. Data Input and Data
Output provide the same information for
Processes.

Message A Message is used to depict the contents of a
communication between two Participants (as
defined by a business PartnerRole or a
business PartnerEntity—see on page
112).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 50

Group (a box
around a group of
objects within the
same category)

A Group is a grouping of Activities that are
within the same Category (see page 89).
This type of grouping does not affect the
Sequence Flow of the Activities within the
Group. The Category name appears on the
diagram as the group label. Categories can
be used for documentation or analysis
purposes. Groups are one way in which
Categories of objects can be visually
displayed on the diagram.

Text Annotation
(attached with an
Association)

Text Annotations are a mechanism for a
modeler to provide additional text information
for the reader of a BPMN Diagram (see page
92).

Proposal for:
51 Business Process Model and Notation (BPMN), v2.0

7.2.2. Extended BPMN Modeling Elements
Table 7-2 displays a more extensive list of the Business Process concepts that could be depicted through a
business process modeling notation.

Table 7-2 – BPMN Extended Modeling Elements

Element Description Notation

Event An Event is something that “happens”
during the course of a Process (see page
239) or a Choreography (see page 369).
These Events affect the flow of the model
and usually have a cause (Trigger) or an
impact (Result). Events are circles with
open centers to allow internal markers to
differentiate different Triggers or Results.
There are three types of Events, based
on when they affect the flow: Start,
Intermediate, and End.

Flow Dimension (e.g.,
Start, Intermediate,
End)

Start

Intermediate

End

As the name implies, the Start Event
indicates where a particular Process (see
page 244) or Choreography (see page
369) will start.

Intermediate Events occur between a
Start Event and an End Event. They
will affect the flow of the Process (see
page 256) or Choreography (see page
371), but will not start or (directly)
terminate the Process.

As the name implies, the End Event
indicates where a Process (see page
252) or Choreography (see page 374) will
end.

Start

Intermediate

End

Proposal for:
Business Process Model and Notation (BPMN), v2.0 52

Type Dimension (e.g.,
None, Message,
Timer, Error, Cancel,
Compensation,
Conditional, Link,
Signal, Multiple,
Terminate.)

The Start and some Intermediate
Events have “triggers” that define the
cause for the Event (see “Start Event” on
page 244 and “Intermediate Event” on
page 256). There are multiple ways that
these events can be triggered. End
Events may define a “result” that is a
consequence of a Sequence Flow
ending (see 252). Start Events can only
react to (“catch”) a trigger. End Events
can only create (“throw”) a result.
Intermediate Events can catch or
throw triggers. For the Events, triggers
that catch, the markers are unfilled, and
for triggers and results that throw, the
markers are filled.

Additionally, some Events, which were
used to interrupt Activities in BPMN 1.1,
can now be used in a mode that is does
not interrupt. The boundary of these
Event is dashed (see page 268).

Activity An Activity is a generic term for work that
company performs (see page 159) in
Process. An Activity can be atomic or
non-atomic (compound). The types of
Activities that are a part of a Process
Model are: Sub-Process and Task,
which are rounded rectangles. Activities
are used in both standard Processes and
in Choreographies.

Task (Atomic) A Task is an atomic Activity that is
included within a Process (see
page 162). A Task is used when the work
in the Process is not broken down to a
finer level of Process detail.

Proposal for:
53 Business Process Model and Notation (BPMN), v2.0

Choreography Task A Choreography Task is an atomic
Activity in a Choreography (see page
350). It represents a set of one (1) or
more Message exchanges. Each
Choreography Task involves two (2) or
more Participants. The name of the
Choreography Task and each of the
Participants are all displayed in the
different bands that make up the shape’s
graphical notation. There are two (2)
more Participant Bands and one Task
Name Band.

Process/Sub-Process
(non-atomic)

A Sub-Process is a compound Activity
that is included within a Process (see
page 176) or Choreography (see page
356). It is compound in that it can be
broken down into a finer level of detail (a
Process or Choreography) through a
set of sub-Activities.

See Next Four (4) Figures

Collapsed
Sub-Process

The details of the Sub-Process are not
visible in the Diagram (see page 176). A
“plus” sign in the lower-center of the
shape indicates that the Activity is a
Sub-Process and has a lower-level of
detail.

Expanded
Sub-Process

The boundary of the Sub-Process is
expanded and the details (a Process) are
visible within its boundary (see page 176).

Note that Sequence Flow cannot cross
the boundary of a Sub-Process.

Collapsed
Choreography
Sub-Process

The details of the Choreography
Sub-Process are not visible in the
Diagram (see page 356). A “plus” sign in
the lower-center of the Task Name
Band of the shape indicates that the
Activity is a Sub-Process and has a
lower-level of detail.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 54

Expanded
Choreography
Sub-Process

The boundary of the Choreography
Sub-Process is expanded and the
details (a Choreography) are visible
within its boundary (see page 356)

Note that Sequence Flow cannot cross
the boundary of a Choreography
Sub-Process.

Gateway A Gateway is used to control the
divergence and convergence of
Sequence Flow in a Process (see page
295) and in a Choreography (see page
375). Thus, it will determine branching,
forking, merging, and joining of paths.
Internal markers will indicate the type of
behavior control (see below).

Gateway Control
Types

Icons within the diamond shape of the
Gateway will indicate the type of flow
control behavior. The types of control
include:

 Exclusive decision and merging. Both
Exclusive (see page 298) and
Event-Based (see page 307).
Exclusive can be shown with or
without the “X” marker.
Inclusive Gateway decision and
merging (see page 300)
Complex Gateway -- complex
conditions and situations (e.g., 3 out
of 5; page 304)
Parallel Gateway forking and
joining (see page 302)

Each type of control affects both the
incoming and outgoing flow.

Parallel

Exclusive

Complex

Event-Based

Inclusive

Xor

Sequence Flow A Sequence Flow is used to show the
order that Activities will be performed in
a Process (see page 159) and in a
Choreography (see page 348).

See next seven figures

Proposal for:
55 Business Process Model and Notation (BPMN), v2.0

Normal Flow Normal flow refers to the series of
Sequence Flow that originates from a
Start Event and continues through
activities via alternative and parallel paths
until it ends at an End Event. This does
not include the paths that start from an
Intermediate Event attached to the
boundary of an Activity.

Uncontrolled flow Uncontrolled flow refers to flow that is not
affected by any conditions or does not
pass through a Gateway. The simplest
example of this is a single Sequence
Flow connecting two Activities. This can
also apply to multiple Sequence Flow
that converge to or diverge from an
Activity. For each uncontrolled
Sequence Flow a token will flow from
the source object through the Sequence
Flow to the target object.

Conditional flow Sequence Flow can have condition
Expressions that are evaluated at
runtime to determine whether or not the
Sequence Flow will be used (i.e., will a
token travel down the Sequence Flow –
see page 109). If the conditional flow is
outgoing from an Activity, then the
Sequence Flow will have a
mini-diamond at the beginning of the
connector (see figure to the right). If the
conditional flow is outgoing from a
Gateway, then the line will not have a
mini-diamond (see figure in the row
above).

Default flow For Data-Based Exclusive Gateways
or Inclusive Gateways, one type of flow
is the Default condition flow (see page
109). This flow will be used only if all the
other outgoing conditional flow is not true
at runtime. These Sequence Flow will
have a diagonal slash will be added to the
beginning of the connector (see the figure
to the right).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 56

Exception Flow Exception flow occurs outside the normal
flow of the Process and is based upon an
Intermediate Event attached to the
boundary of an Activity that occurs
during the performance of the Process
(see page 285).

Exception
Flow

Message Flow A Message Flow is used to show the
flow of Messages between two
Participants that are prepared to send
and receive them (see page 119). In
BPMN, two separate Pools in a
Collaboration Diagram will represent the
two Participants (e.g.,
PartnerEntities and/or
PartnerRoles).

Compensation
Association

Compensation Association occurs
outside the normal flow of the Process
and is based upon a Compensation
Intermediate Event that is triggered
through the failure of a transaction or a
throw Compensate Event (see page
270). The target of the Association must
be marked as a Compensation
Activity.

Do

Compensation
Association Undo

Proposal for:
57 Business Process Model and Notation (BPMN), v2.0

Data Object Data Objects provide information about
what Activities require to be performed
and/or what they produce (see page 213),
Data Objects can represent a singular
object or a collection of objects. Data
Input and Data Output provide the
same information for Processes. Collection

Data Input Data Output

Message A Message is used to depict the contents
of a communication between two
Participants (as defined by a business
PartnerRole or a business
PartnerEntity—see on page 112).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 58

Fork BPMN uses the term “fork” to refer to the
dividing of a path into two or more parallel
paths (also known as an AND-Split). It is a
place in the Process where activities can
be performed concurrently, rather than
sequentially.

There are two options:

Multiple Outgoing Sequence Flow can be
used (see figure top-right). This
represents “uncontrolled” flow is the
preferred method for most situations.

A Parallel Gateway can be used (see
figure bottom-right). This will be used
rarely, usually in combination with other
Gateways.

Join BPMN uses the term “join” to refer to the
combining of two or more parallel paths
into one path (also known as an AND-Join
or synchronization).

A Parallel Gateway is used to show the
joining of multiple Sequence Flow.

Decision, Branching
Point

Decisions are Gateways within a Process
(see page 295) or a Choreography (see
page 375) where the flow of control can
take one or more alternative paths.

See next five rows.

Exclusive This Decision represents a branching
point where Alternatives are based on
conditional expressions contained within
the outgoing Sequence Flow (see page
298 or page 375). Only one of the
Alternatives will be chosen.

Proposal for:
59 Business Process Model and Notation (BPMN), v2.0

Event-Based This Decision represents a branching
point where Alternatives are based on an
Event that occurs at that point in the
Process (see page 307) or Choreography
(see page 375). The specific Event,
usually the receipt of a Message,
determines which of the paths will be
taken. Other types of Events can be used,
such as Timer. Only one of the
Alternatives will be chosen.

There are two options for receiving
Messages:

Tasks of Type Receive can be used (see
figure top-right).

Intermediate Events of Type Message
can be used (see figure bottom-right).

[Type Receive]

[Type Receive]

Inclusive This Decision represents a branching
point where Alternatives are based on
conditional expressions contained within
the outgoing Sequence Flow (see page
300).

In some sense it is a grouping of related
independent Binary (Yes/No) Decisions.
Since each path is independent, all
combinations of the paths may be taken,
from zero to all. However, it should be
designed so that at least one path is
taken. A Default Condition could be used
to ensure that at least one path is taken.

There are two versions of this type of
Decision:

The first uses a collection of conditional
Sequence Flow, marked with
mini-diamonds (see top-right figure).

The second uses an Inclusive Gateway
(see bottom-right picture).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 60

Merging BPMN uses the term “merge” to refer to
the exclusive combining of two or more
paths into one path (also known as an
OR-Join).

A Merging Exclusive Gateway is used to
show the merging of multiple Sequence
Flow.

If all the incoming flow is alternative, then
a Gateway is not needed. That is,
uncontrolled flow provides the same
behavior.

Looping BPMN provides 2 (two) mechanisms for
looping within a Process. See Next Two Figures

Activity Looping The attributes of Tasks and
Sub-Processes will determine if they are
repeated or performed once (see page
198). There are two types of loops:
Standard and Multi-Instance. A small
looping indicator will be displayed at the
bottom-center of the activity.

Sequence Flow
Looping

Loops can be created by connecting a
Sequence Flow to an “upstream” object.
An object is considered to be upstream if
that object has an outgoing Sequence
Flow that leads to a series of other
Sequence Flow, the last of which is an
incoming Sequence Flow for the original
object.

Multiple Instances The attributes of Tasks and
Sub-Processes will determine if they are
repeated or performed once (see page
198). A small parallel indicator will be
displayed at the bottom-center of the
activity.

Proposal for:
61 Business Process Model and Notation (BPMN), v2.0

Process Break
(something out of the
control of the process
makes the process
pause)

A Process Break is a location in the
Process that shows where an expected
delay will occur within a Process (see
page 256). An Intermediate Event is used
to show the actual behavior (see top-right
figure). In addition, a Process Break
Artifact, as designed by a modeler or
modeling tool, can be associated with the
Event to highlight the location of the delay
within the flow.

Transaction A transaction is a Sub-Process that is
supported by a special protocol that
insures that all parties involved have
complete agreement that the activity
should be completed or cancelled (see
page 188). The attributes of the activity
will determine if the activity is a
transaction. A double-lined boundary
indicates that the Sub-Process is a
Transaction.

Nested/Embedded
Sub-Process (Inline
Block)

A nested (or embedded) Sub-Process is
an activity that shares the same set of
data as its parent process (see page
176). This is opposed to a Sub-Process
that is independent, re-usable, and
referenced from the parent process. Data
needs to be passed to the referenced
Sub-Process, but not to the nested
Sub-Process.

There is no special indicator for nested
Sub-Processes

Group (a box around a
group of objects within
the same category)

A Group is a grouping of Activities that
are within the same Category (see page
89). This type of grouping does not affect
the Sequence Flow of the Activities
within the Group. The Category name
appears on the diagram as the group
label. Categories can be used for
documentation or analysis purposes.
Groups are one way in which Categories
of objects can be visually displayed on the
diagram.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 62

Off-Page Connector Generally used for printing, this object will
show where the Sequence Flow leaves
one page and then restarts on the next
page. A Link Intermediate Event can be
used as an Off-Page Connector.

Association An Association is used to link
information and Artifacts with BPMN
graphical elements (see page 88). Text
Annotations (see page 93) and other
Artifacts (see page 86) can be
Associated with the graphical elements.
An arrowhead on the Association
indicates a direction of flow (e.g., data),
when appropriate.

Text Annotation
(attached with an
Association)

Text Annotations are a mechanism for
a modeler to provide additional text
information for the reader of a BPMN
Diagram (see page 92).

Pool A Pool is the graphical representation of a
Participant in a Collaboration (see page
146). It is also acts as a “swimlane” and a
graphical container for partitioning a set of
Activities from other Pools, usually in
the context of B2B situations.

Lanes A Lane is a sub-partition within a Pool
and will extend the entire length of the
Pool, either vertically or horizontally (see
on page 149). Lanes are used to
organize and categorize Activities.

Proposal for:
63 Business Process Model and Notation (BPMN), v2.0

7.3. BPMN Diagram Types
The BPMN 2.0 aims to cover three basic models of Processes: private Processes (both executable and
non-executable), public Processes, and Choreographies. Within and between these three BPMN
sub-models, many types of Diagrams can be created. The following are examples of Business Processes
that can be modeled using BPMN 2.0:

High-level non-executable Process Activities (not functional breakdown)

Detailed executable Business Process

As-is or old Business Process

To-be or new Business Process

A description of expected behavior between two (2) or more business Participants—a
Choreography.

Detailed private Business Process (either executable or non-executable) with interactions to one or
more external Entities (or “Black Box” Processes)

Two or more detailed executable Processes interacting

Detailed executable Business Process relationship to a Choreography

Two or more public Processes

Public Process relationship to Choreography

Two or more detailed executable Business Processes interacting through a Choreography

BPMN is designed to allow describing all above examples of Business Processes. However, the ways that
different sub-models are combined is left to tool vendors. A BPMN 2.0 compliant implementation may
recommend that modelers pick a focused purpose, such as a private Process, or Choreographies. However,
the BPMN 2.0 specification makes no assumptions.

7.4. Use of Text, Color, Size, and Lines in a Diagram
Text Annotation objects can be used by the modeler to display additional information about a Process or
attributes of the objects within a BPMN Diagram.

Flow objects and Flow MAY have labels (e.g., its name and/or other attributes) placed inside the
shape, or above or below the shape, in any direction or location, depending on the preference of the
modeler or modeling tool vendor.

The fills that are used for the graphical elements MAY be white or clear.

The notation MAY be extended to use other fill colors to suit the purpose of the modeler or tool
(e.g., to highlight the value of an object attribute). However,

The markers for “throwing” Events MUST have a dark fill (see “End Event” on page
252 and “Intermediate Event” on page 256 for more details).

Participant Bands for Choreography Tasks and Choreography Sub-Processes
that are not the initiator of the Activity MUST have a light fill (see “Choreography Task”

Proposal for:
Business Process Model and Notation (BPMN), v2.0 64

on page 350 and “Choreography Sub-Process” on page 356 for more details).

Flow objects and markers MAY be of any size that suits the purposes of the modeler or modeling tool.

The lines that are used to draw the graphical elements MAY be black.

The notation MAY be extended to use other line colors to suit the purpose of the modeler or tool
(e.g., to highlight the value of an object attribute).

The notation MAY be extended to use other line styles to suit the purpose of the modeler or tool
(e.g., to highlight the value of an object attribute) with the condition that the line style MUST
NOT conflict with any current BPMN defined line style. Thus, the line styles of Sequence
Flow, Message Flow, and Text Associations MUST NOT be modified or duplicated.

7.5. Flow Object Connection Rules
An incoming Sequence Flow can connect to any location on a Flow Object (left, right, top, or bottom).
Likewise, an outgoing Sequence Flow can connect from any location on a Flow Object (left, right, top, or
bottom). A Message Flow also has this capability. BPMN allows this flexibility; however, we also
recommend that modelers use judgment or best practices in how Flow Objects should be connected so that
readers of the Diagrams will find the behavior clear and easy to follow. This is even more important when a
Diagram contains Sequence Flow and Message Flow. In these situations it is best to pick a direction of
Sequence Flow, either left to right or top to bottom, and then direct the Message Flow at a 90° angle to the
Sequence Flow. The resulting Diagrams will be much easier to understand.

7.5.1. Sequence Flow Connections Rules
Table 8.4 displays the BPMN Flow Objects and shows how these objects can connect to one another through
Sequence Flow. These rules apply to the connections within a Process Diagram and within a
Choreography Diagram. The symbol indicates that the object listed in the row can connect to the object
listed in the column. The quantity of connections into and out of an object is subject to various configuration
dependencies are not specified here. Refer to the sections in the next chapter for each individual object for more
detailed information on the appropriate connection rules. Note that if a Sub-Process has been expanded
within a Diagram, the objects within the Sub-Process cannot be connected to objects outside of the
Sub-Process. Nor can Sequence Flow cross a Pool boundary.

Proposal for:
65 Business Process Model and Notation (BPMN), v2.0

Table 7-3 – Sequence Flow Connection Rules

From\To

Note – Only those objects that can have incoming and/or outgoing Sequence Flow are shown in the table.
Thus, Pool, Lane, Data Object, Group, and Text Annotation are not listed in the table. Also, the
Activity shapes in the table represent Activities and Sub-Processes for Processes, and
Choreography Activities and Choreography Sub-Processes for Choreography.

7.5.2. Message Flow Connection Rules
Table 8.5 displays the BPMN modeling objects and shows how these objects can connect to one another through
Message Flow. These rules apply to the connections within a Collaboration Diagram. The symbol
indicates that the object listed in the row can connect to the object listed in the column. The quantity of
connections into and out of an object is subject to various configuration dependencies are not specified here.
Refer to the sections in the next chapter for each individual object for more detailed information on the
appropriate connection rules. Note that Message Flow cannot connect to objects that are within the same
Pool.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 66

Table 7-4 – Message Flow Connection Rules

From\To

Note – Only those objects that can have incoming and/or outgoing Message Flow are shown in the table. Thus,
Lane, Gateway, Data Object, Group, and Text Annotation are not listed in the table.

7.6. BPMN Extensibility
BPMN 2.0 introduces an extensibility mechanism that allows extending standard BPMN elements with
additional attributes. It can be used by modelers and modeling tools to add non-standard elements or Artifacts
to satisfy a specific need, such as the unique requirements of a vertical domain, and still have valid BPMN Core.
Extension attributes must not contradict the semantics of any BPMN element. In addition, while extensible,
BPMN Diagrams should still have the basic look-and-feel so that a Diagram by any modeler should be easily
understood by any viewer of the Diagram. Thus the footprint of the basic flow elements (Events, Activities,
and Gateways) must not be altered.

The specification differentiates between mandatory and optional extensions (Section 8.2.3 explains the syntax
used to declare extensions). If a mandatory extension is used, a compliant implementation must understand the
extension. If an optional extension is used, a compliant implementation may ignore the extension.

7.7. BPMN Example
The following is an example of a manufacturing process from different perspectives.

Proposal for:
67 Business Process Model and Notation (BPMN), v2.0

Figure 7-6 – An example of a Collaboration diagram with black-box Pools

Proposal for:
Business Process Model and Notation (BPMN), v2.0 68

Figure 7-7 – An example of a stand-alone Choreography diagram

Proposal for:
69 Business Process Model and Notation (BPMN), v2.0

Figure 7-8 – An example of a stand-alone Process (Orchestration) diagram

Proposal for:
70 Business Process Model and Notation (BPMN), v2.0

8. BPMN Core Structure

Note: The content of this chapter is required for all BPMN conformance types. For more information about
BPMN conformance types, see page 28.

The proposed technical structuring of BPMN is based on the concept of extensibility layers on top of a basic
series of simple elements identified as Core Elements of the specification. From this core set of constructs,
layering is used to describe additional elements of the specification that extend and add new constructs to the
specification and relies on clear dependency paths for resolution. The XML Schema model lends itself
particularly well to the proposed structuring model with formalized import and resolution mechanics that
remove ambiguities in the definitions of elements in the outer layers of the specification.

In
fra

st
ru

ct
ur

e

Ch
or

eo
gr

ap
hy

Data

Hu
m

an

C
om

m
on

Elem
ents

Process

Figure 8-1 – A representation of the BPMN Core and Layer Structure

Figure 8-1 shows the basic principles of layering that can be composed in well defined ways. The approach uses
formalization constructs for extensibility that are applied consistently to the definition.

The additional effect of layering is that compatibility layers can be built, allowing for different levels of
compliance amongst vendors, and also enabling vendors to add their own layers in support of different vertical
industries or target audiences. In addition, it provides mechanism for the redefinition of previously existing
concepts without affecting backwards compatibility, but defining two or more non-composable layers, the level
of compliance with the specification and backwards compatibility can be achieved without compromising
clarity.

Proposal for:
71 Business Process Model and Notation (BPMN), v2.0

The BPMN specification is structured in layers, where each layer builds on top of and extends lower layers.
Included is a Core or kernel which includes the most fundamental elements of BPMN that are required for
constructing BPMN diagrams: Process, Choreography, Collaboration, and Conversation. The Core is
intended to be simple, concise, and extendable, with well defined behavior

The Core contains three (3) sub-packages (see Figure 8-2):

Foundation: The fundamental constructs needed for BPMN semantic modeling.

Service: The fundamental constructs needed for modeling services and interfaces.

Common: Those classes which are common to the layers of Process, Choreography, and
Collaboration.

Figure 8-2 – Class diagram showing the core packages

Proposal for:
Business Process Model and Notation (BPMN), v2.0 72

Figure 8-3 displays the organization of the main set of BPMN core model elements.

Figure 8-3 – Class diagram showing the organization of the core BPMN elements

8.1. Infrastructure
The BPMN Infrastructure package contains two (2) elements that are used for both semantic models and
diagram models.

8.1.1. Definitions
The Definitions class is the outermost containing object for all BPMN elements. It defines the scope of
visibility and the namespace for all contained elements. The interchange of BPMN files will always be through
one or more Definitions.

Proposal for:
73 Business Process Model and Notation (BPMN), v2.0

Figure 8-4 – Definitions class diagram

The Definitions element inherits the attributes and model associations of BaseElement (see Table 8-5).
Table 8-1 presents the additional attributes and model associations of the Definitions element:

Table 8-1 – Definitions attributes and model associations

Attribute Name Description/Usage

targetNamespace:
string

This attribute identifies the namespace associated with the Definition and
follows the convention established by XML Schema.

expressionLanguage:
string [0..1]

This attribute identifies the formal expression language used in Expressions
within the elements of this Definition. The Default is
“http://www.w3.org/1999/XPath”. This value may be overridden on each
individual formal expression.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 74

typeLanguage: string
[0..1]

This attribute identifies the type system used by the elements of this
Definition. Defaults to http://www.w3.org/2001/XMLSchema. This value can
be overridden on each individual ItemDefinition.

rootElements:
RootElement [0..*]

This attribute lists the root elements that are at the root of this Definitions.
These elements can be referenced within this Definitions and are visible to
other Definitions.

diagrams: Diagram
[0..*]

This attribute lists the Diagrams that are contained within this Definitions
(see page 398 for more information on Diagrams).

imports: Import [0..*] This attribute is used to import externally defined elements and make them
available for use by elements within this Definitions.

extensions: Extension
[0..*]

This attribute identifies extensions beyond the attributes and model
associations in the base BPMN specification.

See page 77 for additional information on extensibility

relationships:
Relationship [0..*]

This attribute enables the extension and integration of BPMN models into larger
system/development Processes.

8.1.2. Import
The Import class is used when referencing external element, either BPMN elements contained in other BPMN
Definitions or non-BPMN elements. Imports must be explicitly defined.

Table 8-2 presents the attributes of Import:

Table 8-2 – Import attributes

Attribute Name Description/Usage

importType: string Specifies the style of import associated with the element.

For example, a value of “http://www.w3.org/2001/XMLSchema” indicates that the
imported element is an XML schema. A value of http://www.omg.org/bpmn20
indicates that the imported element is a BPMN element.

location: string [0..1] Identifies the location of the imported element.

namespace: string Identifies the namespace of the imported element.

http://www.w3.org/2001/XMLSchema
http://www.omg.org/bpmn20

Proposal for:
75 Business Process Model and Notation (BPMN), v2.0

8.1.3. Infrastructure Package XML Schemas
Table 8-3 – Definitions XML schema

<xsd:element name="definitions" type="tDefinitions"/>
<xsd:complexType name="tDefinitions">

<xsd:sequence>
<xsd:element ref="import" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extension" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="rootElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="di:diagram" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="relationship" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:attribute name="targetNamespace" type="xsd:anyURI" use="required"/>
<xsd:attribute name="expressionLanguage" type="xsd:anyURI" use="optional"

default="http://www.w3.org/1999/XPath"/>
<xsd:attribute name="typeLanguage" type="xsd:anyURI" use="optional"

default="http://www.w3.org/2001/XMLSchema"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>

</xsd:complexType>

Table 8-4 – Import XML schema

<xsd:element name="import" type="tImport"/>
<xsd:complexType name="tImport">

<xsd:attribute name="namespace" type="xsd:anyURI" use="required"/>
<xsd:attribute name="location" type="xsd:string" use="required"/>
<xsd:attribute name="importType" type="xsd:anyURI" use="required"/>

</xsd:complexType>

8.2. Foundation
The Foundation package contains classes which are shared amongst other packages in the Core (see Figure
8-5) of a semantic model.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 76

Figure 8-5 – Classes in the Infrastructure package

8.2.1. Base Element
BaseElement is the abstract super class for most BPMN elements. It provides the attributes id and
documentation, which other elements will inherit.

Proposal for:
77 Business Process Model and Notation (BPMN), v2.0

Table 8-5 presents the attributes and model associations for the BaseElement.

Table 8-5 – BaseElement attributes and model associations

Attribute Name Description/Usage

id: string This attribute is used to uniquely identify BPMN elements.

documentation:
Documentation [0..*]

This attribute is used to annotate the BPMN element, such as descriptions and
other documentation.

extensionDefinitions:
ExtensionDefinition [0..*]

This attribute is used to attach additional attributes and associations to any
BaseElement. This association is not applicable when the XML schema
interchange is used, since the XSD mechanisms for supporting anyAttribute
and any element already satisfy this requirement.

See page 77 for additional information on extensibility.

extensionValues:
ExtensionAttributeValue
[0..*]

This attribute is used to provide values for extended attributes and model
associations. This association is not applicable when the XML schema
interchange is used, since the XSD mechanisms for supporting anyAttribute
and any element already satisfy this requirement.

See page 77 for additional information on extensibility.

8.2.2. Documentation
All BPMN elements that inherit from the BaseElement will have the capability, through the
Documentation element, to have one (1) or more text descriptions of that element.

The Documentation element inherits the attributes and model associations of BaseElement (see Table
8-5). Table 8-6 presents the additional attributes of the Documentation element:

Table 8-6 – Documentation attributes

Attribute Name Description/Usage

text: string This attribute is used to capture the text descriptions of a BPMN element.

8.2.3. Extensibility
The BPMN metamodel is aimed to be extensible. This allows BPMN adopters to extend the specified
metamodel in a way that allows them to be still BPMN-compliant.

It provides a set of extension elements, which allows BPMN adopters to attach additional attributes and elements
to standard and existing BPMN elements.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 78

This approach results in more interchangeable models, because the standard elements are still intact and can still
be understood by other BPMN adopters. It’s only the additional attributes and elements that may be lost during
interchange.

Figure 8-6 – Extension class diagram

A BPMN Extension basically consists of four different elements:

Extension

ExtensionDefinition

ExtensionAttributeDefinition

ExtensionAttributeValue

The core elements of an Extension are the ExtensionDefinition and ExtensionAttributeDefinition.
The latter defines a list of attributes which can be attached to any BPMN element. The attribute list defines the
name and type of the new attribute. This allows BPMN adopters to integrate any meta model into the BPMN
meta model and reuse already existing model elements.

The ExtensionDefinition itself can be created independent of any BPMN element or any BPMN definition.

In order to use an ExtensionDefinition within a BPMN model definition (Definitions element), the
ExtensionDefinition must be associated with an Extension element which binds the

Proposal for:
79 Business Process Model and Notation (BPMN), v2.0

ExtensionDefinition to a specific BPMN model definition. The Extension element itself is contained
within the BPMN element Definitions and therefore available to be associated with any BPMN element
making use of the ExtensionDefinition.

Every BPMN element which subclasses the BPMN BaseElement can be extended by additional attributes.
This works by associating a BPMN element with an ExtensionDefinition which was defined at the BPMN
model definitions level (element Definitions).

Additionally, every “extended” BPMN element contains the actual extension attribute value. The attribute value,
defined by the element ExtensionAttributeValue contains the value of type Element. It also has an
association to the corresponding attribute definition.

Extension

The Extension element binds/imports an ExtensionDefinition and its attributes to a BPMN model
definition.

Table 8-7 presents the attributes and model associations for the Extension element:

Table 8-7 – Extension attributes and model associations

Attribute Name Description/Usage

mustUnderstand: boolean
[0..1] = False

This flag defines if the semantics defined by the extension definition and its
attribute definition must be understood by the BPMN adopter in order to
process the BPMN model correctly. Defaults to False.

definition:
ExtensionDefinition

Defines the content of the extension.

Note that in the XML schema, this definition is provided by an external XML
schema file and is simply referenced by QName.

ExtensionDefinition

The ExtensionDefinition class defines and groups additional attributes. This type is not applicable when
the XML schema interchange is used, since XSD Complex Types already satisfy this requirement.

Table 8-8 presents the attributes and model associations for the ExtensionDefinition element:

Table 8-8 – ExtensionDefinition attributes and model associations

Attribute Name Description/Usage

name: string The name of the extension. This is used as a namespace to uniquely
identify the extension content.

extensionAttributeDefinitions:
ExtensionDefinition [0..*]

The specific attributes that make up the extension.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 80

ExtensionAttributeDefinition

The ExtensionAttributeDefinition defines new attributes. This type is not applicable when the XML
schema interchange is used; since the XSD mechanisms for supporting “AnyAttribute” and “Any” type already
satisfy this requirement.

Table 8-9 presents the attributes for the ExtensionAttributeDefinition element:

Table 8-9 – ExtensionAttributeDefinition attributes

Attribute Name Description/Usage

name: string The name of the extension attribute.

type: string The type that is associated with the attribute.

isReference: boolean
[0..1] = False

Indicates if the attribute value will be referenced or contained.

ExtensionAttributeValue

The ExtensionAttributeValue contains the attribute value. This type is not applicable when the XML
schema interchange is used; since the XSD mechanisms for supporting “AnyAttribute” and “Any” type already
satisfy this requirement.

Table 8-10 presents the model associations for the ExtensionAttributeValue element:

Table 8-10 – ExtensionAttributeValue model associations

Attribute Name Description/Usage

value: Element [0..1] The contained attribute value, used when the associated
ExtensionAttributeDefinition.isReference is false.

The type of this Element must conform to the type specified in
the associated ExtensionAttributeDefinition.

valueRef: Element [0..1] The referenced attribute value, used when the associated
ExtensionAttributeDefinition.isReference is true.

The type of this Element must conform to the type specified in
the associated ExtensionAttributeDefinition.

extensionAttributeDefinition:
ExtensionAttributeDefinition

Defines the extension attribute for which this value is being
provided.

Proposal for:
81 Business Process Model and Notation (BPMN), v2.0

Extensibility XML Schemas

Table 8-11 – Extension XML schema

<xsd:element name="extension" type="tExtension"/>
<xsd:complexType name="tExtension">

<xsd:sequence>
<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="definition" type="xsd:QName"/>
<xsd:attribute name="mustUnderstand" type="xsd:boolean" use="optional"/>

</xsd:complexType>

XML Example

This example shows a Task, defined the BPMN Core, being extended with Inputs and Outputs defined outside
of the Core.

Table 8-12 – Example Core XML schema

<xsd:schema …>

…

<xsd:element name="task" type="tTask"/>
<xsd:complexType name="tTask">

<xsd:complexContent>
<xsd:extension base="tActivity"/>

</xsd:complexContent>
</xsd:complexType>

…

</xsd:schema>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 82

Table 8-13 – Example Extension XML schema

<xsd:schema …>

…

<xsd:group name="dataRequirements">
<xsd:sequence>

<xsd:element ref="dataInput" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="dataOutput" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="inputSet" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="outputSet" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:group>

…

</xsd:schema>

Table 8-14 – Sample XML instance

<bpmn:definitions id=”ID_1” …>

…

<bpmn:extension mustUnderstand="true" definition="bpmn:dataRequirements"/>

…

<bpmn:task name="Retrieve Customer Record" id="ID_2">
<bpmn:dataInput name="Order Input" id="ID_3">

<bpmn:typeDefinition typeRef="bo:Order" id="ID_4"/>
</bpmn:dataInput>
<bpmn:dataOutput name="Customer Record Output" id="ID_5">

<bpmn:typeDefinition typeRef="bo:CustomerRecord" id="ID_6"/>
</bpmn:dataOutput>
<bpmn:inputSet name="Inputs" id="ID_7" dataInputRefs="ID_3"/>
<bpmn:outputSet name="Outputs" id="ID_8" dataOutputRefs="ID_5"/>

</bpmn:task>

…

</bpmn:definitions>

8.2.4. External Relationships
It is the intention of this specification to cover the basic elements required for the construction of semantically
rich and syntactically valid Process models to be used in the description of Processes, Choreographies
and business operations in multiple levels of abstraction. As the specification indicates, extension capabilities
enable the enrichment of the information described in BPMN and supporting models to be augmented to fulfill
particularities of a given usage model. These extensions intention is to extend the semantics of a given BPMN
Artifact to provide specialization of intent or meaning.

Process models do not exist in isolation and generally participate in larger, more complex business and system
development Processes. The intention of the following specification element is to enable BPMN Artifacts to

Proposal for:
83 Business Process Model and Notation (BPMN), v2.0

be integrated in these development Processes via the specification of a non-intrusive identity/relationship
model between BPMN Artifacts and elements expressed in any other addressable domain model.

The ‘identity/relationship’ model it is reduced to the creation of families of typed relationships that enable
BPMN and non-BPMN Artifacts to be related in non intrusive manner. By simply defining ‘relationship types’
that can be associated with elements in the BPMN Artifacts and arbitrary elements in a given addressable
domain model, it enables the extension and integration of BPMN models into larger system/development
Processes.

It is that these extensions will enable, for example, the linkage of ‘derivation’ or ‘definition’ relationships
between UML artifacts and BPMN Artifacts in novel ways. So, a UML use case could be related to a Process
element in the BPMN specification without affecting the nature of the Artifacts themselves, but enabling
different integration models that traverse specialized relationships.

Simply, the model enables the external specification of augmentation relationships between BPMN Artifacts
and arbitrary relationship classification models, these external models, via traversing relationships declared in
the external definition allow for linkages between BPMN elements and other structured or non-structured
metadata definitions.

The UML model for this specification follow a simple extensible pattern as shown below; where named
relationships can be established by referencing objects that exist in their given namespaces.

Figure 8-7 – External Relationship Metamodel

Proposal for:
Business Process Model and Notation (BPMN), v2.0 84

The Relationship element inherits the attributes and model associations of BaseElement (see Table 8-5).
Table 8-15 presents the additional attributes for the Relationship element:

Table 8-15 – Relationship attributes

Attribute Name Description/Usage

type: string The descriptive name of the element.

direction:
RelationshipDirection {none
| forward | backward | both}

This attribute specifies the direction of the relationship.

sources: Element [1..*] This association defines artifacts that are augmented by the relationship.

targets: Element [1..*] This association defines artifacts used to extend the semantics of the source
element(s).

In this manner, you can, for example, create relationships between different artifacts that enable external
annotations used for (for example) traceability, derivation, arbitrary classifications, etc.

An example where the ‘reengineer’ relationship is shown between elements in a Visio ™ artifact and a BPMN
Artifact:

Table 8-16 – Reengineer XML schema

<?xml version="1.0" encoding="UTF-8"?>
<definitions targetNamespace=""

typeLanguage="" id="a123" expressionLanguage=""
xsi:schemaLocation="http://www.omg.org/bpmn20 Core-Common.xsd"
xmlns="http://www.omg.org/bpmn20"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:src="http://www.example.org/Processes/Old"
xmlns:tgt="http://www.example.org/Processes/New">

<import importType="http://office.microsoft.com/visio" location="OrderConfirmationProcess.vsd"
namespace="http://www.example.org/Processes/Old"/>

<import importType="http://www.omg.org/bpmn20" location="OrderConfirmationProcess.xml"
namespace="http://www.example.org/Processes/New"/>

<relationship type="reengineered" id="a234" direction="both">
<documentation>An as-is and to-be relationship. The as-is model is expressed as a Visio diagram.

The re-engineered process has been split in two and is captured in BPMN 2.0
format.</documentation>

<source ref="src:OrderConfirmation"/>
<target ref="tgt:OrderConfirmation_PartI"/>
<target ref="tgt:OrderConfirmation_PartII"/>

</relationship>
</definitions>

Proposal for:
85 Business Process Model and Notation (BPMN), v2.0

8.2.5. Root Element
RootElement is the abstract super class for all BPMN elements that are contained within Definitions.
When contained within Definitions, these elements have their own defined life-cycle and are not deleted
with the deletion of other elements. Examples of concrete RootElements include Collaboration, Process,
and Choreography. Depending on their use, RootElements can be referenced by multiple other elements
(i.e., they can be reused). Some RootElements may be contained within other elements instead of
Definitions. This is done to avoid the maintenance overhead of an independent life-cycle. For example, an
EventDefinition may be contained in a Process since it may be only required there. In this case the
EventDefinition would be dependent on the tool life-cycle of the Process.

The RootElement element inherits the attributes and model associations of BaseElement (see Table 8-5),
but does not have any further attributes or model associations.

8.2.6. Foundation Package XML Schemas

Table 8-17 – BaseElement XML schema

<xsd:element name="baseElement" type="tBaseElement"/>
<xsd:complexType name="tBaseElement" abstract="true">

<xsd:sequence>
<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="category" minOccurs="0" maxOccurs="unbounded"/>
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="required"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>

</xsd:complexType>

<xsd:element name="baseElementWithMixedContent" type="tBaseElementWithMixedContent"/>
<xsd:complexType name="tBaseElementWithMixedContent" abstract="true" mixed="true">

<xsd:sequence>
<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="category" minOccurs="0" maxOccurs="unbounded"/>
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="required"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>

</xsd:complexType>

<xsd:element name="documentation" type="tDocumentation"/>
<xsd:complexType name="tDocumentation" mixed="true">

<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 86

Table 8-18 – RootElement XML schema

<xsd:element name="rootElement" type="tRootElement"/>
<xsd:complexType name="tRootElement" abstract="true">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType

Table 8-19 – Relationship XML schema

<xsd:element name="relationship" type="tRelationship"/>
<xsd:complexType name="tRelationship">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="source" type="xsd:QName" minOccurs="1"

maxOccurs="unbounded"/>
<xsd:element name="target" type="xsd:QName" minOccurs="1"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="type" type="xsd:string" use="required"/>
<xsd:attribute name="direction" type="tRelationshipDirection"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="tRelationshipDirection">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="none"/>
<xsd:enumeration value="forward"/>
<xsd:enumeration value="backward"/>
<xsd:enumeration value="both"/>

</xsd:restriction>
</xsd:simpleType>

8.3. Common Elements
The following sections define BPMN elements that may be used in more than one type of diagram (e.g.,
Process, Collaboration, Conversation, and Choreography).

8.3.1. Artifacts
BPMN provides modelers with the capability of showing additional information about a Process that is not
directly related to the Sequence Flow or Message Flow of the Process.

At this point, BPMN provides three (3) standard Artifacts: Associations, Groups, and a Text
Annotations. Additional Artifacts may be added to the BPMN specification in later versions. A modeler
or modeling tool may extend a BPMN diagram and add new types of Artifacts to a Diagram. Any new
Artifact must follow the Sequence Flow and Message Flow connection rules (listed below).
Associations can be used to link Artifacts to Flow Objects (see page 87).

Proposal for:
87 Business Process Model and Notation (BPMN), v2.0

Figure 8-8 shows the Artifacts class diagram. When an Artifact is defined it is contained within a
Collaboration or a FlowElementsContainer (a Process or Choreography).

Figure 8-8 – Artifacts Metamodel

Common Artifact Definitions

The following sections provide definitions that a common to all Artifacts.

Artifact Sequence Flow Connections
See “Sequence Flow Rules,” on page 64 for the entire set of objects and how they may be source or targets of
Sequence Flow.

An Artifact MUST NOT be a target for Sequence Flow.

An Artifact MUST NOT be a source for Sequence Flow.

Artifact Message Flow Connections
See “Message Flow Rules,” on page 65 for the entire set of objects and how they may be source or targets of
Message Flow.

An Artifact MUST NOT be a target for Message Flow.

An Artifact MUST NOT be a source for Message Flow.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 88

Association

An Association is used to associate information and Artifacts with Flow Objects. Text and graphical
non-Flow Objects can be associated with the Flow Objects and Flow. An Association is also used to show the
Activity used for compensation. More information about compensation can be found page on 314.

An Association is line that MUST be drawn with a dotted single line (see Figure 8-9).

The use of text, color, size, and lines for an Association MUST follow the rules defined in section
“Use of Text, Color, Size, and Lines in a Diagram” on page 63.

Figure 8-9 – An Association

Figure 8-10 – The Association Class Diagram

If there is a reason to put directionality on the Association then:

A line arrowhead MAY be added to the Association line (see Figure 8-11).

The directionality of the Association can be in one (1) direction or in both directions.

Proposal for:
89 Business Process Model and Notation (BPMN), v2.0

Figure 8-11 – A Directional Association

Note that directional Associations were used in BPMN 1.2 to show how Data Objects were inputs or
outputs to Activities. In BPMN 2.0, a Data Association connector is used to show inputs and outputs (see
page 228). A Data Association uses the same notation as a directed Association (as in Figure 8-11, above).

An Association is used to connect user-defined text (an Annotation) with a Flow Object (see Figure 8-12).

Figure 8-12 – An Association of Text Annotation

The Association element inherits the attributes and model associations of BaseElement (see Table 8-5).
Table 8-20 presents the additional attributes and model associations for an Association:

Table 8-20 –Association attributes and model associations

Attributes Description

associationDirection:
AssociationDirection = None
{None | One | Both}

associationDirection is an attribute that defines whether or not the
Association shows any directionality with an arrowhead. The default is None
(no arrowhead). A value of One means that the arrowhead SHALL be at the
Target Object. A value of Both means that there SHALL be an arrowhead at
both ends of the Association line.

sourceRef: BaseElement The BaseElement that the Association is connecting from.

targetRef: BaseElement The BaseElement that the Association is connecting to.

Group

The Group object is an Artifact that provides a visual mechanism to group elements of a diagram
informally. The grouping is tied to the Category supporting element (which is an attribute of all BPMN
elements). That is, a Group is a visual depiction of a single Category. The graphical elements within the

Proposal for:
Business Process Model and Notation (BPMN), v2.0 90

Group will be assigned the Category of the Group. (Note -- Categories can be highlighted through
other mechanisms, such as color, as defined by a modeler or a modeling tool).

A Group is a rounded corner rectangle that MUST be drawn with a solid dashed line (as seen in
Figure 8-13).

The use of text, color, size, and lines for a Group MUST follow the rules defined in Section “Use
of Text, Color, Size, and Lines in a Diagram” on page 63.

Figure 8-13 – A Group Artifact

As an Artifact, a Group is not an Activity or any Flow Object, and, therefore, cannot connect to
Sequence Flow or Message Flow. In addition, Groups are not constrained by restrictions of Pools and
Lanes. This means that a Group can stretch across the boundaries of a Pool to surround Diagram elements
(see Figure 8-14), often to identify Activities that exist within a distributed business-to-business transaction.

Pa
tie

nt
R

ec
ep

tio
ni

st

Figure 8-14 – A Group around Activities in different Pools

Proposal for:
91 Business Process Model and Notation (BPMN), v2.0

Groups are often used to highlight certain sections of a Diagram without adding additional constraints for
performance--as a Sub-Process would. The highlighted (grouped) section of the Diagram can be separated for
reporting and analysis purposes. Groups do not affect the flow of the Process.

Figure 8-15 shows the Group class diagram.

Figure 8-15 – The Group class diagram

The Group element inherits the attributes and model associations of BaseElement (see Table 8-5). Table
8-21 presents the additional model associations for a Group:

Table 8-21 –Group model associations

Attributes Description

categoryRef: Category [0..1] The categoryRef attribute specifies the Category that the Group
represents (Further details about the definition of a Category can be found
on page 92).

The name of the Category provides the label for the Group. The graphical
elements within the boundaries of the Group will be assigned the Category.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 92

Category

Categories, which have user-defined semantics, can be used for documentation or analysis purposes. For
example, FlowElements can be categorized has being customer oriented vs. support oriented. For example,
the cost and time of each Category of each Activity can be calculated.

Groups are one way in which Categories of objects can be visually displayed on the diagram. That is, a
Group is a visual depiction of a single Category. The graphical elements within the Group will be assigned
the Category of the Group. The Category name appears on the diagram as the Group label. (Note --
Categories can be highlighted through other mechanisms, such as color, as defined by a modeler or a
modeling tool). A single Category can be used for multiple Groups in a diagram.

The Category element inherits the attributes and model associations of BaseElement (see Table 8-5)
through its relationship to RootElement. Table 8-22 displays the additional model associations of the
Category element.

Table 8-22 –Category model associations

Attributes Description

categoryValue: CategoryValue
[0..*]

The categoryValue attribute specifies one or more values of the
Category. For example, the Category is “Region” then this Category
could specifies values like “North”, “South”, “West” and “East”

The Category element inherits the attributes and model associations of BaseElement (see Table 8-5).
Table 8-23 displays the attributes and model associations of the CategoryValue element.

Table 8-23 –CategoryValue attributes and model associations

Attributes Description

value: string This attribute provides the value of the CategoryValue element.

category: Category [0..1] The category attribute specifies the Category representing the
Category as such and contains the CategoryValue (Further details
about the definition of a Category can be found on page 92).

categorizedFlowElements:
FlowElement [0..*]

The FlowElements attribute identifies all of the elements (e.g., Events,
Activities, Gateways, and Artifacts) that are within the boundaries of the
Group.

Proposal for:
93 Business Process Model and Notation (BPMN), v2.0

Text Annotation

Text Annotations are a mechanism for a modeler to provide additional information for the reader of a BPMN
Diagram.

A Text Annotation is an open rectangle that MUST be drawn with a solid single line (as seen in
Figure 8-16).

The use of text, color, size, and lines for a Text Annotation MUST follow the rules defined in
Section “Use of Text, Color, Size, and Lines in a Diagram” on page 63.

The Text Annotation object can be connected to a specific object on the Diagram with an Association, but
do not affect the flow of the Process. Text associated with the Annotation can be placed within the bounds of
the open rectangle.

Figure 8-16 – A Text Annotation

The Text Annotation element inherits the attributes and model associations of BaseElement (see Table
8-5). Table 8-24 presents the additional attributes for a Text Annotation:

Table 8-24 –Text Annotation attributes

Attributes Description

text: string Text is an attribute that is text that the modeler wishes to communicate to
the reader of the Diagram.

XML Schema for Artifacts

Table 8-25 – Artifact XML schema

<xsd:element name="artifact" type="tArtifact"/>
<xsd:complexType name="tArtifact" abstract="true">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 94

Table 8-26 – Association XML schema

<xsd:element name="association" type="tAssociation" substitutionGroup="artifact"/>
<xsd:complexType name="tAssociation">

<xsd:complexContent>
<xsd:extension base="tArtifact">

<xsd:attribute name="sourceRef" type="xsd:QName" use="required"/>
<xsd:attribute name="targetRef" type="xsd:QName" use="required"/>
<xsd:attribute name="associationDirection" type="tAssociationDirection" default="none"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="tAssociationDirection">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="none"/>
<xsd:enumeration value="one"/>
<xsd:enumeration value="both"/>
</xsd:restriction>

</xsd:simpleType>

Table 8-27 – Category XML schema

<xsd:element name="category" type="tCategory" substitutionGroup="rootElement"/>
<xsd:complexType name="tCategory">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:sequence>
<xsd:element ref="categoryValue" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 8-28 – Group XML schema

<xsd:element name="group" type="tGroup" substitutionGroup="artifact"/>
<xsd:complexType name="tGroup">

<xsd:complexContent>
<xsd:extension base="tArtifact">

<xsd:attribute name="categoryRef" type="xsd:QName" use="optional"/>
</xsd:extension>

 </xsd:complexContent>
</xsd:complexType>

Proposal for:
95 Business Process Model and Notation (BPMN), v2.0

Table 8-29 – Text Annotation XML schema

<xsd:element name="textAnnotation" type="tTextAnnotation" substitutionGroup="artifact"/>
<xsd:complexType name="tTextAnnotation">

<xsd:complexContent>
<xsd:extension base="tArtifact">

<xsd:sequence>
 <xsd:element ref="text" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>

 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="text" type="tText"/>
<xsd:complexType name="tText" mixed="true">

<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

8.3.2. Callable Element
CallableElement is the abstract super class of all Activities that have been defined outside of a Process
or Choreography but which can be called (or reused) from within a Process or Choreography. It may
reference Interfaces that define the service operations that it provides.

CallableElements are RootElements, which can be imported and used in other Definitions. When
CallableElements (e.g., Process) are defined, they are contained within Definitions.

Figure 8-17 – CallableElement class diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 96

The CallableElement inherits the attributes and model associations of BaseElement (see Table 8-5)
through its relationship to RootElement. Table 8-30 presents the additional attributes and model associations
of the CallableElement:

Table 8-30 – CallableElement attributes and model associations

Attribute Name Description/Usage

name: string [0..1] The descriptive name of the element.

supportedInterfacesRefs:
Interface [0..*]

The Interfaces describing the external behavior provided by this
element.

ioSpecification:
InputOutputSpecification [0..1]

The InputOutputSpecification defines the inputs and outputs and
the InputSets and OutputSets for the Activity.

ioBinding:
InputOutputBinding [0..*]

The InputOutputBinding defines a combination of one InputSet and
one OutputSet in order to bind this to an operation defined in an
interface.

When a CallableElement is exposed as a Service, it has to define one or more
InputOutputBinding elements. An InputOutputBinding element binds one Input and one Output of
the InputOutputSpecification to an Operation of a Service Interface. Table 8-31 presents
the additional model associations of the InputOutputBinding:

Table 8-31 – InputOutputBinding model associations

Attribute Name Description/Usage

inputDataRef: DataInput A reference to one specific DataInput defined as part of the
InputOutputSpecification of the Activity.

outputDataRef: DataOutput A reference to one specific DataOutput defined as part of the
InputOutputSpecification of the Activity.

operationRef: Operation A reference to one specific Operation defined as part of the Interface
of the Activity.

8.3.3. Correlation
The concept of Correlation facilitates the association of a Message to a Send Task or Receive Task
involved in a Conversation, a mechanism BPMN refers to as instance routing. It is a particular useful concept
where there is no infrastructure support for instance routing. Note that this association can be viewed at multiple
levels, namely the Conversation, Choreography, and Process level. However, the actual correlation
happens during runtime (e.g. at the Process level). Correlations describe a set of predicates on a Message
(generally on the application payload) that need to be satisfied in order for that Message to be associated to a
distinct Send Task or Receive Task. By the same token, each Send Task and each Receive Task

Proposal for:
97 Business Process Model and Notation (BPMN), v2.0

participates in one or many Conversations. Furthermore, it identifies the Message it sends or receives and
thereby establishes the relationship to one (or many) CorrelationKeys.

There are two, non-exclusive correlation mechanisms in place:

In plain, key-based correlation, Messages that are exchanged within a Conversation are logically
correlated by means of a joint CorrelationKey. That is, any Message that is sent or received
within this Conversation needs to carry the value of the CorrelationKey instance within its
payload. A CorrelationKey basically defines a (composite) key. The first Message that is
initially sent or received initializes the CorrelationKey instance, i.e. assigns values to its
CorrelationProperty instances which are the fields (partial keys) of the CorrelationKey.
Follow-up Messages will have to match the CorrelationKey instance to be dispatched to this
particular Conversation. As a Conversation may comprise different Messages that may be
differently structured, each CorrelationProperty comes with as many extraction rules
(CorrelationPropertyRetrievalExpression) for the respective partial key as there are
different Messages.

In context-based correlation, the Process context (i.e., its Data Objects and Properties) may
dynamically influence the matching criterion. That is, a CorrelationKey may be complemented by
a Process-specific CorrelationSubscription. A CorrelationSubscription
aggregates as many CorrelationPropertyBindings as there are
CorrelationProperties in the CorrelationKey. A CorrelationPropertyBinding
relates to a specific CorrelationProperty and also links to a FormalExpression which
denotes a dynamic extraction rule atop the Process context. At runtime, the CorrelationKey
instance for a particular Conversation is populated (and dynamically updated) from the Process
context using these FormalExpressions. In that sense, changes in the Process context may alter
the correlation condition.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 98

Figure 8-18 – The Correlation Class Diagram

CorrelationKey

A CorrelationKey represents a composite key out of one (1) or many CorrelationProperties
which essentially specify extraction Expressions atop Messages. As a result, each
CorrelationProperty acts as a partial key for the correlation. For each Message that is received within
a particular Conversation, the CorrelationProperties need to provide a
CorrelationPropertyRetrievalExpression which references a FormalExpression to the

Proposal for:
99 Business Process Model and Notation (BPMN), v2.0

Message payload. That is, for each Message (that is used in a Conversation) there is an Expression
which extracts portions of the respective Message’s payload.

The CorrelationKey element inherits the attributes and model associations of BaseElement (see Table
8-5). Table 8-32 displays the additional model associations of the CorrelationKey element.

Table 8-32 – CorrelationKey model associations

Attribute Name Description/Usage

conversation: Conversation A reference to the specific Conversation this CorrelationKey applies
to.

correlationPropertyRef:
CorrelationProperty [0..*]

The CorrelationProperties, representing the partial keys of this
CorrelationKey

Key-based Correlation
Key-based correlation is a simple and efficient form of correlation, where one or more keys are used to identify
a Conversation. Any incoming Message can be matched against the CorrelationKey by extracting the
CorrelationProperties from the Message according to the corresponding
CorrelationPropertyRetrievalExpression and comparing the resulting composite key with the
CorrelationKey instance for this Conversation. The idea is to use a joint Conversation “token” which
is used (passed to and received from) and outgoing and incoming Message. Messages will be routed to the
Conversation whose extracted composite key matches the respective CorrelationKey instance.

At runtime the first Send Task or Receive Task in a Conversation populates the CorrelationKey
instance by extracting the values of the CorrelationProperties according to the
CorrelationPropertyRetrievalExpression from the initially sent or received Message. Later in
the Conversation, this CorrelationKey instance is used for the described matching procedure where
from incoming Messages a composite key is extracted and used to identify the associated Conversation.

The CorrelationProperty element inherits the attributes and model associations of BaseElement (see
Table 8-5) through its relationship to RootElement. Table 8-33 displays the additional model associations of
the CorrelationProperty element.

Table 8-33 – CorrelationProperty model associations

Attribute Name Description/Usage

correlationPropertyRetrievalExpression:
CorrelationPropertyRetrievalExpression
[1..*]

The CorrelationPropertyRetrievalExpressions for
this CorrelationProperty, representing the associations
of FormalExpressions (extraction paths) to specific
Messages occurring in this Conversation.

The CorrelationPropertyRetrievalExpression element inherits the attributes and model
associations of BaseElement (see Table 8-5). Table 8-34 displays the additional model associations of the
CorrelationPropertyRetrievalExpression element.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 100

Table 8-34 – CorrelationPropertyRetrievalExpression model associations

Attribute Name Description/Usage

messagePath:
FormalExpression

The FormalExpression that defines how to extract a
CorrelationProperty from the Message payload

message: Message The specific Message the FormalExpression extracts the
CorrelationProperty from.

Context-based Correlation
Context-based correlation is a more expressive form of correlation on top of key-based correlation. In addition
to implicitly populating the CorrelationKey instance from the first sent or received Message, another
mechanism relates the CorrelationKey to the Process context. That is, a Process may provide a
CorrelationSubscription which acts as the Process-specific counterpart to a specific
CorrelationKey. In this way, a Conversation may additionally refer to explicitly updateable Process
context data to determine whether or not a Message shall be received. At runtime, the CorrelationKey
instance holds a composite key that is dynamically calculated from the Process context and automatically
updated whenever the underlying Data Objects or Properties change.

CorrelationPropertyBindings represent the partial keys of a CorrelationSubscription
where each relates to a specific CorrelationProperty in the associated CorrelationKey. A
FormalExpression defines how that CorrelationProperty instance is populated and updated at
runtime from the Process context (i.e., its Data Objects and Properties).

The CorrelationSubscription element inherits the attributes and model associations of
BaseElement (see Table 8-5). Table 8-35 displays the additional model associations of the
CorrelationSubscription element.

Table 8-35 – CorrelationSubscription model associations

Attribute Name Description/Usage

Process: Process The Process that this CorrelationSubscription belongs to.

correlationKeyRef:
CorrelationKey

The CorrelationKey this CorrelationSubscription refers to.

correlationPropertyBinding:
CorrelationPropertyBinding
[0..*]

The bindings to specific CorrelationProperties and FormalExpressions
(extraction rules atop the Process context).

The CorrelationPropertyBinding element inherits the attributes and model associations of
BaseElement (see Table 8-5). Table 8-36 displays the additional model associations of the
CorrelationPropertyBinding element.

Proposal for:
101 Business Process Model and Notation (BPMN), v2.0

Table 8-36 – CorrelationPropertyBinding model associations

Attribute Name Description/Usage

dataPath: FormalExpression The FormalExpression that defines the extraction rule atop the Process
context.

correlationPropertyRef:
CorrelationProperty

The specific CorrelationProperty, this CorrelationPropertyBinding refers to.

At runtime, the correlation mechanism works as follows: When a Process instance is created the
CorrelationKey instances of all Conversations are initialized with some initial values that specify to
correlate any incoming Message for these Conversations. A SubscriptionProperty is updated
whenever any of the Data Objects or Properties changes that are referenced from the respective
FormalExpression. As a result, incoming Messages are matched against the now populated
CorrelationKey instance. Later in the Process run, the SubscriptionProperties may, again,
change and implicitly change the correlation criterion. Alternatively, the established mechanism of having the
first Send Task or Receive Task populate the CorrelationKey instance applies.

XML Schema for Correlation

Table 8-37 – Correlation Key XML schema

<xsd:element name="correlationKey" type="tCorrelationKey"/>
<xsd:complexType name="tCorrelationKey">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="correlationPropertyRef" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-38 – Correlation Property XML schema

<xsd:element name="correlationProperty" type="tCorrelationProperty"/>
<xsd:complexType name="tCorrelationProperty">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element ref="correlationPropertyRetrievalExpression" minOccurs="1"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 102

Table 8-39 – Correlation Property Binding XML schema

<xsd:element name="correlationPropertyBinding" type="tCorrelationPropertyBinding"/>
<xsd:complexType name="tCorrelationPropertyBinding">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="dataPath" type="tFormalExpression" minOccurs="1"

maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="correlationPropertyRef" type="xsd:QName" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-40 – Correlation Property Retrieval Expression XML schema

<xsd:element name="correlationPropertyRetrievalExpression"
type="tCorrelationPropertyRetrievalExpression"/>

<xsd:complexType name="tCorrelationPropertyRetrievalExpression">
<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="messagePath" type="tFormalExpression" minOccurs="1"

maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="messageRef" type="xsd:QName" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-41 – Correlation Subscription XML schema

<xsd:element name="correlationSubscription" type="tCorrelationSubscription"/>
<xsd:complexType name=" tCorrelationSubscription ">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="process" type="xsd:QName" use="required"/>
<xsd:element ref="correlationKeyRef" minOccurs="1" maxOccurs="1"/>
<xsd:element name="correlationPropertyBinding" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
103 Business Process Model and Notation (BPMN), v2.0

8.3.4. Conversation Association
A ConversationAssociation is used within Collaborations and Choreographies to apply a
reusable Conversation to Message Flow of those diagrams.

A ConversationAssociation is used when a diagram references a Conversation to provide
Message correlation information and/or to logically group Message Flow. There are two (2) usages of
ConversationAssociation. It is used when:

A Collaboration references a reusable Conversation. The Message Flow of the
Collaboration are grouped by the ConversationAssociation. A tool can use the
correlationKey of the Conversation (also referenced) or allow the user to group the
Message Flow of the Collaboration.

A Choreography references a reusable Conversation. The Message Flow of the
Choreography are grouped by the ConversationAssociation. A tool can use the
correlationKey of the Conversation (also referenced) or allow the user to group the
Message Flow of the Choreography.

Figure 8-19 – The ConversationAssociation class diagram

The ConversationAssociation element inherits the attributes and model associations of
BaseElement (see Table 8-5). Table 9-1 presents the additional model associations for the
ConversationAssociation element:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 104

Table 8-42 – ConversationAssociation Model Associations

Attribute Name Description/Usage

conversationRef:
Conversation [0..1]

This attribute references the Conversation that is being applied to the
Collaboration or Choreography.

correlationKeyRef:
Conversation [0..1]

This attribute references a correlationKey in the referenced
Conversation that is being applied to the Collaboration or Choreography.
This is optional since a CorrelationKey may not be available, but it is
necessary when the Conversation contains more than one
CorrelationKey.

messageFlowRefs: Message
Flow [0..*]

The messageFlowRefs are used to identify the Message Flow within the
Collaboration or Choreography that are to be grouped by the referenced
Conversation. This grouping can be done automatically through the
referenced CorrelationKey of the Conversation (matching the
CorrelationKey to the Messages of the Message Flow) or done through
user selection if a CorrelationKey has not been defined or referenced.

8.3.5. Error
An Error represents the content of an Error Event or the Fault of a failed Operation. A
ItemDefinition is used to specify the structure of the Error. An Error is generated when there is a
critical problem in the processing of an Activity or when the execution of an Operation failed.

Figure 8-20 – Error class diagram

Proposal for:
105 Business Process Model and Notation (BPMN), v2.0

The Error element inherits the attributes and model associations of BaseElement (see Table 8-5), through
its relationship to RootElement. Table 8-43 presents the additional model associations of the Error
element:

Table 8-43 – Error model associations

Attribute Name Description/Usage

structureRef :
ItemDefinition [0..1]

An ItemDefinition is used to define the “payload” of the Error.

8.3.6. Events
An Event is something that “happens” during the course of a Process. These Events affect the flow of the
Process and usually have a cause or an impact. The term “event” is general enough to cover many things in a
Process. The start of an Activity, the end of an Activity, the change of state of a document, a Message that
arrives, etc., all could be considered Events. However, BPMN has restricted the use of Events to include only
those types of Events that will affect the sequence or timing of Activities of a Process.

Figure 8-21 – Event class diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 106

The Event element inherits the attributes and model associations of Flow Element (see Table 8-45), but adds
no additional attributes or model associations:

The details for the types of Events (Start, Intermediate, and End) are defined in the Section “Event
Definitions” on page 266.

8.3.7. Expressions
The Expression class is used to specify an expression using natural-language text. These expressions are not
executable. The natural language text is captured using the documentation attribute, inherited from
BaseElement.

Expression inherits the attributes and model associations of BaseElement (see Table 8-5), but adds no
additional attributes or model associations.

Expressions are used in many places within BPMN to extract information from the different elements, normally
data elements. The most common usage is when modeling decisions, where conditional expressions are used to
direct the flow along specific paths based on some criteria.

BPMN supports underspecified expressions, where the logic is captured as natural-language descriptive text. It
also supports formal expressions, where the logic is captured in an executable form using a specified expression
language.

Figure 8-22 – Expression class diagram

Proposal for:
107 Business Process Model and Notation (BPMN), v2.0

Expression

The Expression class is used to specify an expression using natural-language text. These expressions are not
executable and are considered underspecified.

The definition of an expression can be done in two ways: it can be contained where it is used, or it can be defined
at the Process level and then referenced where it is used.

The Expression element inherits the attributes and model associations of BaseElement (see Table 8-5), but
does not have any additional attributes or model associations.

Formal Expression

The FormalExpression class is used to specify an executable expression using a specified expression
language. A natural-language description of the expression can also be specified, in addition to the formal
specification.

The default expression language for all expressions is specified in the Definitions element, using the
expressionLanguage attribute. It can also be overridden on each individual FormalExpression using
the same attribute.

The FormalExpression element inherits the attributes and model associations of BaseElement (see
Table 8-5), through the Expression element. Table 8-44 presents the additional attributes and model
associations of the FormalExpression:

Table 8-44 – FormalExpression attributes and model associations

Attribute Name Description/Usage

language: string [0..1] Overrides the expression language specified in the Definitions.

body: Element The body of the expression.

Note that this attribute is not relevant when the XML Schema is used for
interchange. Instead, the FormalExpression complex type supports mixed
content. The body of the Expression would be specified as element content.
For example:

<formalExpression id=“ID_2">

count(../dataObject[id="CustomerRecord_1"]/emailAddress) > 0

 <evaluatesToType id="ID_3" typeRef=“xsd:boolean"/>

</formalExpression>

evaluatesToTypeRef:
ItemDefinition

The type of object that this Expression returns when evaluated. For
example, conditional Expressions evaluate to a boolean.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 108

8.3.8. Flow Element
FlowElement is the abstract super class for all elements that can appear in a Process flow, which are
FlowNodes (see page 133, which consist of Activities (see page 159), Choreography Activities (see
page 349) Gateways (see page 110), and Events (see page 103)), Data Objects (see page 213), Data
Associations (see page 228), and Sequence Flow (see page 129),

Figure 8-23 – FlowElement class diagram

The FlowElement element inherits the attributes and model associations of BaseElement (see Table 8-5).
Table 8-45 presents the additional attributes and model associations of the FlowElement element:

Table 8-45 – FlowElement attributes and model associations

Attribute Name Description/Usage

name: string [0..1] The descriptive name of the element.

auditing: Auditing [0..1] A hook for specifying audit related properties. Auditing can only be defined for
a Process.

monitoring: Monitoring
[0..1]

A hook for specifying monitoring related properties. Monitoring can only be
defined for a Process.

Proposal for:
109 Business Process Model and Notation (BPMN), v2.0

8.3.9. Flow Elements Container
FlowElementsContainer is an abstract super class for BPMN diagrams (or views) and defines the
superset of elements that are contained in those diagrams. Basically, a FlowElementsContainer contains
FlowElements, which are Events (see page 103), Gateways (see page 110), Sequence Flow (see page
129), Activities (see page 159), and Choreography Activities (see page 349).

There are four (4) types of FlowElementsContainers (see Figure 8-24): Process, Sub-Process,
Choreography, and Choreography Sub-Process.

Figure 8-24 – FlowElementContainers class diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 110

The FlowElementsContainer element inherits the attributes and model associations of BaseElement
(see Table 8-5). Table 8-46 presents the additional model associations of the FlowElementsContainer
element:

Table 8-46 – FlowElementsContainer model associations

Attribute Name Description/Usage

flowElements:
FlowElement [0..*]

This association specifies the particular flow elements contained in a
FlowElementContainer. Flow elements are Events, Gateways, Sequence
Flow, Activities, Data Objects, Data Associations, and Choreography
Activities.

Note that:

Choreography Activities MUST NOT be included as a flowElement for a
Process
Activities, Data Associations, and Data Objects MUST NOT be included
as a flowElement for a Choreography.

artifacts: Artifact [0..*] The list of Artifacts that are contained within the FlowElementsContainer
(which could be a Process or Choreography)

8.3.10. Gateways
Gateways are used to control how the Process flows (how Tokens flow) through Sequence Flow as they
converge and diverge within a Process. If the flow does not need to be controlled, then a Gateway is not
needed. The term “gateway” implies that there is a gating mechanism that either allows or disallows passage
through the Gateway--that is, as tokens arrive at a Gateway, they can be merged together on input and/or
split apart on output as the Gateway mechanisms are invoked.

Gateways, like Activities, are capable of consuming or generating additional control tokens, effectively
controlling the execution semantics of a given Process. The main difference is that Gateways do not
represent ‘work’ being done and they are considered to have zero effect on the operational measures of the
Process being executed (cost, time, etc.).

The Gateway controls the flow of both diverging and converging Sequence Flow. That is, a single
Gateway could have multiple input and multiple output flows. Modelers and modeling tools may want to
enforce a best practice of a Gateway only performing one of these functions. Thus, it would take two
sequential Gateways to first converge and then to diverge the Sequence Flow.

Proposal for:
111 Business Process Model and Notation (BPMN), v2.0

Figure 8-25 – Gateway class diagram

The details for the types of Gateways (Exclusive, Inclusive, Parallel, Event-Based, and Complex) is
defined on page 295 for Processes and on page 375 for Choreographies.

The Gateway class is an abstract type. Its concrete subclasses define the specific semantics of individual
Gateway types, defining how the Gateway behaves in different situations.

The Gateway element inherits the attributes and model associations of FlowElement (see Table 8-45).
Table 8-47 presents the additional attributes of the Gateway element:

Table 8-47 – Gateway attributes

Attribute Name Description/Usage

gatewayDirection:
GatewayDirection = unspecified

{ unspecified | converging |
diverging | mixed }

An attribute that adds constraints on how the gateway may be used.

unspecified: There are no constraints. The Gateway MAY have
any number of incoming and outgoing Sequence Flow.
converging: This Gateway MAY have multiple incoming
Sequence Flow but MUST have no more than one outgoing
SequenceFlow.
diverging: This Gateway MAY have multiple outgoing Sequence
Flow but MUST have no more than one incoming Sequence Flow.
mixed: This Gateway contains multiple outgoing and multiple
incoming Sequence Flow.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 112

8.3.11. Interaction Specification
The InteractionSpecification element is a superclass for all elements that require definition about
interactions between Participants. Specifically, the InteractionSpecification element defines a list of
Participants and Message Flow. The elements that inherit from InteractionSpecification include
Collaboration, Choreography, and Conversation.

Figure 8-26 – InteractionSpecification class diagram

The InteractionSpecification element inherits the attributes and model associations of
BaseElement (see Table 8-5). Table 8-48 presents the attributes and model associations of the
InteractionSpecification element:

Table 8-48 – InteractionSpecification attributes and model associations

Attribute Name Description/Usage

participants: Participant
[0..*]

This provides the list of Participants that are used in the
InteractionSpecification

messageFlow:
Message Flow [0..*]

This provides the list of Message Flow that are used in the
InteractionSpecification

Proposal for:
113 Business Process Model and Notation (BPMN), v2.0

8.3.12. Item Definition
BPMN elements, such as DataObjects and Messages, represent items that are manipulated, transferred,
transformed or stored during Process flows. These items can be either physical items, such as the mechanical
part of a vehicle, or information items such the catalog of the mechanical parts of a vehicle.

An important characteristics of items in Process is their structure. BPMN does not require a particular format
for this data structure, but it does designate XML Schema as its default. The structure attribute references the
actual data structure.

The default format of the data structure for all elements can be specified in the Definitions element using
the typeLanguage attribute. For example, a typeLanguage value of
http://www.w3.org/2001/XMLSchema” indicates that the data structures using by elements within that
Definitions are in the form of XML Schema types. If unspecified, the default is XML schema. An Import is used
to further identify the location of the data structure (if applicable). For example, in the case of data structures
contributed by an XML schema, an Import would be used to specify the file location of that schema.

Structure definitions are always defined as separate entities, so they cannot be inlined in one of their usages. You
will see that in every mention of structure definition there is a “reference” to the element. This is why this class
inherits from RootElement.

An ItemDefinition element can specify an import reference where the proper definition of the structure is
defined.

In cases where the data structure represents a collection, the multiplicity can be projected into the attribute
isCollection. If this attribute is set to “true”, but the actual type is not a collection type, the model is
considered as invalid. BPMN compliant tools might support an automatic check for these inconsistencies and
report this as an error. The default value for this element is “false”.

The itemKind attribute specifies the nature of an item which can be a physical or an information item.

Figure 8-27 shows the ItemDefinition class diagram. When a ItemDefinition is defined it is
contained in Definitions.

http://www.w3.org/2001/XMLSchema

Proposal for:
Business Process Model and Notation (BPMN), v2.0 114

Figure 8-27 – ItemDefinition class diagram

The ItemDefinition element inherits the attributes and model associations BaseElement (see Table 8-5)
through its relationship to RootElement. Table 8-49 presents the additional attributes and model associations
for the ItemDefinition element:

Table 8-49 – ItemDefinition attributes & model associations

Attribute Name Description/Usage

itemKind: ItemKind =
“Information”

{Information | Physical}

This defines the nature of the Item. Possible values are Physical or
Information. The default value is Information.

structure: Element
[0..1]

The concrete data structure to be used.

import: Import [0..1] Identifies the location of the data structure and its format. If the importType
attribute is left unspecified, the typeLanguage specified in the Definitions
that contains this ItemDefinition is assumed

isCollection: boolean =
False

Setting this flag to true indicates that the actual data type is a collection.

Proposal for:
115 Business Process Model and Notation (BPMN), v2.0

8.3.13. Message
A Message represents the content of a communication between two Participants. In BPMN 2.0, a Message
is a graphical object (it was a supporting element in BPMN 1.2). An ItemDefinition is used to specify the
Message structure.

When displayed in a diagram:

In a Message is a rectangle with converging diagonal lines in the upper half of the rectangle to give
the appearance of an envelope (see Figure 8-28). It MUST be drawn with a single thin line.

The use of text, color, size, and lines for a Task MUST follow the rules defined in Section “Use of
Text, Color, Size, and Lines in a Diagram” on page 63.

Figure 8-28 – A Message

In addition, when used in a Choreography Diagram more than one Message may be used for a single
Choreography Task or a Choreography Sub-Process. In this case, it is important to know the first
(initiating) Message of the interaction. For return (non-initiating) Messages the symbol of the Message is
shaded with a light fill (see Figure 8-29).

Figure 8-29 – An non-initiating Message

Any Message that is after first on the list of Messages for a Choreography Task or a
Choreography Sub-Process MUST be shaded with a light fill.

In a Collaboration, the communication itself is represented by a Message Flow (see the Section “Message
Flow” below for more details). The Message can be displayed as attached (Associated) to a Message
Flow in a Collaboration (see Figure 8-30 and Figure 8-31).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 116

Supplier

Customer

Confirmation

Order

Figure 8-30 –Messages shown Associated with Message Flow

Figure 8-31 –Messages Association overlapping Message Flow

In a Choreography, the communication is represented by a Choreography Task (see page 350). The
Message can be displayed as Associated with a Choreography Task in a Choreography (see

Proposal for:
117 Business Process Model and Notation (BPMN), v2.0

Figure 8-32 –Messages shown Associated with a Choreography Task

In a Process that is not used in a Collaboration, the communication is not displayed, but a Message can be
defined for Activities that send and receive Messages (such as a Send Task—see Figure 8-33). Note that
the display of Messages in a Process, Collaboration, or Choreography is optional.

Figure 8-33 –Messages shown Associated with a Send Task

Figure 8-34 displays the class diagram showing the attributes and model associations for the Message element.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 118

Figure 8-34 – The Message class diagram

The Message element inherits the attributes and model associations of BaseElement (see Table 8-5)
through its relationship to RootElement. Table 8-50 presents the additional attributes and model associations
for the Message element:

Table 8-50 – Message attributes and model associations

Attribute Name Description/Usage

name: string Name is a text description of the Message

structureRef :
ItemDefinition [0..1]

An ItemDefinition is used to define the “payload” of the Message.

Proposal for:
119 Business Process Model and Notation (BPMN), v2.0

8.3.14. Message Flow
A Message Flow is used to show the flow of Messages between two Participants that are prepared to
send and receive them.

A Message Flow MUST connect two separate Pools. They connect either to the Pool boundary or
to Flow Objects within the Pool boundary. They MUST NOT connect two objects within the same
Pool.

A Message Flow is a line with an open circle line start and an open arrowhead line end that MUST
be drawn with a dashed single line (see Figure 8-35).

The use of text, color, size, and lines for a Pool MUST follow the rules defined in Section “Use of
Text, Color, Size, and Lines in a Diagram” on page 63.

Figure 8-35 – A Message Flow

In Collaboration Diagrams (the view showing the Choreography Process Combined with Orchestration
Processes), the Message Flow can be extended to show the Message that is passed from one
Participant to another (see Figure 8-36).

Supplier

Customer

Confirmation

Order

Figure 8-36 – A Message Flow with an Attached Message

If a Choreography is included in the Collaboration, then the Message Flow will “pass-through” a
Choreography Task as it connects from one Participant to another (see Figure 8-37).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 120

Figure 8-37 – A Message Flow passing through a Choreography Task

Figure 8-38 displays the class diagram of Message Flow and its relationships to other BPMN elements. When
a Message Flow is defined it is contained either within a Collaboration, a Choreography Task, or a
GlobalChoreographyTask.

Proposal for:
121 Business Process Model and Notation (BPMN), v2.0

Figure 8-38 – The Message Flow Class Diagram

The Message Flow element inherits the attributes and model associations of BaseElement (see Table 8-5).
Table 8-51 presents the additional attributes and model associations for the Message Flow element:

Table 8-51 – Message Flow attributes and model associations

Attribute Name Description/Usage

name: string Name is a text description of the Message Flow.

sourceRef:
MessageFlowNode

The MessageFlowNode that the Message Flow is connecting from. Of the
types of MessageFlowNode, only Pools/Participants, Activities, and
Events can be the source.

targetRef:
MessageFlowNode

The MessageFlowNode that the Message Flow is connecting to. Of the
types of MessageFlowNode, only Pools/Participants, Activities, and
Events can be the target.

messageRef: Message
[0..1]

The messageRef model association defines the Message that is passed via
the Message Flow. See page 112 for more details.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 122

Message Flow Node

The MessageFlowNode element is used to provide a single element as the source and target Message Flow
associations (see Figure 8-38, above) instead of the individual associations of the elements that can connect to
Message Flow (see the section above). Only the Pool/Participant, Activity, and Event elements can
connect to Message Flow and thus, these elements are the only ones that are sub-classes of
MessageFlowNode.

The MessageFlowNode element does not have any attributes or model associations and does not inherit from
any other BPMN element. Since Pools/Participants, Activities, and Events have their own attributes, model
associations, and inheritances, additional attributes and model associations for the MessageFlowNode
element are not necessary.

Message Flow Associations

These elements are used to do mapping between two elements that both contain Message Flow. The
MessageFlowAssociation provides the mechanism to match up the Message Flow.

A MessageFlowAssociation is used when an (outer) diagram with Message Flow contains an (inner)
diagram that also has Message Flow. There are three (3) usages of MessageFlowAssociation. It is
used when:

A Collaboration references a Choreography for inclusion between the Collaboration’s Pools
(Participants). The Message Flow of the Choreography (the inner diagram) need to be mapped to
the Message Flow of the Collaboration (the outer diagram).

A Collaboration references a Conversation that contains Message Flow. The Message Flow
of the Conversation may serve as a partial requirement for the Collaboration. Thus, the Message
Flow of the Conversation (the inner diagram) need to be mapped to the Message Flow of the
Collaboration (the outer diagram).

A Choreography references a Conversation that contains Message Flow. The Message Flow
of the Conversation may serve as a partial requirement for the Choreography. Thus, the
Message Flow of the Conversation (the inner diagram) need to be mapped to the Message Flow
of the Choreography (the outer diagram).

Proposal for:
123 Business Process Model and Notation (BPMN), v2.0

Figure 8-39 shows the class diagram for the MessageFlowAssociation element.

Figure 8-39 – MessageFlowAssociation class diagram

The MessageFlowAssociation element inherits the attributes and model associations of BaseElement
(see Table 8-5). Table 8-53 presents the additional model associations for the MessageFlowAssociation
element:

Table 8-52 – MessageFlowAssociation attributes and model associations

Attribute Name Description/Usage

innerMessageFlowRef:
Message Flow

This attribute defines the Message Flow of the referenced element
(e.g., a Choreography to be used in a Collaboration) that will be
mapped to the parent element (e.g., the Collaboration).

outerMessageFlowRef:
Message Flow

This attribute defines the Message Flow of the parent element (e.g., a
Collaboration references a Choreography) that will be mapped to the
referenced element (e.g., the Choreography).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 124

8.3.15. Participants
A Participant represents a specific PartnerEntity (e.g., a company) and/or a more general PartnerRole
(e.g., a buyer, seller, or manufacturer) that Participants in a Collaboration. A Participant is often responsible
for the execution of the Process enclosed in a Pool; however, a Pool may be defined without a Process.

Figure 8-40 displays the class diagram of the Participant and its relationships to other BPMN elements. When
Participants are defined they are contained within an InteractionSpecification, which includes the
sub-types of Collaboration, a Choreography, a Conversation, a Global Communication, or a
GlobalChoreographyTask.

Figure 8-40 – The Participant Class Diagram

Proposal for:
125 Business Process Model and Notation (BPMN), v2.0

The Participant element inherits the attributes and model associations of BaseElement (see Table 8-5). Table
8-53 presents the additional attributes and model associations for the Participant element:

Table 8-53 – Participant attributes and model associations

Attribute Name Description/Usage

name: string [0..1] Name is a text description of the Participant. The name of the Participant
can be displayed directly or it can be substituted by the associated
PartnerRole or PartnerEntity. Potentially, both the
PartnerEntity name and PartnerRole name can be displayed for
the Participant.

processRef: Process [0..1] The processRef attribute identifies the Process that the
Participant uses in the Collaboration. The Process will be displayed
within the Participant’s Pool.

partnerRoleRef: PartnerRole
[0..1]

The partnerRoleRef attribute identifies a PartnerRole that the
Participant plays in the Collaboration. Both a PartnerRole and a
PartnerEntity MAY be defined for the Participant.

partnerEntityRef: PartnerEntity
[0..1]

The partnerEntityRef attribute identifies a PartnerEntity that
the Participant plays in the Collaboration. Both a PartnerRole and a
PartnerEntity MAY be defined for the Participant.

interfaceRef: Interface [0..*] This association defines Interfaces that a Participant supports. The
definition of Interfaces is provided on page 140.

participantMultiplicity:
participantMultiplicity [0..1]

The participantMultiplicityRef model association is used to
define Participants that represent more than one (1) instance of the
Participant for a given interaction. See the next section for more details
on ParticipantMultiplicity.

endpointRefs: EndPoint [0..*] This attribute is used to specify the address (or endpoint reference) of
concrete services realizing the Participant.

PartnerEntity

An PartnerEntity is one of the possible types of Participant (see the section above).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 126

The PartnerEntity element inherits the attributes and model associations of BaseElement (see Table
8-5). Table 8-54 presents the additional attributes and model associations for the PartnerEntity element:

Table 8-54 – PartnerEntity attributes

Attribute Name Description/Usage

name: string Name is a text description of the PartnerEntity.

PartnerRole

A PartnerRole is one of the possible types of Participant (see the section above).

The PartnerRole element inherits the attributes and model associations of BaseElement (see Table 8-5).
Table 8-55 presents the additional attributes and model associations for the PartnerRole element:

Table 8-55 – PartnerRole attributes

Attribute Name Description/Usage

name: string Name is a text description of the PartnerRole.

Participant Multiplicity

ParticipantMultiplicity is used to define the multiplicity of a Participant.

For example, a manufacturer may request a quote from multiple suppliers in a Choreography.

Figure 8-41 – A Pool with a Multiple Participant

Proposal for:
127 Business Process Model and Notation (BPMN), v2.0

The following figure shows the Participant class diagram.

Figure 8-42 – The Participant Multiplicity class diagram

When the minimum attribute of the ParticipantMultiplicty element has been set by the modeler, then
the multi-instance marker will be displayed in bottom center of the Pool (Participant – see Figure 8-41) or the
Participant Band of a Choreography Activity (see page 356).

Table 8-56 presents the attributes for the ParticipantMultiplicity element:

Table 8-56 – ParticipantMultiplicity attributes

Attribute Name Description/Usage

minimum: integer [0..1] = 2 The minimum attribute defines minimum number of Participants that
MUST be involved in the Collaboration. The value of minimum MUST be
two (2) or greater.

maximum: integer [0..1] = 2 The maximum attribute defines maximum number of Participants that
MAY be involved in the Collaboration. The value of maximum MUST be two
(2) or greater.

Table 8-57 presents the Instance attributes of the ParticipantMultiplicity element:

Table 8-57 – ParticipantMultiplicity Instance attributes

Attribute Name Description/Usage

numParticipants: integer [0..1] The current number of the multiplicity of the Participant for this
Choreography or Collaboration Instance.

ParticipantAssociation
These elements are used to do mapping between two elements that both contain Participants. There are
situations where the Participants in different diagrams may be defined differently because they were developed
independently, but represent the same thing. The ParticipantAssociation provides the mechanism to
match up the Participants.

A ParticipantAssociation is used when an (outer) diagram with Participants contains an (inner)
diagram that also has Participants. There are three (3) usages of ParticipantAssociation. It is used
when:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 128

A Collaboration references a Choreography for inclusion between the Collaboration’s Pools
(Participants). The Participants of the Choreography (the inner diagram) need to be mapped to the
Participants of the Collaboration (the outer diagram).

A Collaboration references a Process (within one of its Pools) and that Process contains a Call
Activity that references another Process that has a definitional Collaboration. The Participants of
the definitional Collaboration for the called Process (the inner diagram) need to be mapped to the
Participants of the Collaboration (the outer diagram). Note that the outer Collaboration may be a
definitional Collaboration for the referenced Process.

A Choreography contains a Call Choreography Activity that references another
Choreography. The Participants of the called Choreography (the inner diagram) need to be
mapped to the Participants of the calling Choreography (the outer diagram).

A ParticipantAssociation can be owned by the outer diagram or one its elements. Figure 8-43 shows
the class diagram for the ParticipantAssociation element.

Figure 8-43 – ParticipantAssociation class diagram

Proposal for:
129 Business Process Model and Notation (BPMN), v2.0

The ParticipantAssociation element inherits the attributes and model associations of BaseElement
(see Table 8-5). Table 8-58 presents the additional model associations for the ParticipantAssociation
element:

Table 8-58 – ParticipantAssociation model associations

Attribute Name Description/Usage

innerParticipantRef: Participant This attribute defines the Participant of the referenced element (e.g., a
Choreography to be used in a Collaboration) that will be mapped to
the parent element (e.g., the Collaboration).

outerParticipantRef: Participant This attribute defines the Participant of the parent element (e.g., a
Collaboration references a Choreography) that will be mapped to the
referenced element (e.g., the Choreography).

8.3.16. Resources
The Resource class is used to specify resources that can be referenced by Activities. These Resources can
be Human Resources as well as any other resource assigned to Activities during Process execution time.

The definition of a Resource is "abstract", because it only defines the Resource, without detailing how e.g.
actual user IDs are associated at runtime. Multiple Activities can utilize the same Resource.

Every Resource can define a set of ResourceParameters. These parameters can be used at runtime
to define query e.g. into an Organizational Directory. Every Activity referencing a parameterized Resource
can bind values available in the scope of the Activity to these parameters.

Figure 8-44 – Resource class diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 130

The Resource element inherits the attributes and model associations of BaseElement (see Table 8-5)
through its relationship to RootElement. Table 8-59 presents the additional model associations for the
Resource element:

Table 8-59 – Resource attributes and model associations

Attribute Name Description/Usage

name: string This attribute specifies the name of the Resource.

parameters:
ResourceParameter [0..*]

This model association specifies the definition of the parameters
required at runtime to resolve the Resource.

As mentioned before, the Resource can define a set of parameters to define a query to resolve the actual
resources (e.g. user ids).

The ResourceParameter element inherits the attributes and model associations of BaseElement (see
Table 8-5) through its relationship to RootElement. Table 8-59 presents the additional model associations for
the ResourceParameter element:

Table 8-60 – ResourceParameter attributes and model associations

Attribute Name Description/Usage

name: String Specifies the name of the query parameter.

type: Element Specifies the type of the query parameter.

isRequired: Boolean Specifies, if a parameter is optional or mandatory.

8.3.17. Sequence Flow
A Sequence Flow is used to show the order of Flow Elements in a Process or a Choreography. Each
Sequence Flow has only one source and only one target. The source and target must be from the set of the
following Flow Elements: Events (Start, Intermediate, and End), Activities (Task and
Sub-Process; for Processes), Choreography Activities (Choreography Task and
Choreography Sub-Process; for Choreographies), and Gateways.

A Sequence Flow is line with a solid arrowhead that MUST be drawn with a solid single line (as
seen in Figure 8-45).

The use of text, color, size, and lines for a Task MUST follow the rules defined in Section “Use of
Text, Color, Size, and Lines in a Diagram” on page 63.

Figure 8-45 – A Sequence Flow

Proposal for:
131 Business Process Model and Notation (BPMN), v2.0

A Sequence Flow can optionally define a condition Expression, indicating that the token will be passed
down the Sequence Flow only if the Expression evaluates to true. This Expression is typically used
when the source of the Sequence Flow is a Gateway or an Activity.

A conditional outgoing Sequence Flow from an Activity MUST be drawn with a mini-diamond
marker at the beginning of the connector (as seen in Figure 8-46).

If a conditional Sequence Flow is used from a source Activity, then there MUST be at least
one other outgoing Sequence Flow from that Activity.

Conditional outgoing Sequence Flow from a Gateway MUST NOT be drawn with a
mini-diamond marker at the beginning of the connector.

A source Gateway MUST NOT be of type Parallel or Event.

Figure 8-46 – A Conditional Sequence Flow

A Sequence Flow that has an Exclusive, Inclusive, or Complex Gateway or an Activity as its source
can also be defined with as default. Such Sequence Flow will have a marker to show that it is a default flow.
The default Sequence Flow is taken (a token is passed) only if all the other outgoing Sequence Flow from
the Activity or Gateway are not valid (i.e., their condition Expressions are false)

A default outgoing Sequence Flow MUST be drawn with a slash marker at the beginning of the
connector (as seen in Figure 8-47).

Figure 8-47 – A Default Sequence Flow

Proposal for:
Business Process Model and Notation (BPMN), v2.0 132

Figure 8-48 – SequenceFlow class diagram

The Sequence Flow element inherits the attributes and model associations of FlowElement (see Table
8-45). Table 8-61 presents the additional attributes and model associations of Sequence Flow element:

Table 8-61 – SequenceFlow attributes and model associations

Attribute Name Description/Usage

sourceRef: FlowNode The FlowNode that the Sequence Flow is connecting from.

For a Process: Of the types of FlowNode, only Activities, Gateways, and
Events can be the source. However, Activities that are Event Sub-Processes
are not allowed to be a source.

For a Choreography: Of the types of FlowNode, only Choreography Activities,
Gateways, and Events can be the source.

targetRef: FlowNode The FlowNode that the Sequence Flow is connecting to.

For a Process: Of the types of FlowNode, only Activities, Gateways, and
Events can be the target. However, Activities that are Event Sub-Processes
are not allowed to be a target.

For a Choreography: Of the types of FlowNode, only Choreography Activities,
Gateways, and Events can be the target.

Proposal for:
133 Business Process Model and Notation (BPMN), v2.0

conditionExpression:
Expression [0..1]

An optional Boolean Expression that acts as a gating condition. A token will
only be placed on this Sequence Flow if this conditionExpression
evaluates to true.

isImmediate: boolean
[0..1]

An optional Boolean value specifying whether Activities or Choreography
Activities not in the model containing the Sequence Flow can occur between
the elements connected by the Sequence Flow. If the value is true, they MAY
NOT occur. If the value is false, they MAY occur. Also see the isClosed
attribute on Process, Choreography, and Collaboration.

When the attribute has no value, the default semantics depends on the kind of
model containing Sequence Flow:

For a public Processes and Choreographies no value has the same
semantics as if the value were false.

For an executable and non-executable (internal) Processes no value has the
same semantics as if the value were true.

For executable Processes, the attribute MUST NOT be false.

Flow Node

The FlowNode element is used to provide a single element as the source and target Sequence Flow
associations (see Figure 8-48, above) instead of the individual associations of the elements that can connect to
Sequence Flow (see the section above). Only the Gateway, Activity, Choreography Activity, and
Event elements can connect to Sequence Flow and thus, these elements are the only ones that are
sub-classes of FlowNode.

Since Gateway, Activity, Choreography Activity, and Event have their own attributes, model
associations, and inheritances; the FlowNode element does not inherit from any other BPMN element. Table
8-62 presents the additional model associations of the FlowNode element:

Table 8-62 – FlowNode model associations

Attribute Name Description/Usage

incoming: Sequence
Flow [0..*]

This attribute identifies the incoming Sequence Flow of the FlowNode.

outgoing: Sequence
Flow [0..*]

This attribute identifies the outgoing Sequence Flow of the FlowNode.

8.3.18. Common Package XML Schemas

Proposal for:
Business Process Model and Notation (BPMN), v2.0 134

Table 8-63 – CallableElement XML schema

<xsd:element name="callableElement" type="tCallableElement"/>
<xsd:complexType name="tCallableElement">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:sequence>
<xsd:element name="supportedInterfaceRef" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element ref="ioSpecification" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="ioBinding" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-64 – ConversationAssociation XML schema

<xsd:element name="conversationAssociation" type="tConversationAssociation"/>
<xsd:complexType name="tConversationAssociation">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="messageFlowRef" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="conversationRef" type="xsd:QName"/>
<xsd:attribute name="correlationKeyRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-65 – Error XML schema

<xsd:element name="error" type="tError"/>
<xsd:complexType name="tError">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:attribute name="structureRef" type="xsd:QName"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 8-66 – Expression XML schema

<xsd:element name="expression" type="tExpression"/>
<xsd:complexType name="tExpression">

<xsd:complexContent>
<xsd:extension base="tBaseElementWithMixedContent"/>

</xsd:complexContent>
</xsd:complexType>

Proposal for:
135 Business Process Model and Notation (BPMN), v2.0

Table 8-67 – FlowElement XML schema

<xsd:element name="flowElement" type="tFlowElement"/>
<xsd:complexType name="tFlowElement" abstract="true">

<xsd:complexContent>
 <xsd:extension base="tBaseElement">
 <xsd:sequence>

<xsd:element ref="auditing" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="monitoring" minOccurs="0" maxOccurs="1"/>
<xsd:element name="categoryValue" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-68 – FlowNode XML schema

<xsd:element name="flowNode" type="tFlowNode"/>
<xsd:complexType name="tFlowNode" abstract="true">

<xsd:complexContent>
<xsd:extension base="tFlowElement">

<xsd:sequence>
<xsd:element name="incoming" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element name="outgoing" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-69 – FormalExpression XML schema

<xsd:element name="formalExpression" type="tFormalExpression" substitutionGroup="expression"/>
<xsd:complexType name="tFormalExpression" mixed="true">

<xsd:complexContent>
<xsd:extension base="tExpression">

<xsd:attribute name="language" type="xsd:anyURI" use="optional"/>
<xsd:attribute name="evaluatesToTypeRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 136

Table 8-70 – InputOutputBinding XML schema

<xsd:element name="ioBinding" type="tinputOutputBinding"/>
<xsd:complexType name="tinputOutputBinding">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name=”inputDataRef" type="xsd:IDREF"/>
<xsd:attribute name=”outputDataRef" type="xsd:IDREF"/>
<xsd:attribute name=”operationRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-71 – ItemDefinition XML schema

<xsd:element name="itemDefinition" type="tItemDefinition" substitutionGroup="rootElement"/>
<xsd:complexType name="tItemDefinition">

<xsd:complexContent>
 <xsd:extension base="tRootElement">
 <xsd:attribute name="structureRef" type="xsd:QName"/>
 <xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>
 <xsd:attribute name="itemKind" type="tItemKind" default="Information"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="tItemKind">
<xsd:restriction base="xsd:string">
 <xsd:enumeration value="Information"/>
 <xsd:enumeration value="Physical"/>
</xsd:restriction>

</xsd:simpleType>

Table 8-72 – Message XML schema

<xsd:element name="message" type="tMessage" substitutionGroup="rootElement"/>
<xsd:complexType name="tMessage">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="structureRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
137 Business Process Model and Notation (BPMN), v2.0

Table 8-73 – MessageFlow XML schema

<xsd:element name="messageFlow" type="tMessageFlow"/>
<xsd:complexType name="tMessageFlow">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="sourceRef" type="xsd:QName" use="required"/>
<xsd:attribute name="targetRef" type="xsd:QName" use="required"/>
<xsd:attribute name="messageRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-74 – MessageFlowAssociation XML schema

<xsd:element name="messageFlowAssociation" type="tMessageFlowAssociation"/>
<xsd:complexType name="tMessageFlowAssociation">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="innerMessageFlowRef" type="xsd:QName" use="required"/>
<xsd:attribute name="outerMessageFlowRef" type="xsd:QName" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-75 – Participant XML schema

<xsd:element name="participant" type="tParticipant"/>
<xsd:complexType name="tParticipant">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="interfaceRef" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element name="endPointRef" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element ref="participantMultiplicity" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="partnerRoleRef" type="xsd:QName" use="optional"/>
<xsd:attribute name="partnerEntityRef" type="xsd:QName" use="optional"/>
<xsd:attribute name="processRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 138

Table 8-76 – ParticipantAssociation XML schema

<xsd:element name="participantAssociation" type="tParticipantAssociation"/>
<xsd:complexType name="tParticipantAssociation">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="innerParticipantRef" type="xsd:QName"/>
<xsd:element name="outerParticipantRef" type="xsd:QName"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 8-77 – PartnerEntity XML schema

<xsd:element name="partnerEntity" type="tPartnerEntity" substitutionGroup="rootElement"/>
<xsd:complexType name="tPartnerEntity">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 8-78 – PartnerRole XML schema

<xsd:element name="partnerRole" type="tPartnerRole" substitutionGroup="rootElement"/>
<xsd:complexType name="tPartnerRole">

<xsd:complexContent>
 <xsd:extension base="tRootElement">
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-79 – Resources XML schema

<xsd:element name="resource" type="tResource" substitutionGroup="rootElement"/>
<xsd:complexType name="tResource">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:sequence>
<xsd:element ref="resourceParameter" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
139 Business Process Model and Notation (BPMN), v2.0

Table 8-80 – SequenceFlow XML schema

<xsd:element name="sequenceFlow" type="tSequenceFlow" substitutionGroup="flowElement"/>
<xsd:complexType name="tSequenceFlow">

<xsd:complexContent>
 <xsd:extension base="tFlowElement">
 <xsd:sequence>

<xsd:element name="conditionExpression" type="tExpression" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="sourceRef" type="xsd:IDREF" use="required"/>
 <xsd:attribute name="targetRef" type="xsd:IDREF" use="required"/>
 <xsd:attribute name="isImmediate" type="xsd:boolean" default="true"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

8.4. Services
The Service package contains constructs necessary for modeling services, interfaces, and operations.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 140

Figure 8-49 – The Service class diagram

8.4.1. Interface
An Interface defines a set of operations that are implemented by Services.

The Interface inherits the attributes and model associations of BaseElement (see Table 8-5) through its
relationship to RootElement. Table 8-81 presents the additional attributes and model associations of the
Interface:

Proposal for:
141 Business Process Model and Notation (BPMN), v2.0

Table 8-81 – Interface attributes and model associations

Attribute Name Description/Usage

name: string The descriptive name of the element.

operations: Operation [1..*] This attribute specifies operations that are defined as part of the
Interface. An Interface has at least one Operation.

callableElements:
CallableElements [0..*]

The CallableElements that use this Interface.

8.4.2. EndPoint
The actual definition of the service address is out of scope of BPMN 2.0. The EndPoint element is an
extension point and extends from RootElement. The EndPoint element may be extended with endpoint
reference definitions introduced in other specifications (e.g. WS-Addressing).

EndPoints can be specified for Participants.

8.4.3. Operation
An Operation defines Messages that are consumed and, optionally, produced when the Operation is
called. It may also define zero or more errors that are returned when operation fails. The Operation inherits
the attributes and model associations of BaseElement (see Table 8-5). Table 8-82 below presents the
additional attributes and model associations of the Operation:

Table 8-82 – Operation attributes and model associations

Attribute Name Description/Usage

name: string The descriptive name of the element.

inMessageRef: Message This attribute specifies the input Message of the Operation. An
Operation has exactly one input Message.

outMessageRef: Message
[0..1]

This attribute specifies the output Message of the Operation. An
Operation has at most one input Message.

errorRef: Error [0..*] This attribute specifies errors that the Operation may return. An
Operation may refer to zero or more Error elements.

8.4.4. Service Package XML Schemas

Table 8-83 – interface XML schema

<xsd:element name="interface" type="tInterface"/>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 142

<xsd:complexType name="tInterface">
<xsd:complexContent>

<xsd:extension base="tRootElement">
<xsd:sequence>

<xsd:element ref="operation" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-84 – operation XML schema

<xsd:element name="operation" type="tOperation"/>
<xsd:complexType name="tOperation">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="inMessageRef" type="xsd:QName" minOccurs="1" maxOccurs="1"/>
<xsd:element name="outMessageRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>
<xsd:element name="errorRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8-85 – endPoint XML schema

<xsd:element name="endPoint" type="tEndPoint"/>
<xsd:complexType name="tEndPoint">

<xsd:complexContent>
<xsd:extension base="tRootElement"/>

</xsd:complexContent>
</xsd:complexType>

Proposal for:
143 Business Process Model and Notation (BPMN), v2.0

9. Collaboration

Note: The contents of this chapter are required for BPMN Choreography Modeling Conformance, BPMN
Process Modeling Conformance, or for BPMN Complete Conformance. However, this chapter is not
required for, BPMN Process Execution Conformance or BPMN BPEL Process Execution Conformance.
For more information about BPMN conformance types, see page 28.

The Collaboration package contains classes which are used for modeling Collaborations, which is a
collection of Participants shown as Pools, their interactions as shown by Message Flow, and may include
Processes within the Pools and/or Choreographies between the Pools (see Figure 9-1). When a
Collaboration is defined it is contained in Definitions.

Figure 9-1 – Classes in the Collaboration package

Proposal for:
Business Process Model and Notation (BPMN), v2.0 144

The Collaboration element inherits the attributes and model associations of BaseElement (see Table 8-5)
through its relationship to RootElement, and InteractionSpecification (see Table 8-48). Table 9-1
presents the additional attributes and model associations for the Collaboration element:

Table 9-1 – Collaboration Attributes and Model Associations

Attribute Name Description/Usage

name: string Name is a text description of the Collaboration.

choreographyRef:
Choreography [0..1]

The choreographyRef model association defines a Choreography that is
shown between the Pools of the Collaboration. A Choreography specifies a
business contract (or the order in which messages will be exchanged)
between interacting Participants. See page 327 for more details on
Choreography.

The participantAssociations (see below) are used to map the
Participants of the Choreography to the Participants of the Collaboration.

The choreographyMessageFlowAssociations (see below) are used to
map the Message Flow of the Choreography to the Message Flow of the
Collaboration.

conversationAssociations:
ConversationAssociation [0..*]

This attribute provides the list of ConversationAssociations that are used
to apply (reusable) Conversations to the Collaboration.

The ConversationAssociations is used to identify the Message Flow
that are grouped by the referenced Conversation. This grouping can be
done automatically through the CorrelationKey of the Conversation
(matching the CorrelationKey to the Messages of the Message Flow) or
done through user selection if a CorrelationKey has not been defined.

If the Conversation lists Participants, then the
participantAssociations (see below) are used to map the Participants
of the Conversation to the Participants of the Collaboration.

If the Conversation lists Message Flow, then the
MessageFlowAssociations (see below) are used to map the Message
Flow of the Conversation to the Message Flow of the Collaboration.

conversations: Conversation
[0..*]

The conversation model aggregation relationship allows to have
Conversations contained in a Collaboration, to group Message Flow of
the Collaboration and associate correlation information, as is required for
the definitional Collaboration of a Process model. Such a Conversation
SHOULD only use Message Flow references to group the Message Flow of
the enclosing Collaboration.

artifacts: Artifact [0..*] This attribute provides the list of Artifacts that are contained within the
Collaboration.

Proposal for:
145 Business Process Model and Notation (BPMN), v2.0

participantAssociations:
ParticipantAssociations [0..*]

This attribute provides a list of mappings from the Participants of a referenced
Choreography or Conversation to the Participants of the Collaboration. It
can also provide mappings between Participants of a definitional
Collaboration for a Process to Participants in definitional Collaboration of
called Processes.

messageFlowAssociations:
Message Flow Association [0..*]

This attribute provides a list of mappings for the Message Flow of the
Collaboration to Message Flow of a referenced model. This applies for two
(2) situations:

 When a Choreography is referenced by the Collaboration.
 When a Conversation is referenced by the Collaboration.

IsClosed: boolean = false A Boolean value specifying whether Message Flow not modeled in the
Collaboration can occur when the Collaboration is carried out. If the value is
true, they MAY NOT occur. If the value is false, they MAY occur.

A set of Messages Flow of a particular Collaboration may belong to the same Conversation. A
Conversation is a set of Message Flow that share a particular purpose—i.e., they all relate to the handling
of a single order (see page 112 for more information about Conversations). Correlations are the mechanism
that is used to identify the Messages and, consequently, the Message Flow that belong to the same
Conversation. Correlations can be used to specify Conversations between Processes that follow a fairly
simple Conversation pattern in the sense that:

The conceptual data of the Conversation is well known and defined by the participating Processes.
However this doesn’t mandate that underlying type systems are identical. It is sufficient that the data is
known “conceptually” on a (potentially very high) business level.

A Conversation takes place by means of simple Message exchange between Processes, no
additional agreements must be considered.

There exists send and receive Tasks accepting the conceptual data of the Conversation. (An Order
send by a Task of a Process should be received by at least one Task of the participating Process)

The correlation itself is defined in terms of correlation fields, which denote a subset of the conceptual
data that should be used for the correlation. (For example, if the conceptual data comprises of an order
than the correlation field might be denoted by the order ID).

In some applications it is useful to allow more Messages to be sent between Participants when a
Collaboration is carried out than are contained the Collaboration model. This enables Participants to
exchange other Messages as needed without changing the Collaboration. If the isClosed attribute of a
Collaboration has a value of false or no value, then Participants MAY send Messages to each other without
additional Message Flow in the Collaboration. If the isClosed attribute of a Collaboration has a
value of true, then Participants MAY NOT send Messages to each other without additional Message Flow
in the Collaboration. If a Collaboration contains a Choreography, then the value of the isClosed
attribute MUST be the same in both. Restrictions on unmodeled messaging specified with isClosed apply
only under the Collaboration containing the restriction. PartnerEntities and PartnerRoles of the
Participants MAY send Messages to each other under other Choreographies, Collaborations, and
Conversations.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 146

9.1. Basic Collaboration Concepts
A Collaboration contains two (2) or more Pools, representing the Participants in the Collaboration. The
Message exchange between the Participants is shown by a Message Flow that connects two (2) Pools (or
the objects within the Pools). The Messages associated with the Message Flow may also be shown.

A Pool may be empty, a “black box,” or main show a Process within. Choreographies may be shown “in
between” the Pools as they bisect the Message Flow between the Pools. All combinations of Pools,
Processes, and a Choreography are allowed in a Collaboration.

9.1.1. Use of BPMN Common Elements
Some BPMN elements are common to both Process and Choreography, as well as Collaboration; they
are used in these diagrams. The next few sections will describe the use of Messages, Message Flow,
Participants, Sequence Flow, Artifacts, Correlations, Expressions, and Services in Choreography.

9.2. Pool and Participant
A Pool represents a Participant in a Collaboration or a Choreography. A Participant (see page 124)
can be a specific PartnerEntity (e.g., a company) or can be a more general PartnerRole (e.g., a buyer,
seller, or manufacturer). Graphically, a Pool is a container for partitioning a Process from other Pools. A
Pool is not required to contain a Process, i.e., it can be a “black box”.

A Pool is a square-cornered rectangle that MUST be drawn with a solid single line (see Figure 9-2).

The label for the Pool MAY be placed in any location and direction within the Pool, but MUST
be separated from the contents of the Pool by a single line.

If the Pool is a black box (i.e., does not contain a Process), then the label for the Pool MAY
be placed anywhere within the Pool without a single line separator.

One, and only one, Pool in a diagram MAY be presented without a boundary. If there is more than
one Pool in the diagram, then the remaining Pools MUST have a boundary.

The use of text, color, size, and lines for a Pool MUST follow the rules defined in Section “Use of Text, Color,
Size, and Lines in a Diagram” on page 63.

Figure 9-2 – A Pool

Proposal for:
147 Business Process Model and Notation (BPMN), v2.0

To help with the clarity of the Diagram, a Pool extends the entire length of the Diagram, either horizontally or
vertically. However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and
modeling tools can use Pools in a flexible manner in the interest of conserving the “real estate” of a Diagram on
a screen or a printed page.

A Pool acts as the container for the Sequence Flow between Activities (of a contained Process). The
Sequence Flow can cross the boundaries between Lanes of a Pool (see page 149 for more details on Lanes),
but cannot cross the boundaries of a Pool. That is, a Process is fully contained within the Pool. The interaction
between Pools is shown through Message Flow.

Another aspect of Pools is whether or not there is any Activity detailed within the Pool. Thus, a given Pool
may be shown as a “White Box,” with all details (e.g., a Process) exposed, or as a “Black Box,” with all details
hidden. No Sequence Flow is associated with a “Black Box” Pool, but Message Flow can attach to its
boundaries (see Figure 9-3).

Figure 9-3 – Message Flow connecting to the boundaries of two Pools

For a “White Box” Pool, the Activities within are organized by Sequence Flow. Message Flow can cross
the Pool boundary to attach to the appropriate Activity (see Figure 9-4)

Proposal for:
Business Process Model and Notation (BPMN), v2.0 148

Figure 9-4 – Message Flow connecting to Flow Objects within two Pools

A Collaboration contains at least two (2) Pools (i.e., Participants). However, the Activities that represent
the work performed from the point of view of the modeler or the modeler’s organization may be considered
“internal” Activities and are not required to be surrounded by the boundary of their Pool, while the other
Pools in the Diagram MUST have their boundary (see Figure 9-5).

Figure 9-5 – Main (Internal) Pool without boundaries

BPMN specifies a marker for Pools: a multi-instance Marker May be displayed for a Pool (see Figure 9-6). The
marker is used if the Participant defined for the Pool is a multi-instance Participant. See page 125 for more
information on Participant multiplicity.

Proposal for:
149 Business Process Model and Notation (BPMN), v2.0

The marker for a Pool that is a multi-instance MUST be a set of three vertical lines in parallel.

The marker, if used, MUST be centered at the bottom of the shape.

Figure 9-6 – A Pool with a Multi-Instance Participant Marker

9.2.1. Lanes
A Lane is a sub-partition within a Pool or a Process and will extend the entire length of the diagram, either
vertically or horizontally. See page 316 for more information on Lanes.

9.3. Collaboration
Processes can be included in a Collaboration diagram. A Participant/Pool within the Collaboration can
contain a Process (but they are not required). An example of this is shown in Figure 9-4, above. See page 324
for more details of how Processes are included with Collaborations.

9.4. Choreography within Collaboration
Choreographies can be included in a Collaboration diagram. A Collaboration specifies how the
Participants and Message Flow in the Choreography are matched up with the Participants and Message
Flow in the Collaboration. A Collaboration uses ParticipantAssociations and
MessageFlowAssociations for this purpose.

To handle the Participants, the innerParticipant of a ParticipantAssociation refers to a
Participant in the Choreography, while the outerParticipant refers to a Participant in the
Collaboration containing the Choreography. This mapping matches the Participant Bands of the
Choreography Activities in the Choreography to the Pools in the Collaboration. Thus, the names in
the Participant Bands are not required (see Figure 9-7).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 150

Se
lle

r
C

re
di

t A
ge

nc
y

Figure 9-7 – An example of a Choreography within a Collaboration

To handle Message Flow, the innerMessageFlow of a MessageFlowAssociation refers to a
Message Flow in the Choreography, while the outerMessageFlow refers to a Message Flow in the
Collaboration containing the Choreography. This mapping matches the Message Flow of the
Choreography (which are not visible) to the Message Flow in the Collaboration (which are visible).
This allows the Message Flow of the Collaboration to be “wired up” through the appropriate
Choreography Activity in the Choreography (see Figure 9-7, above).

The ParticipantAssociations might be derived from the partnerEntities or partnerRoles
of the Participants. For example, if a Choreography Activity has a Participant with the same
partnerEntity as a Participant in the Collaboration containing the Choreography, then these two (2)
Participants could be assumed to be the inner and outerParticipants of a
ParticipantAssociation. Similarly, Message Flow that reference the same Message in a Call
Choreography Activity and the Collaboration, could be automatically synchronized by a
MessageFlowAssociation, if only one Message Flow has that Message.

Proposal for:
151 Business Process Model and Notation (BPMN), v2.0

Figure 9-8 – Choreography within Collaboration class diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 152

9.5. Collaboration Package XML Schemas

Table 9-2 – Collaboration XML schema

<xsd:element name="collaboration" type="tCollaboration" substitutionGroup="rootElement"/>
<xsd:complexType name="tCollaboration">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:sequence>
<xsd:element ref="participant" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="messageFlow" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="conversation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="conversationAssociation" minOccurs="0"

maxOccurs="unbounded"//>
<xsd:element ref="participantAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="MessageFlowAssociation" type="tMessageFlowAssociation"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="isClosed" type="xsd:boolean" default="false"/>
<xsd:attribute name="choreographyRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
153 Business Process Model and Notation (BPMN), v2.0

10. Process

Note: The content of this chapter is required for BPMN Process Modeling Conformance or for BPMN
Complete Conformance. However, this chapter is not required for BPMN Process Choreography
Conformance, BPMN Process Execution Conformance, or BPMN BPEL Process Execution Conformance.
For more information about BPMN conformance types, see Page 28.

A Process describes a sequence or flow of Activities in an organization with the objective of carrying out
work. In BPMN a Process is depicted as a graph of Flow Elements, which are a set of Activities, Events,
Gateways, and Sequence Flow that define finite execution semantics (see Figure 10-1). Processes may
be defined at any level from enterprise-wide Processes to Processes performed by a single person.
Low-level Processes may be grouped together to achieve a common business goal.

Yes

+

Discussion
Cycle

Any issues
ready?

Review Issue
List

Receive
Issue List

No

Issue List

Start on
Friday

Issue Voting List
[0 to 5 Issues]

B

A

Figure 10-1 – An Example of a Process

Note that BPMN uses the term Process specifically to mean a set of flow elements. It uses the terms
Collaboration and Choreography when modeling the interaction between Processes.

The Process package contains classes which are used for modeling the flow of Activities, Events, and
Gateways, and how they are sequenced within a Process (see Figure 10-2). When a Process is defined it is
contained within Definitions.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 154

Figure 10-2 – Process class diagram

A Process is a CallableElement, allowing it to be referenced and reused by other Processes via the
Call Activity construct. In this capacity, a Process may reference a set of Interfaces that define its
external behavior.

A Process is a reusable element and can be imported and used within other Definitions.

Proposal for:
155 Business Process Model and Notation (BPMN), v2.0

Figure 10-3 shows the details of the attributes and model associations of a Process.

Figure 10-3 – Process Details class diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 156

The Process element inherits the attributes and model associations of CallableElement (see Table 8-30)
and of FlowElementContainer (see Table 8-46). Table 10-1 presents the additional attributes and model
associations of the Process element:

Table 10-1 – Process Attributes & Model Associations

Attribute Name Description/Usage

processType: ProcessType =
none

{ none | executable |
non-executable | public }

The processType attribute Provides additional information about the
level of abstraction modeled by this Process.

A public Process shows only those flow elements that are relevant to
external consumers. Internal details are not modeled. These Processes
are publicly visible and can be used within a Collaboration. Note that the
public processType was named abstract in BPMN 1.2.

The BPMN 1.2 processType private has been divided into two (2) types:

An executable Process is a private Process that has been modeled for
the purpose of being executed according to the semantics of Chapter 14
(see page 426). Of course, during the development cycle of the Process,
there will be stages where the Process does not have enough detail to be
“executable.”

A non-executable Process is a private Process that has been modeled for
the purpose of documenting Process behavior at a modeler-defined level
of detail. Thus, information required for execution, such as formal
condition expressions are typically not included in a non-executable
Process.

By default, the processType is “none”, meaning undefined.

auditing: Auditing [0..1] This attribute provides a hook for specifying audit related properties.

monitoring: Monitoring [0..1] This attribute provides a hook for specifying monitoring related properties.

laneSets: LaneSet [0..*] This attribute defines the list of LaneSets used in the Process.

IsClosed: boolean = false A Boolean value specifying whether interactions, such as sending and
receiving Messages and Events, not modeled in the Process can occur
when the Process is executed or performed. If the value is true, they MAY
NOT occur. If the value is false, they MAY occur.

supports: Process [0..*] Modelers can declare that they intend all executions or performances of
one Process to also be valid for another Process. This means they
expect all the executions or performances of the first Processes to also
follow the steps laid out in the second Process.

Proposal for:
157 Business Process Model and Notation (BPMN), v2.0

properties: Property [0..*] Modeler-defined properties MAY be added to a Process. These
properties are “local” to the Process. All Tasks and Sub-Processes
SHALL have access to these properties. The fully delineated name of
these properties is “<process name>.<property name>” (e.g., “Add
Customer.Customer Name”). If a Process is embedded within another
Process, then the fully delineated name SHALL also be preceded by the
parent Process name for as many parents there are until the top level
Process.

definitionalCollaborationRef:
Collaboration [0..1]

For Processes that interact with other Participants, a definitional
Collaboration can be referenced by the Process. The definitional
Collaboration specifies the Participants the Process interacts with, and
more specifically, which individual service, Send or Receive Task, or
Message Event, is connected to which Participant through Message
Flow.

The definitional Collaboration need not be displayed.

Additionally, the definitional Collaboration can be used to include
Conversation information within a Process.

In addition, a Process Instance has attributes whose values may be referenced by expressions (see Table 10-2).
These values are only available when the Process is being executed.

Table 10-2 – Process Instance Attributes

Attribute Name Description/Usage

state: String = inactive

{inactive | ready | withdrawn | active |
terminated | failed| completing |
completed | compensating |
compensated | closed}

The current state of this Process instance.

10.1. Basic Process Concepts

10.1.1. Types of BPMN Processes
Business Process modeling is used to communicate a wide variety of information to a wide variety of
audiences. BPMN is designed to cover many types of modeling and allows the creation of end-to-end Business
Processes. There are three basic types of BPMN Processes:

Private Non-executable (internal) Business Processes

Private Executable (internal) Business Processes

Public Processes

Proposal for:
Business Process Model and Notation (BPMN), v2.0 158

Private (Internal) Business Processes

Private Business Processes are those internal to a specific organization. These Processes have been
generally called workflow or BPM Processes (see Figure 10-4). Another synonym typically used in the Web
services area is the Orchestration of services. There are two (2) types of private Processes: executable and
non-executable. An executable Process is a Process that has been modeled for the purpose of being executed
according to the semantics defined in Chapter 14 (see page 426). Of course, during the development cycle of the
Process, there will be stages where the Process does not have enough detail to be “executable.” A
non-executable Process is a private Process that has been modeled for the purpose of documenting Process
behavior at a modeler-defined level of detail. Thus, information required for execution, such as formal condition
expressions are typically not included in a non-executable Process.

If a swimlanes-like notation is used (e.g., a Collaboration, see below) then a private Business Process will
be contained within a single Pool. The Process flow is therefore contained within the Pool and cannot cross
the boundaries of the Pool. The flow of Messages can cross the Pool boundary to show the interactions that
exist between separate private Business Processes.

Figure 10-4 – Example of a private Business Process

Public Processes

A public Process represents the interactions between a private Business Process and another Process or
Participant (see Figure 10-5). Only those Activities that are used to communicate to the other Participant(s),
plus the order of these Activities, are included in the public Process. All other “internal” Activities of the
private Business Process are not shown in the public Process. Thus, the public Process shows to the
outside world the Messages, and the order of these Messages, that are required to interact with that
Business Process. Public Processes can be modeled separately or within a Collaboration to show the
flow of Messages between the public Process Activities and other Participants. Note that the public type of
Process was named “abstract” in BPMN 1.2.

Proposal for:
159 Business Process Model and Notation (BPMN), v2.0

Figure 10-5 – Example of a public Process

10.1.2. Use of BPMN Common Elements
Some BPMN elements are common to both Process and Choreography, as well as Collaboration; they
are used in both types of diagrams. The next few sections will describe the use of Messages, Message Flow,
Participants, Sequence Flow, Artifacts, Correlations, Expressions, and Services in Choreography.

The key graphical elements of Gateways and Events are also common to both Choreography and
Process. Since their usage has a large impact, they are described in major sections of this chapter (see page 239
for Events and page 295 for Gateways).

10.2. Activities
An Activity is work that is performed within a Business Process. An Activity can be atomic or non-atomic
(compound). The types of Activities that are a part of a Process are: Task, Sub-Process, and Call
Activity, which allows the inclusion of re-usable Tasks and Processes in the diagram. However, a Process
is not a specific graphical object. Instead, it is a set of graphical objects. The following sections will focus on the
graphical objects Sub-Process and Task.

Activities represent points in a Process flow where work is performed. They are the executable elements of a
BPMN Process.

The Activity class is an abstract element, sub-classing from FlowElement (as shown in Figure 10-6).

Concrete sub-classes of Activity specify additional semantics above and beyond that defined for the generic
Activity.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 160

Figure 10-6 – Activity class diagram

The Activity class is the abstract super class for all concrete Activity types.

The Activity element inherits the attributes and model associations of FlowElement (see Table
8-45). Table 10-3 presents the additional attributes and model associations of the Activity element:

Table 10-3 – Activity attributes and model associations

Attribute Name Description/Usage

isForCompensation:
boolean = false

A flag that identifies whether this activity is intended for the purposes of
compensation.

If false, then this activity executes as a result of normal execution flow. If true,
this activity is only activated when a Compensation Event is detected and
initiated under Compensation Event visibility scope (see page 288 for more
information on scopes).

loopCharacteristics:
LoopCharacteristics [0..1]

An activity may be performed once or may be repeated. If repeated, the activity
MUST have loopCharacteristics which define the repetition criteria (if
the processType attribute of the Process is set to executable).

Proposal for:
161 Business Process Model and Notation (BPMN), v2.0

resources:
ActivityResource [0..*]

Defines the resource that will perform or will be responsible for the activity. The
resource, e.g. a performer, can be specified in the form of a specific individual,
a group, an organization role or position, or an organization.

default: SequenceFlow
[0..1]

The Sequence Flow that will receive a Token when none of the
conditionExpressions on other outgoing Sequence Flow evaluate to
true. The default Sequence Flow should not have a
conditionExpression. Any such Expression SHALL be ignored.

ioSpecification:
InputOutputSpecification
[0..1]

The InputOutputSpecification defines the inputs and outputs and the
InputSets and OutputSets for the Activity. See page 218 for more
information on the InputOutputSpecification.

properties: Property [0..*] Modeler-defined properties MAY be added to an Activity. These
properties are “local” to the Activity. The fully delineated name of these
properties is “<activity name>.<property name>” (e.g., “Add
Customer.Customer Name”).

boundaryEventRefs:
BoundaryEvent [0..*]

This references the Intermediate Events that are attached to the boundary
of the Activity.

dataInputAssociations:
DataInputAssociation [0..*]

An optional reference to the DataInputAssociations. A
DataInputAssociation defines how the DataInput of the Activity’s
InputOutputSpecification will be populated.

dataOutputAssociations:
DataOutputAssociation
[0..*]

An optional reference to the DataOutputAssociations..

startQuantity: integer = 1 The default value is 1. The value MUST NOT be less than 1. This attribute
defines the number of tokens that must arrive before the Activity can begin.

Note that any value for the attribute that is greater than 1 is an advanced type
of modeling and should be used with caution.

completionQuantity:
integer = 1

The default value is 1. The value MUST NOT be less than 1. This attribute
defines the number of tokens that must be generated from the Activity. This
number of tokens will be sent done any outgoing Sequence Flow (assuming
any Sequence Flow Conditions are satisfied).

Note that any value for the attribute that is greater than 1 is an advanced type
of modeling and should be used with caution.

In addition, an Activity instance has attributes whose values may be referenced by expressions. These values
are only available when the Activity is being executed.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 162

Table 8-57 presents the Instance attributes of the Activity element:

Table 10-4 – Activity instance attributes

Attribute Name Description/Usage

state: string = none

{none | ready | active | cancelled |
aborting | aborted | completing |
completed}

The current state of this activity instance.

Sequence Flow Connections

See Section “Sequence Flow Connections Rules” on page 64 for the entire set of objects and how they may be
source or targets of Sequence Flow.

An Activity MAY be a target for Sequence Flow; it can have multiple incoming Sequence
Flow. Incoming Sequence Flow MAY be from an alternative path and/or parallel paths.

If the Activity does not have an incoming Sequence Flow, and there is no Start Event for
the Process, then the Activity MUST be instantiated when the Process is instantiated.

There are two (2) exceptions to this: Compensation Activities and Event
Sub-Processes.

Note – If the Activity has multiple incoming Sequence Flow, then this is considered uncontrolled flow. This
means that when a token arrives from one of the Paths, the Activity will be instantiated. It will not wait for the
arrival of tokens from the other paths. If another token arrives from the same path or another path, then a separate
instance of the Activity will be created. If the flow needs to be controlled, then the flow should converge on a
Gateway that precedes the Activities (see 295 for more information on Gateways).

An Activity MAY be a source for Sequence Flow; it can have multiple outgoing Sequence
Flow. If there are multiple outgoing Sequence Flow, then this means that a separate parallel path is
being created for each Sequence Flow (i.e., tokens will be generated for each outgoing Sequence
Flow from the Activity).

If the Activity does not have an outgoing Sequence Flow, and there is no End Event for the
Process, then the Activity marks the end of one or more paths in the Process. When the
Activity ends and there are no other parallel paths active, then the Process MUST be
completed.

There are two (2) exceptions to this: Compensation Activities and Event
Sub-Processes.

Proposal for:
163 Business Process Model and Notation (BPMN), v2.0

Message Flow Connections

See Section “Message Flow Connection Rules” on page 65 for the entire set of objects and how they may be
source or targets of Message Flow.

Note – All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to
Flow Objects within the Pool boundary. They cannot connect two objects within the same Pool.

An Activity MAY be the target for Message Flow; it can have zero or more incoming Message
Flow.

A Activity MAY be a source for Message Flow; it can have zero or more outgoing Message Flow.

10.2.1. Resource Assignment
The following sections define how required Resources can be defined for an Activity. Figure 10-7 displays
the class diagram for the BPMN elements used for Resource assignment.

Figure 10-7 – The class diagram for assigning Resources

Activity Resource

Proposal for:
Business Process Model and Notation (BPMN), v2.0 164

The ActivityResource element inherits the attributes and model associations of BaseElement (see
Table 8-5). Table 10-5 presents the additional model associations of the ActivityResource element:

Table 10-5 – ActivityResource model associations

Attribute Name Description/Usage

resourceRef: Resource The Resource that will be used by the ActivityResource.

resourceAssignmentExpression:
ResourceAssignmentExpression
[0..1]

This defines the Expression used for the Resource assignment
(see below).

resourceParameterBindings:
ResourceParameterBindings [0..*]

This defines the Parameter bindings used for the Resource
assignment (see below).

Expression Assignment

Resources can be assigned to an Activity using Expressions. These Expressions must return
Resource entity related data types, like Users or Groups. Different Expressions can return multiple
Resources. All of them are assigned to the respective subclass of the ActivityResource element, for
example as potential owners. The semantics is defined by the subclass.

The ResourceAssignmentExpression element inherits the attributes and model associations of
BaseElement (see Table 8-5). Table 10-6 presents the additional model associations of the
ResourceAssignmentExpression element:

Table 10-6 – ResourceAssignmentExpression model associations

Attribute Name Description/Usage

expression: Expression The element ResourceAssignmentExpression must contain an
expression which is used at runtime to assign resource(s) to a
ActivityResource element.

Proposal for:
165 Business Process Model and Notation (BPMN), v2.0

Parameterized Resource Assignment

Resources support query parameters which are passed to the Resource query at runtime. Parameters
may refer to Task instance data using expressions. During Resource query execution, an infrastructure may
decide which of the Parameters defined by the Resource are used. It may use zero (0) or more of the
Parameters specified. It may also override certain Parameters with values defined during Resource
deployment. The deployment mechanism for Tasks and Resources is out of scope for this specification.
Resource queries are evaluated to determine the set of Resources, e.g. people, assigned to the Activity.
Failed Resource queries are treated like Resource queries that return an empty result set. Resource
queries return one Resource or a set of Resources.

The ResourceParameterBinding element inherits the attributes and model associations of
BaseElement (see Table 8-5) Table 10-7 presents the additional model associations of the
ResourceParameterBinding element:

Table 10-7 – ResourceParameterBinding model associations

Attribute Name Description/Usage

parameterRef:
ResourceParameter [1]

Reference to the parameter defined by the Resource

expression: Expression The Expression that evaluates the value used to bind the
ResourceParameter

10.2.2. Performer
The Performer class defines the resource that will perform or will be responsible for an Activity. The
performer can be specified in the form of a specific individual, a group, an organization role or position, or an
organization.

The Performer element inherits the attributes and model associations of BaseElement (see Table 8-5)
through its relationship to ActivityResource, but does not have any additional attributes or model
associations.

10.2.3. Tasks
A Task is an atomic Activity within a Process flow. A Task is used when the work in the Process cannot
be broken down to a finer level of detail. Generally, an end-user and/or applications are used to perform the
Task when it is executed.

A Task object shares the same shape as the Sub-Process, which is a rectangle that has rounded corners (see
Figure 10-8).

A Task is a rounded corner rectangle that MUST be drawn with a single thin line.

The use of text, color, size, and lines for a Task MUST follow the rules defined in Section
“Use of Text, Color, Size, and Lines in a Diagram” on page 63.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 166

A boundary drawn with a thick line SHALL be reserved for Call Activity (Global
Tasks) (see page 196).

A boundary drawn with a dotted line SHALL be reserved for Event Sub-Processes (see
page 188) and thus are not allowed for Tasks.

A boundary drawn with a double line SHALL be reserved for Transaction
Sub-Processes (see page 190) and thus are not allowed for Tasks.

Figure 10-8 – A Task object

BPMN specifies three types of markers for Task: a Loop marker or a Multi-Instance marker and a
Compensation marker. A Task may have one or two of these markers (see Figure 10-9).

The marker for a Task that is a standard loop MUST be a small line with an arrowhead that curls back
upon itself. See page 200 for more information on loop Activities.

The loop Marker MAY be used in combination with the compensation marker.

The marker for a Task that is a multi-instance MUST be a set of three vertical lines. See page 201 for
more information on multi-instance Activities.

If the multi-instance instances are set to be performed in sequence rather than parallel, then the
marker will be rotated 90 degrees (see Figure 10-45, below)

The multi-instance marker MAY be used in combination with the compensation marker.

The marker for a Task that is used for compensation MUST be a pair of left facing triangles (like a
tape player “rewind” button). See page 314 for more information on compensation.

The Compensation Marker MAY be used in combination with the loop marker or the
multi-instance marker.

All the markers that are present MUST be grouped and the whole group centered at the bottom of the
shape.

Figure 10-9 – Task markers

Proposal for:
167 Business Process Model and Notation (BPMN), v2.0

Figure 10-10 displays the class diagram for the Task element.

Figure 10-10 – The Task class diagram

The Task inherits the attributes and model associations of Activity (see Table 10-3). There are no further
attributes or model associations of the Task.

Types of Tasks

There are different types of Tasks identified within BPMN to separate the types of inherent behavior that
Tasks might represent. The list of Task types may be extended along with any corresponding indicators. A
Task which is not further specified is called Abstract Task (this was referred to as the None Task in BPMN
1.2). The notation of the Abstract Task is shown in Figure 10-8.

Service Task

A Service Task is a Task that uses some sort of service, which could be a Web service or an automated
application.

A Service Task object shares the same shape as the Task, which is a rectangle that has rounded corners.
However, there is a graphical marker in the upper left corner of the shape that indicates that the Task is a
Service Task (see Figure 10-11).

A Service Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes
a marker that distinguishes the shape from other Task types (as shown in Figure 10-11).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 168

Figure 10-11 – A Service Task Object

The Service Task inherits the attributes and model associations of Activity (see Table 10-3). In addition the
following constraints are introduced. The Service Task has exactly one InputSet and at most one OutputSet.
The Service Task inputs map to the parts of the input Message, that is the attributes inside of the Message
(see section on Operation below). For a WSDL message, this would be expressed as message parts. The
Service Task outputs map to the parts of the output Message, which are the attributes inside of the
Message.

The actual Participant whose service is used can be identified by connecting the Service Task to a Participant
using a Message Flow within the definitional Collaboration of the Process – see Table 10-1.

Proposal for:
169 Business Process Model and Notation (BPMN), v2.0

Figure 10-12 – The Service Task class diagram

The Service Task inherits the attributes and model associations of Activity (see Table 10-3). Table 10-8
presents additional the model associations of the Service Task:

Table 10-8 – Service Task model associations

Attribute Name Description/Usage

implementation:
Implementation = Web
Service

{Web Service | Other |
Unspecified}

This attribute specifies the technology that will be used to send and receive the
Messages. A Web service is the default technology.

operationRef: Operation
[0..1]

This attribute specifies the operation that is invoked by the Service Task.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 170

Send Task

A Send Task is a simple Task that is designed to send a Message to an external Participant (relative to
the Process). Once the Message has been sent, the Task is completed.

The actual Participant which the Message is sent can be identified by connecting the Send Task to a
Participant using a Message Flow within the definitional Collaboration of the Process – see Table 10-1.

A Send Task object shares the same shape as the Task, which is a rectangle that has rounded corners.
However, there is a filled envelope marker (the same marker as a throw Message Event) in the upper left
corner of the shape that indicates that the Task is a Send Task (see Figure 10-11).

A Send Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a
filled envelope marker that distinguishes the shape from other Task types (as shown in Figure 10-13).

Figure 10-13 – A Send Task Object

Proposal for:
171 Business Process Model and Notation (BPMN), v2.0

Figure 10-8 – The Send Task and Receive Task class diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 172

The Send Task inherits the attributes and model associations of Activity (see Table 10-3). Table 10-9
presents the additional model associations of the Receive Task:

Table 10-9 – Send Task model associations

Attribute Name Description/Usage

messageRef: Message [0..1] A Message for the messageRef attribute MAY be entered. This indicates
that the Message will be sent by the Task. The Message in this context is
equivalent to an out-only message pattern (Web service). One or more
corresponding outgoing Message Flow MAY be shown on the diagram.
However, the display of the Message Flow is not required. The Message is
applied to all outgoing Message Flow and the Message will be sent down all
outgoing Message Flow at the completion of a single instance of the Task.

operationRef: Operation This attribute specifies the operation that is invoked by the Service Task.

implementation:
Implementation = Web
Service

{Web Service | Other |
Unspecified}

This attribute specifies the technology that will be used to send and receive the
Messages. A Web service is the default technology.

Receive Task

A Receive Task is a simple Task that is designed to wait for a Message to arrive from an external
Participant (relative to the Process). Once the Message has been received, the Task is completed.

The actual Participant from which the Message is received can be identified by connecting the Receive
Task to a Participant using a Message Flow within the definitional Collaboration of the Process – see
Table 10-1.

A Receive Task is often used to start a Process. In a sense, the Process is bootstrapped by the receipt of the
Message. In order for the Task to Instantiate the Process it must meet one of the following conditions:

The Process does not have a Start Event and the Receive Task has no incoming Sequence
Flow.

The incoming Sequence Flow for the Receive Task has a source of a Start Event.

Note that no other incoming Sequence Flow are allowed for that Receive Task (in particular,
a loop connection from a downstream object).

A Receive Task object shares the same shape as the Task, which is a rectangle that has rounded corners.
However, there is an unfilled envelope marker (the same marker as a catch Message Event) in the upper left
corner of the shape that indicates that the Task is a Receive Task (see Figure 10-14).

A Receive Task is a rounded corner rectangle that MUST be drawn with a single thin line and
includes an unfilled envelope marker that distinguishes the shape from other Task types (as shown in
Figure 10-14).

Proposal for:
173 Business Process Model and Notation (BPMN), v2.0

Figure 10-14 – A Receive Task Object

The Receive Task inherits the attributes and model associations of Activity (see Table 10-3). Table 10-10
presents the additional attributes and model associations of the Receive Task:

Table 10-10 – Receive Task attributes and model associations

Attribute Name Description/Usage

messageRef: Message [0..1] A Message for the messageRef attribute MAY be entered. This indicates
that the Message will be received by the Task. The Message in this context
is equivalent to an in-only message pattern (Web service). One or more
corresponding incoming Message Flow MAY be shown on the diagram.
However, the display of the Message Flow is not required. The Message is
applied to all incoming Message Flow, but can arrive for only one of the
incoming Message Flow for a single instance of the Task.

Instantiate: boolean = False Receive Tasks can be defined as the instantiation mechanism for the
Process with the Instantiate attribute. This attribute MAY be set to true if the
Task is the first activity after the Start Event or a starting Task if there is no
Start Event (i.e., there are no incoming Sequence Flow). Multiple Tasks MAY
have this attribute set to True.

operationRef: Operation This attribute specifies the operation that is invoked by the Service Task.

implementation:
Implementation = Web
Service

{Web Service | Other |
Unspecified}

This attribute specifies the technology that will be used to send and receive the
Messages. A Web service is the default technology.

User Task

A User Task is a typical “workflow” Task where a human performer performs the Task with the assistance
of a software application and is scheduled through a task list manager of some sort.

A User Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes
a human figure marker that distinguishes the shape from other Task types (as shown in Figure 10-15).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 174

Figure 10-15 – A User Task Object

See “User Task” on page 177 within the larger section of “Human Interactions” for the details of User Tasks.

Manual Task

A Manual Task is a Task that is expected to be performed without the aid of any business process execution
engine or any application. An example of this could be a telephone technician installing a telephone at a
customer location.

A Manual Task is a rounded corner rectangle that MUST be drawn with a single thin line and
includes a hand figure marker that distinguishes the shape from other Task types (as shown in Figure
10-16).

Figure 10-16 – A Manual Task Object

See “Manual Task” on page 176 within the larger section of “Human Interactions” for the details of Manual
Tasks.

Business Rule

A Business Rule Task provides a mechanism for the Process to provide input to a Business Rules Engine
and to get the output of calculations that the Business Rules Engine might provide. The
InputOutputSpecification of the Task (see page 218) will allow the Process to send data to and
receive data from the Business Rules Engine.

A Business Rule Task object shares the same shape as the Task, which is a rectangle that has rounded
corners. However, there is a graphical marker in the upper left corner of the shape that indicates that the Task is
a Business Rule Task (see Figure 10-11).

A Business Rule Task is a rounded corner rectangle that MUST be drawn with a single thin line
and includes a marker that distinguishes the shape from other Task types (as shown in Figure 10-17).

Proposal for:
175 Business Process Model and Notation (BPMN), v2.0

Figure 10-17 – A Business Rule Task Object

The Business Rule Task inherits the attributes and model associations of Activity (see Table 10-3). Table
10-11 presents the additional attributes of the Business Rule Task:

Table 10-11 – Business Rule Task attributes and model associations

Attribute Name Description/Usage

Implementation:
BusinesRuleTaskImplementation
= Other

{BuisnessRuleWebService |
WebService | Other |
Unspecified}

This attribute specifies the technology that will be used to implement the
Business Rule Task

Script Task

A Script Task is executed by a business process engine. The modeler or implementer defines a script in a
language that the engine can interpret. When the Task is ready to start, the engine will execute the script. When
the script is completed, the Task will also be completed.

A Script Task object shares the same shape as the Task, which is a rectangle that has rounded corners.
However, there is a graphical marker in the upper left corner of the shape that indicates that the Task is a Script
Task (see Figure 10-11).

A Script Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes
a marker that distinguishes the shape from other Task types (as shown in Figure 10-18).

Figure 10-18 – A Script Task Object

The Script Task inherits the attributes and model associations of Activity (see Table 10-3). Table 10-12
presents the additional attributes of the Script Task:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 176

Table 10-12 – Script Task attributes

Attribute Name Description/Usage

scriptLanguage: string [0..1] Defines the script language. The script language MUST be provided if a
script is provided.

script: string [0..1] The modeler MAY include a script that can be run when the Task is
performed. If a script is not included, then the Task will act equivalent to a
TaskType of None.

10.2.4. Human Interactions

Tasks with Human involvement

In many business workflows, human involvement is required to complete certain Tasks specified in the
workflow model. BPMN specifies two different types of Tasks with human involvement, the Manual Task
and the User Task.

A User Task is executed by and managed by a business process runtime. Attributes concerning the human
involvement, like people assignments and UI rendering can be specified in great detail. A Manual Task is
neither executed by nor managed by a business process runtime.

Notation

Both, the Manual Task and User Task share the same shape, which is a rectangle that has rounded corners.
Manual Tasks and User Tasks have a Icons to indicate the human involvement required to complete the
Task (see Figure 10-15 and Figure 10-16, above)

Manual Task

A Manual Task is a Task that is not managed by any business process engine. It can be considered as an
unmanaged Task, unmanaged in the sense of that the business process engine doesn’t track the start and
completion of such a Task. An example of this could be a paper based instruction for a telephone technician to
install a telephone at a customer location.

Proposal for:
177 Business Process Model and Notation (BPMN), v2.0

Figure 10-19 – Manual Task class diagram

The User Task inherits the attributes and model associations of Activity (see Table 10-3), but does not have
any additional attributes or model associations.

User Task

A User Task is a typical “workflow” Task where a human performer performs the Task with the assistance of
a software application, and where the Task is scheduled through a Task list manager of some sort.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 178

Figure 10-20 – User Task class diagram

The User Task can be implemented using different technologies, specified by the
UserTaskImplementation.

Proposal for:
179 Business Process Model and Notation (BPMN), v2.0

The User Task inherits the attributes and model associations of Activity (see Table 10-3). Table 10-13
presents the additional attributes and model associations of the User Task:

Table 10-13 – User Task attributes and model associations

Attribute Name Description/Usage

Implementation:
UserTaskImplementation = Other

{HumanTaskWebService |
WebService | Other |
Unspecified}

This attribute specifies the technology that will be used to implement the
User Task

renderings: Rendering [0..*] This attributes acts as a hook which allows BPMN adopters to specify
task rendering attributes by using the BPMN Extension mechanism

The User Task inherits the Instance attributes of Activity (see Table 8-57). Table 10-14 presents the
Instance attributes of the User Task element:

Table 10-14 – User Task Instance attributes

Attribute Name Description/Usage

actualOwner: string Returns the “user” who picked/claimed the User task and became
the actual owner of it. The value is a literal representing the user’s
id, email address etc.

taskPriority: integer Returns the priority of the User Task

Rendering of User Tasks

BPMN User Tasks need to be rendered on user interfaces like forms clients, portlets, etc. The Rendering
element provides an extensible mechanism for specifying UI renderings for User Tasks (Task UI). The
element is optional. One or more rendering methods may be provided in a Task definition. A User Task can
be deployed on any compliant implementation, irrespective of the fact whether the implementation supports
specified rendering methods or not. The Rendering element is the extension point for renderings. Things like
language considerations are opaque for the Rendering element because the rendering applications typically
provide Multilanguage support. Where this is not the case, providers of certain rendering types may decide to
extend the rendering type in order to provide language information for a given rendering. The content of the
rendering element is not defined by this specification.

Human Performers

People can be assigned to Activities in various roles (called “generic human roles” in WS-HumanTask).
BPMN 1.2 traditionally only has the Performer role. In addition to supporting the Performer role, BPMN 2.0

Proposal for:
Business Process Model and Notation (BPMN), v2.0 180

defines a specific HumanPerformer element allowing specifying more specific human roles as specialization of
HumanPerformer, such as PotentialOwner.

Figure 10-21 – HumanPerformer class diagram

The HumanPerformer element inherits the attributes and model associations of
ActivityResource (see Table 10-5), through its relationship to Performer, but does not have
any additional attributes or model associations.

Potential Owners

Potential owners of an User Task are persons who can claim and work on it. A potential owner becomes the
actual owner of a Task, usually by explicitly claiming it.

Proposal for:
181 Business Process Model and Notation (BPMN), v2.0

XML Schema for Human Interactions

Table 10-15 – ManualTask XML schema

<xsd:element name="manualTask" type="tManualTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tManualTask">

<xsd:complexContent>
<xsd:extension base="tTask"/>

</xsd:complexContent>
</xsd:complexType>

Table 10-16 – UserTask XML schema

<xsd:element name="userTask" type="tUserTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tUserTask">

<xsd:complexContent>
<xsd:extension base="tTask">

<xsd:sequence>
<xsd:element ref="rendering" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="implementation" type="tUserTaskImplementation" default="unspecified"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="rendering" type="tRendering"/>
<xsd:complexType name="tRendering">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tUserTaskImplementation">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="unspecified"/>
<xsd:enumeration value="other"/>
<xsd:enumeration value="webService"/>
<xsd:enumeration value="humanTaskWebService"/>

</xsd:restriction>
</xsd:simpleType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 182

Table 10-17 – HumanPerformer XML schema

<xsd:element name="humanPerformer" type="tHumanPerformer" substitutionGroup="performer"/>
<xsd:complexType name="tHumanPerformer">

<xsd:complexContent>
<xsd:extension base="tPerformer">

<xsd:sequence>
<xsd:element ref="peopleAssignment" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10-18 – PotentialOwner XML schema

<xsd:element name="potentialOwner" type="tPotentialOwner" substitutionGroup="performer"/>
<xsd:complexType name="tPotentialOwner">

<xsd:complexContent>
<xsd:extension base="tHumanPerformer"/>

</xsd:complexContent>
</xsd:complexType>

Examples

Consider the following sample procurement Process from the Buyer perspective

Figure 10-22 – Procurement Process Example

The Process comprises of two User Tasks

Proposal for:
183 Business Process Model and Notation (BPMN), v2.0

Approve Order: After the quotation handling, the order needs to be approved by some regional
manager to continue with the order and shipment handling
Review Order: Once the order has been shipped to the Buyer, the order and shipment
documents will be reviewed again by someone.

The details of the Resource and resource assignments are not shown in the BPMN above. See below XML
sample of the “Buyer” Process for the Resource usage and resource assignments for potential owners.

Table 10-19 – XML serialization of Buyer process

<?xml version="1.0" encoding="UTF-8"?>
<definitions id="Definition"
 targetNamespace="http://www.example.org/UserTaskExample"
 typeLanguage="http://www.w3.org/2001/XMLSchema"
 expressionLanguage="http://www.w3.org/1999/XPath"
 xmlns="http://www.omg.org/bpmn20"
 xmlns:tns="http://www.example.org/UserTaskExample">

<resource id="regionalManager" name="Regional Manager">
<resourceParameter id="buyerName" isRequired="true" name="Buyer Name" type="xsd:string"/>
<resourceParameter id="region" isRequired="false" name="Region" type="xsd:string"/>

</resource>

<resource id="departmentalReviewer" name="Departmental Reviewer">
<resourceParameter id="buyerName" isRequired="true" name="Buyer Name" type="xsd:string"/>

</resource>

<!-- Process definition -->
<process id="Buyer" name="Buyer Process">

<startEvent id="StartProcess"/>

<sequenceFlow sourceRef="StartProcess" targetRef="QuotationHandling"/>

<task id="QuotationHandling" name="Quotation Handling"/>

<sequenceFlow sourceRef="QuotationHandling" targetRef="ApproveOrder"/>

<userTask id="ApproveOrder" name="ApproveOrder">
<potentialOwner resourceRef="tns:regionalManager">
<resourceParameterBinding parameterRef="tns:buyerName">
<formalExpression>getDataInput('order')/address/name</formalExpression>

</resourceParameterBinding>
<resourceParameterBinding parameterRef="tns:region">
<formalExpression>getDataInput('order')/address/country</formalExpression>

</resourceParameterBinding>
</potentialOwner>

</userTask>

<sequenceFlow sourceRef="ApproveOrder" targetRef="OrderApprovedDecision"/>

<exclusiveGateway id="OrderApprovedDecision" gatewayDirection="diverging"/>

<sequenceFlow sourceRef="OrderApprovedDecision" targetRef="OrderAndShipment">
<conditionExpression>Was the Order Approved?</conditionExpression>

</sequenceFlow>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 184

<sequenceFlow sourceRef="OrderApprovedDecision" targetRef="TerminateProcess">
<conditionExpression>Was the Order NOT Approved?</conditionExpression>

</sequenceFlow>

<endEvent id="TerminateProcess">
<terminateEventDefinition id="TerminateEvent"/>

</endEvent>

<parallelGateway id="OrderAndShipment" gatewayDirection="diverging"/>

<sequenceFlow sourceRef="OrderAndShipment" targetRef="OrderHandling"/>
<sequenceFlow sourceRef="OrderAndShipment" targetRef="ShipmentHandling"/>

<task id="OrderHandling" name="Order Handling"/>

<task id="ShipmentHandling" name="Shipment Handling"/>

<sequenceFlow sourceRef="OrderHandling" targetRef="OrderAndShipmentMerge"/>
<sequenceFlow sourceRef="ShipmentHandling" targetRef="OrderAndShipmentMerge"/>

<parallelGateway id="OrderAndShipmentMerge" gatewayDirection="converging"/>

<userTask id="ReviewOrder" name="Review Order">
<potentialOwner resourceRef="tns:departmentalReviewer">
<resourceParameterBinding parameterRef="tns:buyerName">
<formalExpression>getDataInput('order')/address/name</formalExpression>

</resourceParameterBinding>
</potentialOwner>

</userTask>

<sequenceFlow sourceRef="ReviewOrder" targetRef="EndProcess"/>

<endEvent id="EndProcess"/>

</process>
</definitions>

10.2.5. Sub-Processes
A Sub-Process is an Activity whose internal details have been modeled using Activities, Gateways,
Events, and Sequence Flow. A Sub-Process is a graphical object within a Process, but it also can be
“opened up” to show a lower-level Process. Sub-Processes define a contextual scope that can be used for
attribute visibility, transactional scope, for the handling of exceptions (see page 283 for more details), of
Events, or for compensation (see page 314 for more details).

There are different types of Sub-Processes, which will be described in the next five (5) sections.

Embedded Sub-Process (Sub-Process)

A Sub-Process object shares the same shape as the Task object, which is a rounded rectangle.

Proposal for:
185 Business Process Model and Notation (BPMN), v2.0

A Sub-Process is a rounded corner rectangle that MUST be drawn with a single thin line.

The use of text, color, size, and lines for a Sub-Process MUST follow the rules defined in
Section “Use of Text, Color, Size, and Lines in a Diagram” on page 63 with the exception that:

A boundary drawn with a thick line SHALL be reserved for Call Activity
(Sub-Processes) (see page 196).

A boundary drawn with a dotted line SHALL be reserved for Event Sub-Processes (see
page 188).

A boundary drawn with a double line SHALL be reserved for Transaction
Sub-Processes (see page 188).

The Sub-Process can be in a collapsed view that hides its details (see Figure 10-23) or a Sub-Process can
be in an expanded view that shows its details within the view of the Process in which it is contained (see Figure
10-24). In the collapsed form, the Sub-Process object uses a marker to distinguish it as a Sub-Process,
rather than a Task.

The Sub-Process marker MUST be a small square with a plus sign (+) inside. The square MUST be
positioned at the bottom center of the shape.

Figure 10-23 – A Sub-Process object (collapsed)

Figure 10-24 – A Sub-Process object (expanded)

They are used to create a context for exception handling that applies to a group of Activities (see page 283 for
more details). Compensations can be handled similarly (see page 314 for more details).

Expanded Sub-Processes may be used as a mechanism for showing a group of parallel Activities in a
less-cluttered, more compact way. In Figure 10-25, Activities “C” and “D” are enclosed in an unlabeled
expanded Sub-Process. These two Activities will be performed in parallel. Notice that the expanded
Sub-Process does not include a Start Event or an End Event and the Sequence Flow to/from these

Proposal for:
Business Process Model and Notation (BPMN), v2.0 186

Events. This usage of expanded Sub-Processes for “parallel boxes” is the motivation for having Start and
End Events being optional objects.

Figure 10-25 – Expanded Sub-Process used as a “Parallel Box”

BPMN specifies five (5) types of standard markers for Sub-Processes. The (Collapsed) Sub-Process
marker, seen in Figure 10-23, can be combined with four (4) other markers: a loop marker or a multi-instance
marker, a Compensation marker, and an Ad-Hoc marker. A collapsed Sub-Process may have one to three
of these other markers, in all combinations except that loop and multi-instance cannot be shown at the same time
(see Figure 10-26).

The marker for a Sub-Process that loops MUST be a small line with an arrowhead that curls back
upon itself.

The loop marker MAY be used in combination with any of the other markers except the
multi-instance marker.

The marker for a Sub-Process that has Multiple Instances MUST be a set of three vertical lines in
parallel.

The multi-instance marker MAY be used in combination with any of the other markers
except the loop marker.

The marker for an ad-hoc Sub-Process MUST be a “tilde” symbol.

The ad-hoc marker MAY be used in combination with any of the other markers.
The marker for a Sub-Process that is used for compensation MUST be a pair of left facing triangles
(like a tape player “rewind” button).

The Compensation marker MAY be used in combination with any of the other markers.
All the markers that are present MUST be grouped and the whole group centered at the bottom of the
Sub-Process.

Proposal for:
187 Business Process Model and Notation (BPMN), v2.0

Figure 10-26 – Collapsed Sub-Process Markers

The Sub-Process now corresponds to the Embedded Sub-Process of BPMN 1.2. The Reusable
Sub-Process of BPMN 1.2 corresponds to the Call Activity (calling a Process – see page 196).

Figure 10-27 shows the class diagram related to Sub-Processes.

Figure 10-27 – The Sub-Process class diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 188

The Sub-Process element inherits the attributes and model associations of Activity (see Table 10-3) and of
FlowElementContainer (see Table 8-46). Table 10-3 presents the additional attributes of the
Sub-Process element:

Table 10-20 – Sub-Process attributes

Attribute Name Description/Usage

triggeredByEvent:
boolean = false

A flag that identifies whether this Sub-Process is an Event Sub-Process.

If false, then this Sub-Process is a normal Sub-Process.

If true, the this Sub-Process is an Event Sub-Process and is subject to
additional constraints (see page 188).

Reusable Sub-Process (Call Activity)

The reusable Sub-Process of BPMN 1.2 corresponds to the Call Activity that calls a pre-defined Process.
See details of a Call Activity on page 196.

Event Sub-Process

An Event Sub-Process is a specialized Sub-Process that used within a Process (or Sub-Process). A
Sub-Process is defined as an Event Sub-Process when its triggeredByEvent attribute is set to true.

An Event Sub-Process is not part of the normal flow of its parent Process—there are no incoming or
outgoing Sequence Flow.

An Event Sub-Process MUST NOT have any incoming or outgoing Sequence Flow.

An Event Sub-Process may or may not occur while the parent Process is active, but it is possible that it
will occur many times. Unlike a standard Sub-Process, which uses the flow of the parent Process as a
trigger, an Event Sub-Process has a Start Event with a trigger. Each time the Start Event is triggered
while the parent Process is active, then the Event Sub-Process will start.

The Start Event of an Event Sub-Process MUST have a defined trigger.

The Start Event trigger (EventDefinition) MUST be from the following types:
Message, Error, Escalation, Compensation, Conditional, Signal, and
Multiple (see page 266 for more details).

An Event Sub-Process MUST have one and only one Start Event.

An Event Sub-Process object shares the same basic shape as the Sub-Process object, which is a rounded
rectangle.

An Event Sub-Process is a rounded corner rectangle that MUST be drawn with a single thin dotted
line (see Figure 10-28 and Figure 10-29).

The use of text, color, size, and lines for a Sub-Process MUST follow the rules defined in
Section “Use of Text, Color, Size, and Lines in a Diagram” on page 63 with the exception that:

Proposal for:
189 Business Process Model and Notation (BPMN), v2.0

If the Event Sub-Process is collapsed, then its Start Event will be used as a marker in the upper
left corner of the shape (see Figure 10-28).

Collapsed
Event Sub-

Process

Figure 10-28 – An Event Sub-Process object (Collapsed)

Figure 10-29 – An Event Sub-Process object (expanded)

There are two (2) possible consequences to the parent Process when an Event Sub-Process is triggered: 1)
the parent Process can be interrupted, and 2) the parent Process can continue its work (not interrupted). This
is determined by the type of Start Event that is used. See page 247 for the list of interrupting and
non-interrupting Event Sub-Process Start Events.

Figure 10-30 provides an example of a Sub-Process that includes three (3) Event Sub-Processes. The
first Event Sub-Process is triggered by a Message, does not interrupt the Sub-Process, and can occur
multiple times. The second Event Sub-Process is used for compensation and will only occur after the
Sub-Process has completed. The third Event Sub-Process handles errors that occur while the
Sub-Process is active and will stop (interrupt) the Sub-Process if triggered.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 190

Figure 10-30 – An example that includes Event Sub-Processes

Transaction

A Transaction is a specialized type of Sub-Process which will have a special behavior that is controlled
through a transaction protocol (such as WS-Transaction). The boundary of the Sub-Process will be
double-lined to indicate that it is a Transaction (see Figure 10-31).

A Transaction Sub-Process is a rounded corner rectangle that MUST be drawn with a double
thin line.

The use of text, color, size, and lines for a transaction Sub-Process MUST follow the rules
defined in Section “Use of Text, Color, Size, and Lines in a Diagram” on page 63.

Proposal for:
191 Business Process Model and Notation (BPMN), v2.0

Bookings

Book Flight

Book Hotel

Cancel
Flight

Send Hotel
Cancellation

Transaction Failed
Bookings

Exceptions
(Hazards)

Send
Unavailability

Notice

Handle
through

Customer
Service

Successful
Bookings

Charge
Buyer

Figure 10-31 – A Transaction Sub-Process

Proposal for:
Business Process Model and Notation (BPMN), v2.0 192

The Transaction Sub-Process element inherits the attributes and model associations of Activities (see
Table 10-3) through its relationship to Sub-Process. Table 10-21 presents the additional attributes and model
associations of the Transaction Sub-Process:

Table 10-21 – Transaction Sub-Process attributes and model associations

Attribute Name Description/Usage

protocol: string [0..1] The elements that make up the internal Sub-Process flow.

This association is only applicable when the XSD Interchange is used. In the case
of the XMI interchange, this association is inherited from the
FlowElementsContainer class.

method:
TransactionMethod =
compensate

{ compensate | store |
image }

TransactionMethod is an attribute that defines the technique that will be used
to undo a Transaction that has been cancelled. The default is compensate, but
the attribute MAY be set to store or IMAGE.

There are three basic outcomes of a Transaction:

Successful completion: this will be shown as a normal Sequence Flow that leaves the Transaction
Sub-Process.

Failed completion (Cancel): When a Transaction is cancelled, the Activities inside the
Transaction will be subjected to the cancellation actions, which could include rolling back the
Process and compensation (see page 314 for more information on compensation) for specific
Activities. Note that other mechanisms for interrupting a Transaction Sub-Process will not cause
compensation (e.g., Error, Timer, and anything for a non-Transaction Activity). A Cancel
Intermediate Event, attached to the boundary of the Activity, will direct the flow after the
Transaction has been rolled back and all compensation has been completed. The Cancel
Intermediate Event can only be used when attached to the boundary of a Transaction
Sub-Process. It cannot be used in any normal flow and cannot be attached to a non-Transaction
Sub-Process. There are two mechanisms that can signal the cancellation of a Transaction:

o A Cancel End Event is reached within the transaction Sub-Process. A Cancel End Event
can only be used within a transaction Sub-Process.

o A cancel Message can be received via the transaction protocol that is supporting the execution of
the Transaction Sub-Process.

Hazard: This means that something went terribly wrong and that a normal success or cancel is not
possible. Error Intermediate Events are used to show Hazards. When a Hazard happens, the
Activity is interrupted (without compensation) and the flow will continue from the Error
Intermediate Event.

The behavior at the end of a successful Transaction Sub-Process is slightly different than that of a normal
Sub-Process. When each path of the Transaction Sub-Process reaches a non-Cancel End Event(s),
the flow does not immediately move back up to the higher-level parent Process, as does a normal
Sub-Process. First, the transaction protocol must verify that all the Participants have successfully completed

Proposal for:
193 Business Process Model and Notation (BPMN), v2.0

their end of the Transaction. Most of the time this will be true and the flow will then move up to the
higher-level Process. But it is possible that one of the Participants may end up with a problem that causes a
Cancel or a Hazard. In this case, the flow will then move to the appropriate Intermediate Event, even
though it had apparently finished successfully.

Ad-Hoc Sub-Process

An Ad-Hoc Sub-Process is a specialized type of Sub-Process that is a group of Activities that have no
required sequence relationships. A set of activities can be defined for the Process, but the sequence and
number of performances for the Activities is determined by the performers of the Activities.

A Sub-Process is marked as being ad-hoc with a “tilde” symbol placed at the bottom center of the
Sub-Process shape (see Figure 10-32 and Figure 10-33).

The marker for an Ad-Hoc Sub-Process MUST be a “tilde” symbol.

The Ad-Hoc Marker MAY be used in combination with any of the other markers.

Figure 10-32 – A collapsed Ad-Hoc Sub-Process

~
Figure 10-33 – An expanded Ad-Hoc Sub-Process

Proposal for:
Business Process Model and Notation (BPMN), v2.0 194

The Ad-Hoc Sub-Process element inherits the attributes and model associations of Activities (see Table
10-3) through its relationship to Sub-Process. Table 10-22 presents the additional model associations of the
Ad-Hoc Sub-Process:

Table 10-22 – Ad-hoc Sub-Process model associations

Attribute Name Description/Usage

completionCondition:
Expression

This Expression defines the conditions when the Process will end. When
the Expression is evaluated to True, the Process will be terminated.

ordering: AdHocOrdering =
parallel

{ parallel | sequential }

This attribute defines if the Activities within the Process can be performed
in parallel or must be performed sequentially. The default setting is
parallel and the setting of sequential is a restriction on the
performance that may be required due to shared resources. When the
setting is sequential, then only one Activity can be performed at a time.
When the setting is parallel, then zero (0) to all the Activities of the
Sub-Process can be performed in parallel.

cancelRemainingInstances:
Boolean = True

This attribute is used only if ordering is parallel. It determines whether
running instances are cancelled when the completionCondition
becomes true.

Activities within the Process are generally disconnected from each other. During execution of the Process,
any one or more of the Activities may be active and they may be performed multiple times. The performers
determine when Activities will start, what the next Activity will be, and so on.

Examples of the types of Processes that are Ad-Hoc include computer code development (at a low level),
sales support, and writing a book chapter. If we look at the details of writing a book chapter, we could see that the
Activities within this Process include: researching the topic, writing text, editing text, generating graphics,
including graphics in the text, organizing references, etc. (see Figure 10-34). There may be some dependencies
between Tasks in this Process, such as writing text before editing text, but there is not necessarily any
correlation between an instance of writing text to an instance of editing text. Editing may occur infrequently and
based on the text of many instances of the writing text Task.

Proposal for:
195 Business Process Model and Notation (BPMN), v2.0

Write a Book Chapter

Research
the Topic Write Text

Edit Text

Generate
Graphics Include

Graphics in
Text

Organize
References

Finalize
Chapter

Figure 10-34 – An Ad-Hoc Sub-Process for writing a book chapter

Although there is no required formal Process structure, some sequence and data dependencies can be added to
the details of the Process. For example, we can extend the book chapter Ad-Hoc Sub-Process shown above
and add Data Objects, Data Associations, and even Sequence Flow (Figure 10-35).

Ad-Hoc Sub-Processes restrict the use of BPMN elements that would normally be used in
Sub-Processes.

The list of BPMN elements that MUST be used in an Ad-Hoc Sub-Process: Activity.

The list of BPMN elements that MAY be used in an Ad-Hoc Sub-Process: Data Object,
Sequence Flow, Association, Data Association, Group, Message Flow (as a source or
target), Gateway, and Intermediate Event.

The list of BPMN elements that MUST NOT be used in an Ad-Hoc Sub-Process: Start Event,
End Event, Conversations (graphically), Conversation Links, and Choreography
Activities.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 196

Write a Book Chapter

Research
the Topic

Write/Edit
Text

Generate
Graphics

Include
Graphics in

Text

Organize
References

Finalize
Chapter

Topic Graphics
[completed]

Research
Notes

Chapter Text
[draft]

Chapter
[completed]

References

Write Text

Figure 10-35 – An Ad-Hoc Sub-Process with data and sequence dependencies

The Data Objects as inputs into the Tasks act as an additional constraint for the performance of those Tasks.
The performers still determine when the Tasks will be performed, but they are now constrained in that they
cannot start the Task without the appropriate input. The addition of Sequence Flow between the Tasks (e.g.,
between “Generate Graphics” and “Include Graphics in Text”) creates a dependency where the performance of
the first Task must be followed by a performance of the second Task. This does not mean that the second Task
must be performed immediately, but there must be a performance of the second Task after the performance of
the first Task.

It is a challenge for a BPM engine to monitor the status of Ad-Hoc Sub-Processes, usually these kind of
Processes are handled through groupware applications (such as e-mail), but BPMN allows modeling of
Processes that are not necessarily executable, although there are some process engines that can follow an
Ad-Hoc Sub-Process. Given this, at some point the Ad-Hoc Sub-Process will have complete and this
can be determined by evaluating a completionCondition that evaluates Process attributes that will have
been updated by an Activity in the Process.

10.2.6. Call Activity
A Call Activity identifies a point in the Process where a global Process or a Global Task is used. The
Call Activity acts as a ‘wrapper’ for the invocation of a global Process or Global Task within the
execution. The activation of a call Activity results in the transfer of control to the called global Process or
Global Task.

The BPMN 2.0 Call Activity corresponds to the Reusable Sub-Process of BPMN 1.2. A BPMN 2.0
Sub-Process corresponds to the Embedded Sub-Process of BPMN 1.2 (see the previous section).

A Call Activity object shares the same shape as the Task and Sub-Process, which is a rectangle that has
rounded corners. However, the target of what the Activity calls will determine the details of its shape.

Proposal for:
197 Business Process Model and Notation (BPMN), v2.0

If the Call Activity calls a Global Task, then the shape will be the same as a Task, but the
boundary of the shape will MUST have a thick line (see Figure 10-36)

The Call Activity MUST display the marker of the type of Global Task (e.g., the Call
Activity would display the User Task marker if calling a Global User Task).

If the Call Activity calls a Process, then there are two (2) options:

The details of the called Process can be hidden and the shape of the Call Activity will be the
same as a collpased Sub-Process, but the boundary of the shape MUST have a thick line (see
Figure 10-37).

If the details of the called Process are available, then the shape of the Call Activity will be the
same as a expanded Sub-Process, but the boundary of the shape MUST have a thick line (see
Figure 10-38).

Figure 10-36 – A Call Activity object calling a Global Task

Figure 10-37 – A Call Activity object calling a Process (Collapsed)

Figure 10-38 – A Call Activity object calling a Process (Expanded)

When a Process with a definitional Collaboration, calls a Process that also has a definitional
Collaboration, the Participants of the two (2) Collaborations can be matched to each other using
ParticipantAssociations of the Collaboration of the calling Process.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 198

Since Call Activities rely in the CallableElement being invoked (see Figure 10-39), Call Activities
must not define their own data inputs, InputSets, and outputs, OutputSets but use the data inputs,
InputSets, and outputs, OutputSets defined in the referenced CallableElement

Figure 10-39 – The Call Activity class diagram

A Call Activity can override properties and attributes of the element being called, potentially changing the
behavior of the called element based on the calling context. Also, Events that are propagated along the
hierarchy (errors and escalations) are propagated from the called element to the Call Activity (and can be
handled on its boundary).

The Call Activity inherits the attributes and model associations of Activity (see Table 10-3). Table 10-23
presents the additional model associations of the CallActivity:

Table 10-23 – CallActivity model associations

Attribute Name Description/Usage

calledElement: CallableElement [0..1] The element to be called, which will be either a
Process or a GlobalTask. Other
CallableElements, such as Choreography,
GlobalChoreographyTask, Conversation, and
GlobalCommunication MUST NOT be called by
the Call Conversation element.

10.2.7. Global Task
A Global Task is a reusable, atomic Task definition that can be called from within any Process by a Call
Activity.

Proposal for:
199 Business Process Model and Notation (BPMN), v2.0

Figure 10-40 – Global Tasks class diagram

The Global Task inherits the attributes and model associations of Callable Element (see Table 8-30).
There are no further attributes or model associations of the Global Task.

Types of Global Task

There are different types of Tasks identified within BPMN to separate the types of inherent behavior that
Tasks might represent. This is true for both Global Tasks and standard Tasks, where the list of Task types
is the same for both. For the sake of efficiency in this specification, the list of Task types is presented once on
page 167. The behavior, attributes, and model associations defined in that section also apply to the types of
Global Tasks.

10.2.8. Loop Characteristics
Activities may be repeated sequentially, essentially behaving like a loop. The presence of
LoopCharacteristics signifies that the Activity has looping behavior. LoopCharacteristics is an
abstract class. Concrete subclasses define specific kinds of looping behavior.

The LoopCharacteristics inherits the attributes and model associations of BaseElement (see Table
8-5). There are no further attributes or model associations of the LoopCharacteristics.

However, each Loop Activity Instance has attributes whose values may be referenced by Expressions.
These values are only available when the Loop Activity is being executed.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 200

Figure 10-41 displays the class diagram for an Activity’s loop characteristics, including the details of both the
standard loop and a multi-instance.

Figure 10-41 – LoopCharacteristics class diagram

The LoopCharacteristics element inherits the attributes and model associations of BaseElement (see
Table 8-5), but does not have any further attributes or model associations. However, a Loop Activity does have
additional Instance attributes as shown in Table 10-24.

Table 10-24 – Loop Activity Instance attributes

Attribute Name Description/Usage

loopCounter: integer The LoopCounter attribute is used at runtime to count the number
of loops and is automatically updated by the process engine.

Standard Loop Characteristics

The StandardLoopCharacteristics class defines looping behavior based on a boolean condition.
The Activity will loop as long as the boolean condition is true. The condition is evaluated for every loop
iteration, and may be evaluated at the beginning or at the end of the iteration. In addition, a numeric cap can be
optionally specified. The number of iterations may not exceed this cap.

The marker for a Task or a Sub-Process that is a standard loop MUST be a small line with an

Proposal for:
201 Business Process Model and Notation (BPMN), v2.0

arrowhead that curls back upon itself (see Figure 10-42 and Figure 10-43).

The loop Marker MAY be used in combination with the Compensation Marker.

Figure 10-42 – A Task object with a Standard Loop Marker

Figure 10-43 – A Sub-Process object with a Standard Loop Marker

The StandardLoopCharacteristics element inherits the attributes and model associations of
BaseElement (see Table 8-5), through its relationship to LoopCharacteristics. Table 10-25 presents
the additional attributes and model associations for the StandardLoopCharacteristics element:

Table 10-25 – StandardLoopCharacteristics attributes and model associations

Attribute Name Description/Usage

testBefore: boolean = False Flag that controls whether the loop condition is evaluated at the
beginning (testBefore = true) or at the end (testBefore = false)
of the loop iteration.

loopMaximum: integer [0..1] Serves as a cap on the number of iterations.

loopCondition: Expression [0..1] A Boolean expression that controls the loop. The Activity will only
loop as long as this condition is true. The looping behavior may be
underspecified, meaning that the modeler may simply document the
condition, in which case the loop cannot be formally executed.

Multi-Instance Characteristics

The MultiInstanceLoopCharacteristics class allows for creation of a desired number of Activity
instances. The instances may execute in parallel or may be sequential. Either an expression is used to
specify or calculate the desired number of instances or a data driven setup can be used. In that case a data input
can be specified, which is able to handle a collection of data. The number of items in the collection determines
the number of Activity instances. This data input can be produced by a data input association. The modeler can
also configure this loop to control the Tokens produced.

The marker for a Task or Sub-Process that is a multi-instance MUST be a set of three vertical
lines.

If the multi-instance instances are set to be performed in parallel rather than sequential (the

Proposal for:
Business Process Model and Notation (BPMN), v2.0 202

isSequential attribute set to false), then the lines of the marker will vertical (see Figure
10-44).

If the multi-instance instances are set to be performed in sequence rather than parallel (the
isSequential attribute set to true), then the marker will be horizontal (see Figure 10-45).

The Multi-Instance marker MAY be used in combination with the Compensation marker.

Figure 10-44 – Activity Multi-Instance marker for parallel instances

Figure 10-45 – Activity Multi-Instance marker for sequential instances

The MultiInstanceLoopCharacteristics element inherits the attributes and model associations of
BaseElement (see Table 8-5), through its relationship to LoopCharacteristics. Table 10-26 presents
the additional attributes and model associations for the MultiInstanceLoopCharacteristics
element:

Table 10-26 – MultiInstanceLoopCharacteristics attributes and model associations

Attribute Name Description/Usage

isSequential: boolean = False This attribute is a flag that controls whether the Activity
instances will execute sequentially or in parallel.

loopCardinality: Expression [0..1] A numeric Expression that controls the number of Activity
instances that will be created. This Expression MUST evaluate
to an integer.

This may be underspecified, meaning that the modeler may
simply document the condition. In such a case the loop cannot be
formally executed.

In order to initialize a valid multi-instance, either the
loopCardinality Expression or the loopDataInput
MUST be specified.

Proposal for:
203 Business Process Model and Notation (BPMN), v2.0

loopDataInput: DataInput [0..1] A reference to a DataInput which is part of the Activity’s
InputOutputSpecification. This DataInput is used to
determine the number of Activity instances, one Activity
instance per item in the collection of data stored in that
DataInput element.

In order to initialize a valid multi-instance, either the
loopCardinality Expression or the loopDataInput
MUST be specified.

loopDataOutput: DataOutput [0..1] A reference to a DataOutput which is part of the Activity’s
InputOutputSpecification. This DataOutput specifies
the collection of data, which will be produced by the
multi-instance.

inputDataItem: Property [0..1] A Property, representing for every Activity instance the single
item of the collection stored in the loopDataInput. This
Property can be the source of DataInputAssociation to a
data input of the Activity’s InputOutputSpecification.
The type of this Property MUST the scalar of the type defined
for the loopDataInput.

outputDataItem: Property [0..1] A Property, representing for every Activity instance the single
item of the collection stored in the loopDataOutput. This
Property can be the target of DataOutputAssociation to a
data output of the Activity’s InputOutputSpecification.
The type of this Property MUST the scalar of the type defined
for the loopDataOutput.

behavior: MultiInstanceBehavior = all

{ none | one | all | complex }

The attribute behavior acts as a shortcut for specifying when
events shall be thrown from an Activity instance that is about to
complete. It can assume values of none, one, all, and
complex, resulting in the following behavior:

none: the EventDefinition which is associated through
the noneEvent association will be thrown for each
instance completing;
one: the EventDefinition referenced through the
oneEvent association will be thrown upon the first
instance completing;
all: no Event is ever thrown; a token is produced after
completion of all instances
complex: the complexBehaviorDefinitions are
consulted to determine if and which Events to throw.

For the behaviors of none and one, a default
SignalEventDefinition will be thrown which automatically
carries the current runtime attributes of the MI Activity.

Any thrown Events can be caught by boundary Events on the
Multi-Instance Activity.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 204

complexBehaviorDefinition:
ComplexBehaviorDefinition [0..*]

Controls when and which Events are thrown in case behavior
is set to complex.

completionCondition: Expression [0..1] This attribute defines a Boolean Expression that when
evaluated to true, cancels the remaining Activity instances and
produces a token.

oneBehaviorEventRef:
EventDefinition [0..1]

The EventDefinition which is thrown when behavior is set
to one and the first internal Activity instance has completed.

noneBehaviorEventRef:
EventDefinition [0..1]

The EventDefinition which is thrown when the behavior is
set to none and an internal Activity instance has completed.

The following table lists all instance attributes available at runtime. For each instance of the Multi-Instance
Activity (outer instance), there exist a number of generated (inner) instances of the Activity at runtime.

Table 10-27 – Multi-instance Activity Instance attributes

Attribute Name Description/Usage

loopCounter: integer This attribute is provided for each generated (inner) instance of the
Activity. It contains the sequence number of the generated instance,
i.e., if this value of some instance in n, the instance is the n-th
instance that was generated.

numberOfInstances: integer This attribute is provided for the outer instance of the
Multi-Instance Activity only. This attribute contains the total
number of inner instances created for the Multi-Instance Activity.

numberOfActiveInstances: integer This attribute is provided for the outer instance of the
Multi-Instance Activity only. This attribute contains the number of
currently active inner instances for the Multi-Instance Activity. In
case of a sequential Multi-Instance Activity, this value can’t be
greater than 1. For parallel Multi-Instance Activities, this value
can’t be greater than the value contained in numberOfInstances

numberOfCompletedInstances:
integer

This attribute is provided for the outer instance of the
Multi-Instance Activity only. This attribute contains the number of
already completed inner instances for the Multi-Instance Activity.

numberOfTerminatedInstances:
integer

This attribute is provided for the outer instance of the
Multi-Instance Activity only. This attribute contains the number of
terminated inner instances for the Multi-Instance Activity. The
sum of numberOfTerminatedInstances,
numberOfCompletedInstances and
numberOfActiveInstances always sums up to
numberOfInstances.

Proposal for:
205 Business Process Model and Notation (BPMN), v2.0

Complex Behavior Definition

This element controls when and which Events are thrown in case behavior of the Multi-Instance
Activity is set to complex.

The ComplexBehaviorDefinition element inherits the attributes and model associations of
BaseElement (see Table 8-5). Table 10-28 presents the additional attributes and model associations for the
ComplexBehaviorDefinition element:

Table 10-28 – ComplexBehaviorDefinition attributes and model associations

Attribute Name Description/Usage

condition: Formal Expression This attribute defines a Boolean Expression that when
evaluated to true, cancels the remaining Activity instances and
produces a token.

event: ImplicitThrowEvent If the condition is true, this identifies the Event that will be
thrown (to be caught by a boundary Event on the
Multi-Instance Activity)/

10.2.9. XML Schema for Activities
Table 10-29 – Activity XML schema

<xsd:element name="activity" type="tActivity"/>
<xsd:complexType name="tActivity" abstract="true">

<xsd:complexContent>
 <xsd:extension base="tFlowNode">
 <xsd:sequence>

<xsd:element ref="ioSpecification" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="property" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataInputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataOutputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="activityResource" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="loopCharacteristics" minOccurs="0"/>

 </xsd:sequence>
<xsd:attribute name="isForCompensation" type="xsd:boolean" default="false"/>

 <xsd:attribute name="default" type="xsd:IDREF" use="optional"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 206

Table 10-30 – ActivityResource XML schema

<xsd:element name="activityResource" type="tActivityResource"/>
<xsd:complexType name="tActivityResource">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element ref="resourceAssignmentExpression" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="resourceParameterBinding" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="resourceRef" type="xsd:QName" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-31 – AdHocSubProcess XML schema

<xsd:element name="adHocSubProcess" type="tAdHocSubProcess" substitutionGroup="flowElement"/>
<xsd:complexType name="tAdHocSubProcess">

<xsd:complexContent>
<xsd:extension base="tSubProcess">

<xsd:sequence>
<xsd:element name="completionCondition" type="tExpression" minOccurs="0"

maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="cancelRemainingInstances" type="xsd:boolean" default="true"/>
<xsd:attribute name="ordering" type="tAdHocOrdering"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="tAdHocOrdering">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="parallel"/>
<xsd:enumeration value="sequential"/>

</xsd:restriction>
</xsd:simpleType>

Table 10-32 – BusinessRuleTask XML schema

<xsd:element name="businessRuleTask" type="tBusinessRuleTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tBusinessRuleTask">

<xsd:complexContent>
 <xsd:extension base="tTask"/>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
207 Business Process Model and Notation (BPMN), v2.0

Table 10-33 – CallActivity XML schema

<xsd:element name="callActivity" type="tCallActivity" substitutionGroup="flowElement"/>
<xsd:complexType name="tCallActivity">

<xsd:complexContent>
<xsd:extension base="tActivity">

<xsd:attribute name="calledElement" type="xsd:QName" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10-34 – GlobalBusinessRuleTask XML schema

<xsd:element name="globalBusinessRuleTask" type="tGlobalBusinessRuleTask"
substitutionGroup="rootElement"/>

<xsd:complexType name="tGlobalBusinessRuleTask">
<xsd:complexContent>

<xsd:extension base="tGlobalTask"/>
</xsd:complexContent>

</xsd:complexType>

Table 10-35 – GlobalScriptTask XML schema

<xsd:element name="globalScriptTask" type="tGlobalScriptTask" substitutionGroup="rootElement"/>
<xsd:complexType name="tGlobalScriptTask">

<xsd:complexContent>
 <xsd:extension base="tGlobalTask">
 <xsd:sequence>

<xsd:element ref="script" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="scriptLanguage" type="xsd:anyURI"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-36 – LoopCharacteristics XML schema

<xsd:element name="loopCharacteristics" type="tLoopCharacteristics"/>
<xsd:complexType name="tLoopCharacteristics" abstract="true">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 208

Table 10-37 – MultiInstanceLoopCharacteristics XML schema

<xsd:element name="multiInstanceLoopCharacteristics" type="tMultiInstanceLoopCharacteristics"
substitutionGroup="loopCharacteristics"/>

<xsd:complexType name="tMultiInstanceLoopCharacteristics">
<xsd:complexContent>
<xsd:extension base="tLoopCharacteristics">

<xsd:sequence>
<xsd:element name="loopCardinality" type="tExpression" minOccurs="0" maxOccurs="1"/>
<xsd:element name="loopDataInput" type="tDataInput" minOccurs="0" maxOccurs="1"/>
<xsd:element name="loopDataOutput" type="tDataOutput" minOccurs="0"

maxOccurs="1"/>
<xsd:element name="inputDataItem" type="tProperty" minOccurs="0" maxOccurs="1"/>
<xsd:element name="outputDataItem" type="tProperty" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="complexBehaviorDefinition" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="completionCondition" type="tExpression" minOccurs="0"

maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="isSequential" type="xsd:boolean" default="false"/>
<xsd:attribute name="behavior" type="tMultiInstanceFlowCondition" default="all"/>
<xsd:attribute name="oneBehaviorEventRef" type="xsd:QName" use="optional"/>
<xsd:attribute name="noneBehaviorEventRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="tMultiInstanceFlowCondition">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="none"/>
<xsd:enumeration value="one"/>
<xsd:enumeration value="all"/>
<xsd:enumeration value="complex"/>

</xsd:restriction>
</xsd:simpleType>

Table 10-38 – ReceiveTask XML schema

<xsd:element name="receiveTask" type="tReceiveTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tReceiveTask">

<xsd:complexContent>
<xsd:extension base="tTask">

<xsd:sequence>
<xsd:element name="messageRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>
<xsd:element name="operationRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="instantiate" type="xsd:boolean" default="false"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
209 Business Process Model and Notation (BPMN), v2.0

Table 10-39 – ScriptTask XML schema

<xsd:element name="scriptTask" type="tScriptTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tScriptTask">

<xsd:complexContent>
 <xsd:extension base="tTask">
 <xsd:sequence>

<xsd:element ref="script" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="scriptLanguage" type="xsd:anyURI"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="script" type="tScript"/>
<xsd:complexType name="tScript" mixed="true">

<xsd:sequence>
 <xsd:any namespace="##any" processContents="lax" minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>

Table 10-40 – SendTask XML schema

<xsd:element name="sendTask" type="tSendTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tSendTask">

<xsd:complexContent>
<xsd:extension base="tTask">

<xsd:sequence>
<xsd:element name="messageRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>
<xsd:element name="operationRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10-41 – ServiceTask XML schema

<xsd:element name="serviceTask" type="tServiceTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tServiceTask">

<xsd:complexContent>
<xsd:extension base="tTask">

<xsd:sequence>
<xsd:element name="operationRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>
<xsd:element name="serviceRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 210

Table 10-42 – StandardLoopCharacteristics XML schema

<xsd:element name="standardLoopCharacteristics" type="tStandardLoopCharacteristics"/>
<xsd:complexType name="tStandardLoopCharacteristics">

<xsd:complexContent>
<xsd:extension base="tLoopCharacteristics">

<xsd:sequence>
<xsd:element name="loopCondition" type="tExpression" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="testBefore" type="xsd:boolean" default="false"/>
<xsd:attribute name="loopMaximum" type="xsd:integer" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-43 – SubProcess XML schema

<xsd:element name="subProcess" type="tSubProcess" substitutionGroup="flowElement"/>
<xsd:complexType name="tSubProcess">

<xsd:complexContent>
<xsd:extension base="tActivity">

<xsd:sequence>
<xsd:element ref="flowElement" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10-44 – Task XML schema

<xsd:element name="task" type="tTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tTask">

<xsd:complexContent>
<xsd:extension base="tActivity"/>

</xsd:complexContent>
</xsd:complexType>

Proposal for:
211 Business Process Model and Notation (BPMN), v2.0

Table 10-45 – Transaction XML schema

<xsd:element name="transaction" type="tTransaction" substitutionGroup="flowElement"/>
<xsd:complexType name="tTransaction">

<xsd:complexContent>
<xsd:extension base="tActivity"/>

</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tTransactionMethod">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="compensate"/>
<xsd:enumeration value="image"/>
<xsd:enumeration value="store"/>

</xsd:restriction>
</xsd:simpleType>

10.3. Items and Data
A traditional requirement of Process modeling is to be able to model the items (physical or information items)
that are created, manipulated, and used during the execution of a Process. An import aspect of this is the ability
to capture the structure of that data and to query or manipulate that structure.

BPMN does not itself provide a built-in model for describing structure of data or an expression language for
querying that data. Instead it formalizes hooks that allow for externally defined data structures and expression
languages. In addition, BPMN allows for the co-existence of multiple data structure and expression languages
within the same model. The compatibility and verification of these languages is outside the scope of this
specification and becomes the responsibility of the tool vendor.

BPMN designates XML Schema and XPath as its default data structure and expression languages respectively,
but vendors are free to substitute their own languages.

10.3.1. Data Modeling
A traditional requirement of Process modeling is to be able to model the items (physical or information items)
that are created, manipulated, and used during the execution of a Process.

This requirement is realized in BPMN through various constructs: Data Objects, ItemDefinition, Properties,
Data Inputs, Data Outputs, Messages, Input Sets, Output Sets, and Data Associations.

Item-Aware Elements

Several elements in BPMN are subject to store or convey items during process execution. These elements are
referenced generally as “item-aware elements.” This is similar to the variable construct common to many
languages. As with variables, these elements have a ItemDefinition.

The data structure these elements hold is specified using an associated ItemDefinition. An item-aware
element may be underspecified, meaning that the structure attribute of its ItemDefinition is optional if
the modeler does not wish to define the structure of the associated data.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 212

The elements in the specification defined as item-aware elements are: Data Objects, Properties,
DataInputs and DataOutputs, Messages.

Figure 10-46 – ItemAware class diagram

The ItemAwareElement element inherits the attributes and model associations of BaseElement (see
Table 8-5). Table 10-46 presents the additional model associations of the ItemAwareElement element:

Table 10-46 – ItemAwareElement model associations

Attribute Name Description/Usage

itemSubjectRef:
ItemDefinition [0..1]

Specification of the items that are stored or conveyed by the
ItemAwareElement.

dataState: DataState
[0..1]

A reference to the DataState, which defines certain states for the data
contained in the Item.

Data Objects

The primary construct for modeling data within the Process flow is the DataObject element. A
DataObject has a well-defined lifecycle, with resulting visibility constraints.

Proposal for:
213 Business Process Model and Notation (BPMN), v2.0

DataObject

The DataObject class is an item-aware element. Data Object elements must be contained within Process
or Sub-Process elements. Data Object elements are visible in a Process diagram.

Figure 10-47 – DataObject class diagram

The DataObject element inherits the attributes and model associations of FlowElement (see Table 8-45)
and ItemAwareElement (Table 10-46). Table 10-47 presents the additional attributes of the DataObject
element:

Table 10-47 – DataObject attributes

Attribute Name Description/Usage

isCollection: Boolean =
False

Defines if the Data Object represents a collection of elements. This is a
projection of the same attribute of the referenced ItemDefinition.

States

Data Object elements can optionally reference a DataState element, which is the state of the data
contained in the Data Object (see an example of DataStates used for Data Objects in Figure 7-8). The
definition of these states, e.g. possible values and any specific semantic are out of scope of this specification.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 214

Therefore, BPMN adopters can use the State element and the BPMN extensibility capabilities to define their
states.

The DataState element inherits the attributes and model associations of BaseElement (see Table 8-5).
Table 10-48 presents the additional attributes and model associations of the DataObject element:

Table 10-48 – DataState attributes and model associations

Attribute Name Description/Usage

name: String Defines the name of the DataState.

Data Objects representing a Collection of Data

A DataObject element that references an ItemDefinition marked as collection has to be visualized
differently, compared to single instance data structures. The notation looks as follows:

Single instance (see Figure 10-48)

Figure 10-48 – A DataObject

Collection (see Figure 10-49)

Figure 10-49 – A DataObject that is a collection

Visual representations of Data Objects

Data Object can appear multiple times in a Process diagram. Each of these appearances references the same
Data Object instance. Multiple occurrences of a Data Object in a diagram are allowed to simplify diagram
connections.

Lifecycle and Visibility

The lifecycle of a Data Object is tied to the lifecycle of its parent Process or Sub-Process. When a
Process or Sub-Process is instantiated, all Data Objects contained within it are also instantiated. When a
Process or Sub-Process instance is disposed, all Data Object instances contained within it are also
disposed. At this point the data within these instances are no longer available.

Proposal for:
215 Business Process Model and Notation (BPMN), v2.0

The visibility of a Data Object is driven by its lifecycle. The data within a Data Object can only be accessed
when there is guaranteed to be a live Data Object instance present. As a result, a Data Object can only be
accessed by its immediate parent (Process or Sub-Process), or by its sibling Flow Elements and their
children.

For example: Consider the follow structure.

Process A
Data object 1
Task A
Sub-process A

Data object 2
Task B

Sub-process B
Data object 3
Sub-process C

Data object 4
Task C

Task D

“Data object 1” is visible to: “Process A,” “Task A,” “Sub-Process A,” “Task B,” “Sub-Process B,”
“Sub-Process C,” “Task C,” and “Task D.”

“Data object 2” is visible to: “Sub-Process A” and “Task B.”

“Data object 3” is visible to: “Sub-Process B,” “Sub-Process C,” “Task C,” and “Task D.”

“Data object 4” is visible to: “Sub-Process C” and “Task C.”

Data Stores

A DataStore provides a mechanism for Activities to retrieve or update stored information that will persist
beyond the scope of the Process. The same DataStore can be visualized, through a Data Store
Reference, in one (1) or more places in the Process.

The Data Store Reference is an ItemAwareElement and can thus be used as the source or target for a
Data Association. When data flows into or out of a Data Store Reference, it is effectively flowing into
or out of the DataStore that is being referenced.

The notation looks as follows:

Figure 10-50 – A Data Store

Proposal for:
Business Process Model and Notation (BPMN), v2.0 216

Figure 10-51 – DataStore class diagram

The DataStore element inherits the attributes and model associations of FlowElement (see Table 8-45)
through its relationship to RootElement, and ItemAwareElement (see Table 10-46). Table 10-49
presents the additional attributes of the DataStore element:

Table 10-49 – Data Store attributes

Attribute Name Description/Usage

name: string A descriptive name for the element.

capacity: Integer [0..1] Defines the capacity of the Data Store. This is not needed if the
isUnlimited attribute is set to true

isUnlimited: Boolean =
False

If isUnlimited is set to true, then the capacity of a Data Store is set as
unlimited and will override any value of the capacity attribute.

Proposal for:
217 Business Process Model and Notation (BPMN), v2.0

The Data Store Reference element inherits the attributes and model associations of FlowElement (see
Table 8-45) and ItemAwareElement (see Table 10-46). Table 10-49 presents the additional model
associations of the Data Store Reference element:

Table 10-50 – Data Store attributes

Attribute Name Description/Usage

dataStoreRef:
DataStore

Provides the reference to a global DataStore.

Properties

Properties, like Data Objects, are item-aware elements. But, unlike Data Objects, they are not visible
within a Process diagram. Certain flow elements may contain properties, in particular only Processes,
Activities and Events may contain Properties

The Property class is a DataElement element that acts as a container for data associated with flow
elements. Property elements must be contained within a FlowElement. Property elements are NOT
visible in a Process diagram.

Figure 10-52 – Property class diagram

The Property element inherits the attributes and model associations of ItemAwareElement (Table 10-46).
Table 10-47 presents the additional attributes of the Property element:

Table 10-51 – Property attributes

Attribute Name Description/Usage

name: String Defines the name of the Property.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 218

Lifecycle and Visibility

The lifecycle of a Property is tied to the lifecycle of its parent Flow Element. When a Flow Element is
instantiated, all Properties contained by it are also instantiated. When a Flow Element instance is
disposed, all Property instances contained by it are also disposed. At this point the data within these instances
are no longer available.

The visibility of a Property is driven by its lifecycle. The data within a Property can only be accessed when there
is guaranteed to be a live Property instance present. As a result, a Property can only be accessed by its parent
Flow Element or, when its parent Flow Element is a Process or Sub-Process, then by the immediate children
of that Process or Sub-Process.

For example: Consider the follow structure.

Process A
Task A
Sub-Process A

Task B
Sub-Process B

Sub-Process C
Task C

Task D

The Properties of “Process A” are visible to: All elements (including children elements) of this Process

The Properties of “Sub-Process A” are visible to: “Sub-Process A” and “Task B.”

The Properties of “Task C” are visible to: “Task C.”

Data Inputs and Outputs

Activities and Processes often required data in order to execute. In addition they may produce data during or
as a result of execution. Data requirements are captured as Data Inputs and Input Sets. Data that is produced is
captured using Data Outputs and Output Sets. These elements are aggregated in a
InputOutputSpecification class.

Certain Activities and CallableElements contain a InputOutputSpecification element to
describe their data requirements. Execution semantics are defined for the input/output specification and they
apply the same way to all elements that extend it. Not every Activity type defines inputs and outputs, only
Tasks, CallableElements (Global Tasks and Processes) can define their data requirements.

Proposal for:
219 Business Process Model and Notation (BPMN), v2.0

Figure 10-53 – InputOutputSpecification class diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 220

The InputOutputSpecification element inherits the attributes and model associations of
BaseElement (see Table 8-5). Table 10-52 presents the additional attributes and model associations of the
InputOutputSpecification element:

Table 10-52 – InputOutputSpecification Attributes and Model Associations

Attribute Name Description/Usage

inputSets: InputSet [1..*] A reference to the InputSets defined by the
InputOutputSpecification. Every InputOutputSpecification
must define at least one InputSet.

outputSets: OutputSet
[1..*]

A reference to the OutputSets defined by the
InputOutputSpecification. Every Data Interface must define at least
one OutputSet.

dataInputs: DataInput [0..*] An optional reference to the Data Inputs of the
InputOutputSpecification. If the InputOutputSpecification
defines no Data Input, it means no data is required to start the Activity.

dataOutputs: DataOutput
[0..*]

An optional reference to the Data Outputs of the
InputOutputSpecification. If the InputOutputSpecification
defines no Data Output, it means no data is required to finish the Activity.

DataInput

A DataInput is a declaration that a particular kind of data will be used as input of the
InputOutputSpecification. There may be multiple data inputs associated with an
InputOutputSpecification.

The DataInput is an item-aware element. DataInput elements may appear in a Process diagram to show
the inputs to the Process as whole, which are passed along as the inputs of Activities by
DataAssociations.

DataInputs have the same notation as DataObjects, except MUST contain a small, unfilled block
arrow (see Figure 10-54).

DataInputs MUST NOT have incoming DataAssociations.
.

Figure 10-54 – A DataInput

Proposal for:
221 Business Process Model and Notation (BPMN), v2.0

The “optional” attribute defines if a DataInput is valid even if the state is “unavailable”. The default value is
false. If the value of this attribute is true, then the execution of the Activity will not begin until a value is
assigned to the DataInput element, through the corresponding Data Associations.

States

DataInput elements can optionally reference a DataState element, which is the state of the data contained
in the DataInput. The definition of these states, e.g. possible values, and any specific semantics are out of
scope of this specification. Therefore, BPMN adopters can use the DataState element and the BPMN
extensibility capabilities to define their states.

Figure 10-55 – Data Input class diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 222

The DataInput element inherits the attributes and model associations of BaseElement (see Table 8-5) and
ItemAwareElement (Table 10-46). Table 10-53 presents the additional attributes and model associations of
the DataInput element:

Table 10-53 – DataInput attributes and model associations

Attribute Name Description/Usage

name: string A descriptive name for the element.

inputSetRefs: InputSet [1..*] A DataInput is used in one (1) or more InputSets. This attribute is
derived from the InputSets.

inputSetwithOptional:
InputSet [0..*]

Each InputSet that uses this DataInput can determine if the Activity
can start executing with this DataInput state in “unavailable”. This
attribute lists those InputSets.

inputSetWithWhileExecuting:
Inputset [0..*]

Each InputSet that uses this DataInput can determine if the Activity
can evaluate this DataInput while executing. This attribute lists those
InputSets.

isCollection: Boolean = False Defines if the DataInput represents a collection of elements. This is a
projection of the same attribute of the referenced ItemDefinition.

DataOutput

A DataOutput is a declaration that a particular kind of data may be produced as output of the
InputOutputSpecification. There may be multiple data outputs associated with a
InputOutputSpecification.

The DataOutput is an item-aware element. DataOutput elements appear in a Process diagram to show
the outputs of the Process as whole, which are passed along from the outputs of Activities by
DataAssociations.

DataOutputs have the same notation as DataObjects, except MUST contain a small, filled block
arrow (see Figure 10-54).

DataOutputs MUST NOT have outgoing DataAssociations.

Figure 10-56 – A Data Output

States

Proposal for:
223 Business Process Model and Notation (BPMN), v2.0

DataOutput elements can optionally reference an DataState element, which is the state of the data
contained in the DataOutput. The definition of these states, e.g. possible values, and any specific semantics
are out of scope of this specification. Therefore, BPMN adopters can use the DataState element and the
BPMN extensibility capabilities to define their states.

Figure 10-57 – Data Output class diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 224

The DataOutput element inherits the attributes and model associations of BaseElement (see Table 8-5)
and ItemAwareElement (Table 10-46). Table 10-54 presents the additional attributes and model
associations of the DataInput element:

Table 10-54 – DataOutput attributes and associations

Attribute Name Description/Usage

name: String A descriptive name for the element.

outputSetRefs: OutputSet [1..*] A DataOutput is used in one (1) or more OutputSets. This attribute is
derived from the OutputSets.

outputSetwithOptional:
OutputSet [0..*]

Each OutputSet that uses this DataOutput can determine if the
Activity can complete executing without producing this DataInput.
This attribute lists those OutputSets.

outputSetWithWhileExecuting:
OutputSet [0..*]

Each OutputSet that uses this DataInput can determine if the
Activity can produce this DataOutput while executing. This attribute
lists those OutputSets.

isCollection: Boolean = False Defines if the DataOutput represents a collection of elements. This is a
projection of the same attribute of the referenced ItemDefinition.

The following describes the mapping of data inputs and outputs to the specific Activity implementations:

Service Task Mapping

There is a single data input that has a ItemDefinition equivalent to the one defined by the Message
referred by the inMessageRef attribute of the operation.

In the case the operation defines output Messages, there is a single data output that has an
ItemDefinition equivalent to the one defined by Message referred by the outMessageRef attribute of
the operation.

User Task Mapping

User Tasks have access to the Data Input, Data Output and the data aware elements available in the
scope of the User Task.

Call Activity Mapping

Since Call Activities rely in the callable element being invoked, the data inputs and outputs of the Call
Activity must match with the data inputs, inputsets and outputs, outputsets defined in the callable element. The
data inputs and outputs of the Call Activity are mapped to the corresponding data inputs and output of the
Callable Element without any explicit data association.

Proposal for:
225 Business Process Model and Notation (BPMN), v2.0

Script Task Mapping

Script Tasks have access to the Data Input , Data Output and the data aware elements available in the
scope of the Script Task.

InputSet

An InputSet is a collection of DataInput elements that together define a valid set of data inputs for a
InputOutputSpecification. A InputOutputSpecification must have at least one InputSet
element. An InputSet may reference zero or more DataInput elements. A single DataInput may be
associated with multiple InputSet elements, but it must always be referenced by at least one InputSet.

An “empty” InputSet, one that references no DataInput elements, signifies that the Activity requires no
data to start executing (this implies that either there are no data inputs or they are referenced by another input
set).

InputSet elements are contained by InputOutputSpecification elements; the order in which these
elements are included defines the order in which they will be evaluated.

Figure 10-58 – InputSet class diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 226

The InputSet element inherits the attributes and model associations of BaseElement (see Table 8-5).
Table 10-55 presents the additional attributes and model associations of the InputSet element:

Table 10-55 – InputSet attributes and model associations

Attribute Name Description/Usage

name: string [0..1] A descriptive name for the input set.

dataInputRefs:
DataInput [0..*]

The DataInput elements that collectively make up this data requirement.

optionalInput:
DataInput [0..*]

The DataInput elements that are a part of the InputSet that can be in the
state of “unavailable” when the Activity starts executing. This association MUST
NOT reference a DataInput that is not listed in the dataInputRefs.

whileExecutingInput:
DataInput [0..*]

The DataInput elements that are a part of the InputSet that can be evaluated
while the Activity is executing. This association MUST NOT reference a
DataInput that is not listed in the dataInputRefs.

outputSetRefs:
OutputSet [0..*]

Specifies an Input/Output rule that defines which OutputSet is expected to be
created by the Activity when this InputSet became valid.

This attribute is paired with the inputSetRefs attribute of OutputSets. This
combination replaces the IORules attribute for Activities in BPMN 1.2.

OutputSet

An OutputSet is a collection of DataOutputs elements that together may be produced as output from an
Activity or Event. An InputOutputSpecification element must define at least OutputSet element.
An OutputSet may reference zero or more DataOutput elements. A single DataOutput may be
associated with multiple OutputSet elements, but it must always be referenced by at least one OutputSet.

An “empty” OutputSet, one that is associated with no DataOutput elements, signifies that the ACTIVITY
may produce no data.

The implementation of the element where the OutputSet is defined must determine the OutputSet that will
be produced. So it is up to the Activity implementation or the Event, to define which OutputSet will be
produced.

Proposal for:
227 Business Process Model and Notation (BPMN), v2.0

Figure 10-59 – OutputSet class diagram

The OutputSet element inherits the attributes and model associations of BaseElement (see Table 8-5).
Table 10-56 presents the additional attributes and model associations of the OutputSet element:

Table 10-56 – OutputSet attributes and model associations

Attribute Name Description/Usage

name: string [0..1] A descriptive name for the input set.

dataOutputRefs:
DataOutput [0..*]

The DataOutput elements that may collectively be outputted.

optionalOutput:
DataInput [0..*]

The DataOutput elements that are a part of the OutputSet that do not have to
be produced when the Activity completes executing. This association MUST
NOT reference a DataOutput that is not listed in the dataOutputRefs.

whileExecutingOutput:
DataInput [0..*]

The DataOutput elements that are a part of the OutputSet that can be
produced while the Activity is executing. This association MUST NOT reference
a DataOutput that is not listed in the dataOutputRefs.

inputSetRefs: InputSet
[0..*]

Specifies an Input/Output rule that defines which InputSet has to become valid
to expect the creation of this OutputSet.

This attribute is paired with the outputSetRefs attribute of InputSets. This
combination replaces the IORules attribute for Activities in BPMN 1.2.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 228

Data Associations

Data Associations are used to move data between Data Objects, Properties, and inputs and outputs of
Activities, Processes, and GlobalTasks. Tokens do not flow along a Data Association, and as a result
they have no direct effect on the flow of the Process.

The purpose of retrieving data from Data Objects or Process Data Inputs is to fill the Activities inputs
and later push the output values from the execution of the Activity back into Data Objects or Process
Data Outputs.

DataAssociation

The DataAssociation class is a BaseElement contained by an Activity or Event, used to model how
data is pushed into or pulled from item-aware elements. DataAssociation elements have one or more
sources and a target; the source of the association is copied into the target.

The ItemDefinition from the souceRef and targetRef must have the same ItemDefinition or
the DataAssociation MUST have a transformation Expression that transforms the source
ItemDefinition into the target ItemDefinition.

Figure 10-60 – DataAssociation class diagram

Optionally, Data Associations can be visually represented in the diagram by using the Association connector
style.

Proposal for:
229 Business Process Model and Notation (BPMN), v2.0

Figure 10-61 – A Data Association

Figure 10-62 – A Data Association used for an Outputs and Inputs into an Activities

The core concepts of a DataAssociation are that they have sources, a target and an optional transformation.

When a data association is “executed”, data is copied to the target. What is copied depends if there is a
transformation defined or not.

If there is no transformation defined or referenced, then only one source must be defined, and the contents of this
source will be copied into the target.

If there is a transformation defined or referenced, then this transformation expression will be evaluated and the
result of the evaluation is copied into the target. There can be zero to many sources defined in this case, but there
is no requirement that these sources are used inside the expression.

In any case, sources are used to define if the data association can be “executed”, if any of the sources is in the
state of “unavailable”, then the data association cannot be executed, and the Activity or Event where the data
association is defined must wait until this condition is met.

Data Associations are always contained within another element that defines when these data associations are
going to be executed. Activities define two (2) sets of data associations, while Events define only 1 (one).

For Events, there is only one set, but they are used differently for catch or throw Events. For a catch Event,
data associations are used to push data from the Message received into Data Objects and properties. For a
throw Event, data associations are used to fill the Message that is being thrown.

As DataAssociation are used in different stages of the Process and Activity lifecycle, the possible sources and
targets vary according to that stage. This defines the scope of possible elements that can be referenced as source
and target. For example: when an Activity starts executing, the scope of valid targets include the Activity data
inputs, while at the end of the Activity execution, the scope of valid sources include Activity data outputs.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 230

The DataAssociation element inherits the attributes and model associations of BaseElement (see Table
8-5). Table 10-57 presents the additional model associations of the DataAssociation element:

Table 10-57 – DataAssociation model associations

Attribute Name Description/Usage

transformation:
Expression [0..1]

Specifies an optional transformation expression. The actual scope of visible data
for that expression is defined by the source and target of the specific data
association types.

assignment:
Assignment [0..*]

Specifies one or more data elements Assignments. By using an Assignment,
single data structure elements can be assigned from the source structure to the
target structure.

sourceRef:
ItemAwareElement [1..*]

Identifies the source of the data association. The source must be an
ItemAwareElement.

targetRef:
ItemAwareElement

Identifies the target of the data association. The target must be an
ItemAwareElement

Assignment

The Assignment class is used to specify a simple mapping of data elements using a specified expression
language.

The default expression language for all expressions is specified in the Definitions element, using the
expressionLanguage attribute. It can also be overridden on each individual Assignment using the same
attribute.

The Assignment element inherits the attributes and model associations of BaseElement (see Table 8-5).
Table 10-58 presents the additional attributes of the Assignment element:

Table 10-58 – Assignment attributes

Attribute Name Description/Usage

language: string [0..1] When included, this will override the Expression language specified in the
Definitions.

from: Element The body of the Expression that evaluates the source of the Assignment.

to: Element The body of the Expression that defines the actual Assignment operation and
the target data element.

DataInputAssociation

Proposal for:
231 Business Process Model and Notation (BPMN), v2.0

The DataInputAssociation can be used to associate a item-aware element with a DataInput contained in
an Activity. The source of such a DataAssociation can be every item-aware element visible to the current
scope, e.g. a Data Object, a Property or an Expression.

The DataInputAssociation element inherits the attributes and model associations of FlowElement
(see Table 10-57), but does not contain any additional attributes or model associations.

DataOutputAssociation

The DataOutputAssociation can be used to associate a DataOutput contained within an ACTIVITY
with any item-aware element visible to the scope the association will be executed in. The target of such a
DataAssociation can be every item-aware element visible to the current scope, e.g. a Data Object, a
Property or an Expression.

The DataOutputAssociation element inherits the attributes and model associations of FlowElement
(see Table 10-57), but does not contain any additional attributes or model associations.

Data Objects associated with a Sequence Flow

Figure 10-63 repeats Figure 10-62, above, and shows how Data Associations are used to represent inputs and
outputs of Activities.

Figure 10-63 – A Data Object shown as an output and an inputs

Alternatively, Data Objects may be directly associated with a Sequence Flow connector (see Figure
10-64) to represent the same input/output relationships. This is a visual short cut that normalizes two Data
Associations (e.g., as seen in Figure 10-63, above): one from a item-aware element (e.g., an Activity)
contained by the source of the Sequence Flow, connecting to the Data Object; and the other from the Data
Object connecting to a item-aware element contained by the target of the Sequence Flow.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 232

Figure 10-64 – A Data Object associated with a Sequence Flow

10.3.2. Execution Semantics for Data
When an element that defines a InputOutputSpecification is ready to begin execution by means of
Sequence Flow or Event being caught, the inputs of the interface are filled with data coming from elements
in the context, such as Data Objects or Properties. The way to represent these assignments is the Data
Association elements.

Each defined InputSet element will be evaluated in the order they are included in the
InputOutputSpecification.

For each InputSet, the data inputs it references will be evaluated if it is valid.

All data associations that define as target the data input will be evaluated, and if any of the sources of the data
association is “unavailable”, then the InputSet is “unavailable” and the next InputSet is evaluated.

The first InputSet where all data inputs are “available” (by means of data associations) is used to start the
execution of the Activity. If no InputSet is “available”, then the execution will wait until this condition is met.

The time and frequency of when and how often this condition is evaluated is out of scope this specification.
Implementations will wait for the sources of data associations to become available and then re-evaluate the
InputSets.

10.3.3. Usage of Data in XPath Expressions
BPMN extensibility mechanism enables the usage of various languages for expressions and queries. This section
describes how XPath is used in BPMN. It introduces a mechanism to access BPMN Data Objects, BPMN
Properties, and various instance attributes from XPath expressions.

The visibility to the Expression language is defined based on the entities visibility to the Activity that contains
the expression. All elements visible from the enclosing element of an XPath expression must be made available
to the XPath processor.

BPMN Data Objects and BPMN Properties are defined using ItemDefinition. The XPath binding
assumes that the ItemDefinition is either an XSD complex type or an XSD element. If XSD element is
used it must be manifested as a node-set XPath variable with a single member node. If XSD complex type is used
it must be manifested as a node-set XPath variable with one member node containing the anonymous document
element that contains the actual value of the BPMN Data Object or Property.

Proposal for:
233 Business Process Model and Notation (BPMN), v2.0

Access to BPMN Data Objects

The table below introduces an XPath function used to access BPMN Data Objects. Argument
processName names Process and is of type string. Argument dataObjectName names Data Object
and is of type string. It must be a literal string.

Table 10-59 – XPath Extension Function for Data Objects

XPath Extension Function Description/Usage

Element getDataObject
(‘processName’,
‘dataObjectName’)

This extension function returns value of submitted Data Object. Argument
processName is optional. If omitted, the process enclosing the activity that
contains the expression is assumed. In order to access Data Objects
defined in a parent process the processName must be used. Otherwise it
must be omitted.

Because XPath 1.0 functions do not support returning faults, an empty node set is returned in the event of an
error.

Access to BPMN Data Input and Data Output

The table below introduces XPath functions used to access BPMN Data Inputs and BPMN Data Outputs.
Argument dataInputName names a Data Input and is of type string. Argument dataOutput names a
Data Output and is of type string.

Table 10-60 – XPath Extension Function for Data Inputs and Data Outputs

XPath Extension Function Description/Usage

Element getDataInput
(‘dataInputName’)

This extension function returns the value of the submitted Data Input.

Element
getDataOutput('dataOutputName')

This extension function returns the value of the submitted Data
Output.

Access to BPMN Properties

The table below introduces XPath functions used to access BPMN Properties.

Argument processName names Process and is of type string. Argument propertyName names property
and is of type string. Argument activityName names Activity and is of type string. Argument
eventName names Event and is of type string. These strings must be literal strings. The XPath extension
functions return value of the submitted property.

Because XPath 1.0 functions do not support returning faults, an empty node set is returned in the event of an
error.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 234

Table 10-61 – XPath Extension Functions for Properties

XPath Extension Function Description/Usage

Element getProcessProperty
(‘processName’,
‘propertyName’)

This extension function returns value of submitted Process property.
Argument processName is optional. If omitted, the process enclosing the
activity that contains the expression is assumed. In order to access
Properties defined in a parent process the processName must be used.
Otherwise it must be omitted.

Element getActivityProperty
(‘activityName’,
‘propertyName’)

This extension function returns value of submitted Activity property.

Element getEventProperty
‘eventName’, ‘propertyName’)

This extension function returns value of submitted Event property.

For BPMN Instance Attributes

The table below introduces XPath functions used to access BPMN Instance Attributes.

Argument processName names Process and is of type string. Argument attributeName names
Instance attribute and is of type string. Argument activityName names Activity and is of type
string. These strings must be literal strings

These functions return value of the submitted instance Activity. Because XPath 1.0 functions do not support
returning faults, an empty node set is returned in the event of an error.

Table 10-62 – XPath Extension Functions for Instance Attributes

XPath Extension Function Description/Usage

Element
getProcessInstanceAttribute
(‘processName’,‘attributeName’)

This extension function returns value of submitted Process instance
attribute. Argument processName is optional. If omitted, the process
enclosing the activity that contains the expression is assumed. In
order to access Instance Attributes of a parent process the
processName must be used. Otherwise it must be omitted.

Element
getChoreographyInstanceAttribute
(‘attributeName’)

This extension function returns value of submitted Choreography
instance attribute.

Element
getActivityInstanceAttribute
(‘activityName’, ‘attributeName’)

This extension function returns value of submitted Activity instance
attribute. User Task and Loop are examples of activities.

Proposal for:
235 Business Process Model and Notation (BPMN), v2.0

10.3.4. XML Schema for Data

Table 10-63 – Assignment XML schema

<xsd:element name="assignment" type="tAssignment" />
<xsd:complexType name="tAssignment">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="from"
type="tBaseElementWithMixedContent" minOccurs="1"
maxOccurs="1"/>
<xsd:element name="to" type="tBaseElementWithMixedContent"
minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="language" type="xsd:anyURI"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-64 – DataAssociation XML schema

<xsd:element name="dataAssociation" type="tDataAssociation" />
<xsd:complexType name="tDataAssociation" abstract="true">

<xsd:complexContent>
 <xsd:extension base="tBaseElement">
 <xsd:sequence>

<xsd:element name="transformation" type="tFormalExpression" minOccurs="0"
maxOccurs="1"/>

<xsd:element ref="assignment" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-65 – DataInput XML schema

<xsd:element name="dataInput" type="tDataInput" />
<xsd:complexType name="tDataInput">

<xsd:complexContent>
 <xsd:extension base="tBaseElement">
 <xsd:attribute name="name" type="xsd:string" />
 <xsd:attribute name="itemSubjectRef" type="xsd:QName" />
 <xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>
 <xsd:attribute name="dataState" type="xsd:IDREF"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 236

Table 10-66 – DataInputAssociation XML schema

<xsd:element name="dataInputAssociation" type="tDataInputAssociation" />
<xsd:complexType name="tDataInputAssociation">

<xsd:complexContent>
 <xsd:extension base="tDataAssociation">
 <xsd:sequence>

<xsd:element name="sourceRef" type="xsd:IDREF" minOccurs="1"
maxOccurs="unbounded"/>

<xsd:element name="targetRef" type="xsd:IDREF" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-67 – InputOutputSpecification XML schema

<xsd:element name="ioSpecification" type="tInputOutputSpecification" />
<xsd:complexType name="tInputOutputSpecification">

<xsd:complexContent>
 <xsd:extension base="tBaseElement">
 <xsd:sequence>

<xsd:element ref="dataInput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataOutput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="inputSet" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="outputSet" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-68 – DataObject XML schema

<xsd:element name="dataObject" type="tDataObject" />
<xsd:complexType name="tDataObject">

<xsd:complexContent>
<xsd:extension base="tFlowElement">

<xsd:sequence>
<xsd:element ref="dataState" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="itemSubjectRef" type="xsd:QName"/>
<xsd:attribute name="isCollection" type="xsd:boolean"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
237 Business Process Model and Notation (BPMN), v2.0

Table 10-69 – DataState XML schema

<xsd:element name="dataState" type="tDataState" />
<xsd:complexType name="tDataState">

<xsd:complexContent>
 <xsd:extension base="tBaseElement">
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-70 – DataOutput XML schema

<xsd:element name="dataOutput" type="tDataOutput" />
<xsd:complexType name="tDataOutput">

<xsd:complexContent>
 <xsd:extension base="tBaseElement">
 <xsd:attribute name="name" type="xsd:string" />
 <xsd:attribute name="itemSubjectRef" type="xsd:QName"/>
 <xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>
 <xsd:attribute name="dataState" type="xsd:IDREF"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-71 – DataOutputAssociation XML schema

<xsd:element name="dataOutputAssociation" type="tDataOutputAssociation" />
<xsd:complexType name="tDataOutputAssociation">

<xsd:complexContent>
 <xsd:extension base="tDataAssociation">
 <xsd:sequence>

<xsd:element name="sourceRef" type="xsd:IDREF" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="targetRef" type="xsd:IDREF" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 238

Table 10-72 – InputSet XML schema

<xsd:element name="inputSet" type="tInputSet" />
<xsd:complexType name="tInputSet">

<xsd:complexContent>
 <xsd:extension base="tBaseElement">
 <xsd:sequence>

<xsd:element name="dataInputRefs" type="xsd:IDREF" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element name="optionalInputRefs" type="xsd:IDREF" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element name="whileExecutingInputRefs" type="xsd:IDREF" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element name="outputSetRefs" type="xsd:IDREF" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" />
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-73 – OutputSet XML schema

<xsd:element name="outputSet" type="tOutputSet" />
<xsd:complexType name="tOutputSet">

<xsd:complexContent>
 <xsd:extension base="tBaseElement">
 <xsd:sequence>

<xsd:element name="dataOutputRefs" type="xsd:IDREF" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element name="optionalOutputRefs" type="xsd:IDREF" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element name="whileExecutingOutputRefs" type="xsd:IDREF" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element name="inputSetRefs" type="xsd:IDREF" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-74 – Property XML schema

<xsd:element name="property" type="tProperty" />
<xsd:complexType name="tProperty">

<xsd:complexContent>
 <xsd:extension base="tBaseElement">
 <xsd:attribute name="name" type="xsd:string"/>
 <xsd:attribute name="itemSubjectRef" type="xsd:QName"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
239 Business Process Model and Notation (BPMN), v2.0

10.4. Events
An Event is something that “happens” during the course of a Process. These Events affect the flow of the
Process and usually have a cause or an impact and in general require or allow for a reaction. The term “event”
is general enough to cover many things in a Process. The start of an Activity, the end of an Activity, the
change of state of a document, a Message that arrives, etc., all could be considered Events.

Events allow for the description of “event-driven” Processes. In these Processes, There are three main
types of Events:

Start Events (see page 244), which indicate where a Process will start.

End Events (see page 252), which indicate where a path of a Process will end.

Intermediate Events (see page 256), which indicate where something happens somewhere between
the start and end of a Process.

Within these three types, Events come in two flavors:

Events that catch a Trigger. All Start Events and some Intermediate Events are catching
Events.

Events that throw a Result. All End Events and some Intermediate Events are throwing
Events that may eventually be caught by another Event. Typically the Trigger carries information out
of the scope where the throw Event occurred into the scope of the catching Events. The throwing of a
trigger may be either implicit as defined by this standard or an extension to it or explicit by a throw
Event.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 240

Figure 10-65 – The Event Class Diagram

10.4.1. Concepts
Depending on the type of the Event there are different strategies to forward the trigger to catching Events:
publication, direct resolution, propagation, cancellations, and compensations.

With publication a trigger may be received by any catching Events in any scope of the system where the
trigger is published. Events for which publication is used are grouped to Conversations. Published Events
may participate in several Conversations. Messages are triggers, which are generated outside of the Pool
they are published in. They typically describe B2B communication. When Messages need to reach a specific
Process instance, correlation is used to identify the particular instance. Signals are triggers generated in the
Pool they are published.

Timer and Conditional triggers are implicitly thrown. When they are activated they wait for a time based or
status based condition respectively to trigger the catch Event.

A trigger that is propagated is forwarded from the location where the Event has been thrown to the innermost
enclosing scope instance (e.g., Process level) which has an attached Event being able to catch the trigger.
Error triggers are critical and suspend execution at the location of throwing. Escalations are non critical and
execution continues at the location of throwing. If no catching Event is found for an error or escalation trigger,
this trigger is unresolved.

Proposal for:
241 Business Process Model and Notation (BPMN), v2.0

Termination, compensation, and cancellation are directed towards a Process or a specific Activity instance.
Termination indicates that all Activities in the Process or Activity should be immediately ended. This
includes all instances of multi-instances. It is ended without compensation or Event handling.

Compensation of a successfully completed Activity triggers its compensation handler. The compensation
handler is either user defined or implicit. The implicit compensation handler of a Sub Process calls all
compensation handlers of its enclosed Activities in the reverse order of Sequence Flow dependencies. If
compensation is invoked for an Activity that has not yet completed, or has not completed successfully, nothing
happens (in particular, no error is raised).

Cancellation will terminate all running Activities and compensate all successfully completed Activities in the
Sub-Process it is applied to. If the Sub-Process is a Transaction, the Transaction is rolled back.

Data Modeling and Events

Some Events (like the Message, Signal, Error, Escalation and Multiple Event) have the capability to
carry data. Data Association is used to push data from a Catch Event to a Data Element. For Throw Events,
a Data Association is used to fill the Event data from a Data Element (see page 211 for the definition of Data
Elements).

Catch Event Data Association

The Data Association for a Catch Event is performed after the trigger of the Catch Event occurs
(Message, Signal, Error, Escalation, Multiple data is available in the Catch Event). The Data
Association assigns the data of the Event to a Data Element that is in the scope of the Catch Event. After
that, Sequence Flow continues as usual.

For example, consider a Receive Message Intermediate Event; as soon as the Message is received by
the Event, the Data Association is performed and the Message data is assigned for example to a Data
Object of the Process.

Throw Event Data Association

The Data Association for a Throw Event is performed when the Sequence Flow arrives at the Throw
Event. The Data Association assigns the data from a Data Element that is in the scope of the Throw Event
to the Event data (Message, Signal, Error, Escalation, and Multiple). After that the trigger of the Event
will occur.

For example, consider a Message End Event; when the Sequence Flow reaches the Message End
Event, the data association of the Event is performed. The data association assigns data from a Data Element
that is in the scope of the Message End Event to the Message. Then the Message is send to a Participant.

Common Catch Event attributes

The following table shows the common attributes for Catch Events.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 242

The CatchEvent element inherits the attributes and model associations of FlowElement (see Table 8-45)
through its relationship to the Event element (see page 103). Table 10-75 presents the additional attributes and
model associations of the CatchEvent element:

Table 10-75 – CatchEvent attributes and model associations

Attribute Name Description/Usage

eventDefinitionRefs:
EventDefinition [0..*]

EventDefinitionRefs (EventDefinition) is an attribute that defines the type
of reusable triggers expected for a catch Event.

If there is no EventDefinition defined, then this is considered a catch
None Event and the Event will not have an internal marker (see Figure
10-86).

If there is more than one EventDefinition defined, this is considered a
Catch Multiple Event and the Event will have the pentagon internal marker
(see Figure 10-85).

eventDefinitions:
EventDefinition [0..*]

EventDefinitionRefs (EventDefinition) is an attribute that defines the type
of contained triggers expected for a catch Event.

If there is no EventDefinition defined, then this is considered a catch
None Event and the Event will not have an internal marker (see Figure
10-86).

If there is more than one EventDefinition defined, this is considered a
Catch Multiple Event and the Event will have the pentagon internal marker
(see Figure 10-85).

dataOutputAssociations:
DataOutputAssociation
[0..*]

The Data Associations of the catch Event.

The dataOutputAssociation of a catch Event is used to assign data from
the Event to a data element that is in the scope of the Event.

For a catch Multiple Event, multiple Data Associations might be required,
depending on the individual triggers of the Event.

dataOutput: DataOutput
[0..*]

The Data Outputs for the catch Event.

outputSet: OutputSet [0..1] The OutputSet for the catch Event

Common Throw Event Attributes

The following table shows attributes that are common for Throw Events.

Proposal for:
243 Business Process Model and Notation (BPMN), v2.0

The ThrowEvent element inherits the attributes and model associations of Flow Element (see Table 8-45)
through its relationship to the Event element (see page 103). Table 10-76 presents the additional attributes and
model associations of the CatchEvent element.

Table 10-76 – ThrowEvent attributes and model associations

Attribute Name Description/Usage

eventDefinitionRefs:
EventDefinition [0..*]

EventDefinitionRefs (EventDefinition) is an attribute that defines the
type of reusable triggers expected for a throw Event.

If there is no EventDefinition defined, then this is considered a throw None
Event and the Event will not have an internal marker (see Figure 10-86).

If there is more than one EventDefinition defined, this is considered a throw
Multiple Event and the Event will have the pentagon internal marker (see
Figure 10-85).

eventDefinitions:
EventDefinition [0..*]

EventDefinitionRefs (EventDefinition) is an attribute that defines the
type of contained results expected for a throw Event.

If there is no EventDefinition defined, this is considered a throw None
Event and the Event will not have an Internal marker (see Figure 10-86).

If there is more than one EventDefinition defined, this is considered a throw
Multiple Event and the Event will have the pentagon internal marker (see
Figure 10-85).

dataInputAssociations:
DataInputAssociation
[0..*]

The Data Associations of the throw Event.

The dataInputAssociation of a throw Event is responsible for the
assignment of a data element that is in scope of the Event to the Event data.

For a throw Multiple Event, multiple data associations might be required,
depending on the individual results of the Event.

dataInput: DataInput
[0..*]

The Data Inputs for the throw Event.

inputSet: InputSet [0..1] The InputSet for the throw Event

Implicit Throw Event

A sub-type of throw Event is the ImplicitThrowEvent. This is a non-graphical Event that this used for
Multi-Instance Activities (see page 201). The ImplicitThrowEvent element inherits the attributes and
model associations of ThrowEvent (see Table 10-76), but does not have any additional attributes or model
associations.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 244

10.4.2. Start Event
As the name implies, the Start Event indicates where a particular Process will start. In terms of Sequence
Flow, the Start Event starts the flow of the Process, and thus, will not have any incoming Sequence
Flow—no Sequence Flow can connect to a Start Event.

The Start Event shares the same basic shape of the Intermediate Event and End Event, a circle with an
open center so that markers can be placed within the circle to indicate variations of the Event.

A Start Event is a circle that MUST be drawn with a single thin line (see Figure 10-66).

The use of text, color, size, and lines for a Start Event MUST follow the rules defined in
Section “Use of Text, Color, Size, and Lines in a Diagram” on page 63 with the exception that:

The thickness of the line MUST remain thin so that the Start Event may be distinguished
from the Intermediate and End Events.

Figure 10-66 - Start Event

Throughout this document, we discuss how Sequence Flow is used within a Process. To facilitate this
discussion, we employ the concept of a token that will traverse the Sequence Flow and pass through the
elements in the Process. A token is a theoretical concept that is used as an aid to define the behavior of a
Process that is being performed. The behavior of Process elements can be defined by describing how they
interact with a token as it “traverses” the structure of the Process.

Note: A token does not traverse the Message Flow since it is a Message that is passed down a Message
Flow (as the name implies).

Semantics of the Start Event include:

A Start Event is OPTIONAL: a Process level—a top-level Process or an expanded
Sub-Process—MAY (is no required to) have a Start Event.

Note – A Process may have more than one Process level (i.e., it can include Expanded Sub-Processes).
The use of Start and End Events is independent for each level of the Diagram.

If a Process is complex and/or the starting conditions are not obvious, then it is RECOMMENDED
that a Start Event be used

If a Start Event is not used, then the implicit Start Event for the Process SHALL NOT have a
Trigger.

If there is an End Event, then there MUST be at least one Start Event.

If the Start Event is used, then there MUST NOT be other flow elements that do not have incoming
Sequence Flow—all other Flow Objects MUST be a target of at least one Sequence Flow.

Exceptions to this are Activities that are defined as being Compensation Activities (have
the Compensation Marker). Compensation Activities MUST NOT have any incoming

Proposal for:
245 Business Process Model and Notation (BPMN), v2.0

Sequence Flow, even if there is a Start Event in the Process level. See page 314 for more
information on Compensation Activities.

An exception to this is the Intermediate Event, which MAY be without an incoming
Sequence Flow (when attached to an Activity boundary).

If the Start Event is not used, then all Flow Objects that do not have an incoming Sequence Flow
(i.e., are not a target of a Sequence Flow) SHALL be instantiated when the Process is instantiated.
There is an assumption that there is only one implicit Start Event, meaning that all the starting Flow
Objects will start at the same time.

Exceptions to this are Activities that are defined as being Compensation Activities (have
the Compensation marker). Compensation Activities are not considered a part of the
normal flow and MUST NOT be instantiated when the Process is instantiated. See page 314 for
more information on Compensation Activities.

There MAY be multiple Start Events for a given Process level.

Each Start Event is an independent Event. That is, a Process instance SHALL be generated
when the Start Event is triggered.

If the Process is used as a Sub-Process and there are multiple None Start Events, then when flow is
transferred from the parent Process to the Sub-Process, only one of the Sub-Process’s Start Events
will be triggered. The TargetRef attribute of the Sequence Flow incoming to the Sub-Process object can be
extended to identify the appropriate Start Event.

Note – The behavior of Process may be harder to understand if there are multiple Start Events. It is
RECOMMENDED that this feature be used sparingly and that the modeler be aware that other readers of the
Diagram may have difficulty understanding the intent of the Diagram.

When the trigger for a Start Event occurs, a new Process will be instantiated and a token will be generated
for each outgoing Sequence Flow from that Event.

Start Event Triggers

Start Events can be used for three types of Processes:

Top-level Processes

Sub-Processes (embedded and called (reusable))

Event Sub-Processes.

The next three (3) sections describe the types of Start Events that can be used for each of these three types of
Processes.

Start Events for Top-level Processes

There are many ways that top-level Processes can be started (instantiated). The Trigger for a Start Event is
designed to show the general mechanisms that will instantiate that particular Process. There are seven (7) types
of Start Events for top-level Processes in BPMN (see Table 10-77): None, Message, Timer,
Conditional, Signal, Multiple, and Parallel.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 246

Table 10-77 – Top-Level Process Start Event Types

Trigger Description Marker

None The None Start Event does not have a defined trigger.

There is no specific EventDefinition subclass (see page 266) for
None Start Events. If the Start Event has no associated
EventDefiniton, then the Event MUST be displayed without a marker
(see the figure on the right).

Message A Message arrives from a Participant and triggers the start of the Process.
See page 112 for more details on Messages.

If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass
MessageEventDefinition, then the Event is a Message Start Event
and MUST be displayed with an envelope marker (see the figure to the
right).

The actual Participant from which the Message is received can be
identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process – see Table 10-1.

Timer A specific time-date or a specific cycle (e.g. every Monday at 9am) can be
set that will trigger the start of the Process.

If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass
TimerEventDefinition, then the Event is a Timer Start Event and
MUST be displayed with a clock marker (see the figure to the right).

Conditional This type of event is triggered when a Condition such as “S&P 500
changes by more than 10% since opening”, or “Temperature above 300C”
become true. The Condition Expression for the Event must become false
and then true before the Event can be triggered again.

If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass
ConditionalEventDefinition, then the Event is a Conditional
Start Event and MUST be displayed with a lined paper marker (see the
figure to the right).

Signal A Signal arrives that has been broadcast from another Process and
triggers the start of the Process. Note that the Signal is not a Message,
which has a specific target for the Message. Multiple Processes can have
Start Events that are triggered from the same broadcasted Signal.

If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass
SignalEventDefinition, then the Event is a Signal Start Event and
MUST be displayed with a triangle marker (see the figure to the right).

Proposal for:
247 Business Process Model and Notation (BPMN), v2.0

Multiple This means that there are multiple ways of triggering the Process. Only
one of them is required.

There is no specific EventDefinition subclass (see page 266) for
Multiple Start Events. If the Start Event has more than one associated
EventDefiniton, then the Event MUST be displayed with the Multiple
Event marker (a pentagon—see the upper figure to the right).

Parallel Multiple This means that there are multiple triggers required before the Process
can be instantiated. All of the types of triggers that are listed in the Start
Event MUST be triggered before the Process is instantiated.

There is no specific EventDefinition subclass (see page 266) for
Parallel Multiple Start Events. If the Start Event has more than one
associated EventDefiniton and the parallelMultiple attribute of
the Start Event is true, then the Event MUST be displayed with the
Parallel Multiple Event marker (an open plus sign—see the figure to the
right).

Start Events for Sub-Processes

There is only one (1) type of Start Event for Sub-Processes in BPMN (see Table 10-78): None.

Table 10-78 – Sub-Process Start Event Types

Trigger Description Marker

None The None Start Event is used for all Sub-Processes, either embedded
or called (reusable). Other types of Triggers are not used for a
Sub-Process, since the flow of the Process (a token) from the parent
Process is the Trigger of the Sub-Process.

If the Sub-Process is called (reusable) and has multiple Start Events,
some of the other Start Events may have Triggers, but these Start
Events would not be used in the context of a Sub-Process. When the
other Start Events are triggered, they would instantiate top-level
Processes.

Start Events for Event Sub-Processes

A Start Event can also initiate an inline Event Sub-Process (see page 188). In that case, the same Event
types as for boundary Events are allowed (see Table 10-79), namely: Message, Timer, Escalation, Error,
Cancel, Compensation, Conditional, Signal, Multiple, and Parallel.

An Event Sub-Process MUST have a single Start Event.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 248

Table 10-79 – Event Sub-Process Start Event Types

Trigger Description Marker

Message If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass
MessageEventDefinition, then the Event is a Message Start Event
and uses an envelope marker (see the figures to the right).

For a Message Event Sub-Process that interrupts its containing
Process, the boundary of the Event is solid (see the upper figure to the
right).

For a Message Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on the
right).

The actual Participant from which the Message is received can be
identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process – see Table 10-1.

Interrupting

Non-
Interrupting

Timer If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass
TimerEventDefinition, then the Event is a Timer Start Event and
uses a clock marker (see the figures to the right).

For a Timer Event Sub-Process that interrupts its containing Process,
the boundary of the Event is solid (see the upper figure to the right).

For a Timer Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on the
right).

Interrupting

Non-
Interrupting

Escalation Escalation Event Sub-Processes implement measures to expedite the
completion of a business activity, should it not satisfy a constraint specified
on its execution (such as a time-based deadline).

The Escalation Start Event is only allowed for triggering an in-line Event
Sub-Process.

If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass
EscalationEventDefinition, then the Event is an Escalation Start
Event and uses an arrowhead marker (see the figures to the right).

For an Escalation Event Sub-Process that interrupts its containing
Process, the boundary of the Event is solid (see the upper figure to the
right).

For an Escalation Event Sub-Process that does not interrupt its
containing Process, the boundary of the Event is dashed (see the lower
figure on the right).

Interrupting

Non-
Interrupting

Proposal for:
249 Business Process Model and Notation (BPMN), v2.0

Error The Error Start Event is only allowed for triggering an in-line Event
Sub-Process.

If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass
ErrorEventDefinition, then the Event is an Error Start Event and
uses a lightning marker (see the figures to the right).

Given the nature of Errors, an Event Sub-Process with an Error trigger
will always interrupt its containing Process.

Interrupting

Compensation The Compensation Start Event is only allowed for triggering an in-line
Compensation Event Sub-Process (see “Compensation Handler” on
page 314). This type of Event is triggered when compensation occurs.

If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass
CompensationEventDefinition, then the Event is a Compensation
Start Event and uses a double triangle marker (see the figure to the right).

This Event does not interrupt the Process since the Process has to be
completed before this Event can be triggered.

Conditional If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass
ConditionalEventDefinition, then the Event is a Conditional
Start Event and uses an lined page marker (see the figures to the right).

For a Conditional Event Sub-Process that interrupts its containing
Process, then the boundary of the Event is solid (see the upper figure to
the right).

For a Conditional Event Sub-Process that does not interrupt its
containing Process, the boundary of the Event is dashed (see the lower
figure on the right).

Interrupting

Non-
Interrupting

Signal If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass
SignalEventDefinition, then the Event is a Signal Start Event and
uses an triangle marker (see the figures to the right).

For a Signal Event Sub-Process that interrupts its containing Process,
then the boundary of the Event is solid (see the upper figure to the right).

For a Signal Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on the
right).

Interrupting

Non-
Interrupting

Proposal for:
Business Process Model and Notation (BPMN), v2.0 250

Multiple A Multiple Event indicates that that there are multiple ways of triggering the
Event Sub-Process. Only one of them is required to actually start the Event
Sub-Process.

There is no specific EventDefinition subclass (see page 266) for
Multiple Start Events. If the Start Event has more than one associated
EventDefiniton, then the Event MUST be displayed with the Multiple
Event marker (a pentagon—see the figures on the right).

For a Multiple Event Sub-Process that interrupts its containing Process,
the boundary of the Event is solid (see the upper figure to the right).

For a Multiple Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on the
right).

Interrupting

Non-
Interrupting

Parallel Multiple A Multiple Event indicates that that there are multiple ways of triggering the
Event Sub-Process. All of them are required to actually start the Event
Sub-Process.

There is no specific EventDefinition subclass (see page 266) for
Parallel Multiple Start Events. If the Start Event has more than one
associated EventDefiniton and the parallelMultiple attribute of
the Start Event is true, then the Event MUST be displayed with the
Parallel Multiple Event marker (an open plus sign—see the figures to the
right).

For a Parallel Multiple Event Sub-Process that interrupts its containing
Process, the boundary of the Event is solid (see the upper figure to the
right).

For a Parallel Multiple Event Sub-Process that does not interrupt its
containing Process, the boundary of the Event is dashed (see the lower
figure on the right).

Interrupting

Non-
Interrupting

Attributes for Start Events

For Start Events, the following additional attribute exists:

Proposal for:
251 Business Process Model and Notation (BPMN), v2.0

The Start Event element inherits the attributes and model associations of CatchEvent (see Table 10-75).
Table 10-80 presents the additional attributes of the Start Event element:

Table 10-80 – Start Event attributes

Attribute Name Description/Usage

isInterrupting: boolean This attribute only applies to Start Events of Event Sub-Processes; it is
ignored for other Start Events. This attribute denotes whether the Sub-Process
encompassing the Event Sub-Process should be cancelled or not, If the
encompassing Sub-Process is not cancelled, multiple instances of the Event
Sub-Process can run concurrently.

This attribute cannot be applied to Error Events (where it’s always true), or
Compensation Events (where it doesn’t apply).

Sequence Flow Connections
See Section “Sequence Flow Connections Rules” on page 64 for the entire set of objects and how they may be
source or targets of Sequence Flow.

A Start Event MUST NOT be a target for Sequence Flow; it MUST NOT have incoming
Sequence Flow.

o An exception to this is when a Start Event is used in an Expanded Sub-Process and is attached
to the boundary of that Sub-Process. In this case, a Sequence Flow from the higher-level
Process MAY connect to that Start Event in lieu of connecting to the actual boundary of the
Sub-Process.

A Start Event MUST be a source for Sequence Flow.

Multiple Sequence Flow MAY originate from a Start Event. For each Sequence Flow that has
the Start Event as a source, a new parallel path SHALL be generated.

o The Condition attribute for all outgoing Sequence Flow MUST be set to None.

o When a Start Event is not used, then all Flow Objects that do not have an incoming Sequence
Flow SHALL be the start of a separate parallel path.

o Each path will have a separate unique token that will traverse the Sequence Flow.

Message Flow Connections

Note – All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to
Flow Objects within the Pool boundary. They cannot connect two objects within the same Pool.

See Section “Message Flow Connection Rules” on page 65 for the entire set of objects and how they may be
source or targets of Message Flow.

A Start Event MAY be the target for Message Flow; it can have 0 (zero) or more incoming
Message Flow. Each Message Flow arriving at a Start Event represents an instantiation
mechanism (a Trigger) for the Process. Only one of the Triggers is required to start a new Process.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 252

o The Trigger attribute of the Start Event MUST be set to Message or Multiple if there are any
incoming Message Flow.

o The Trigger attribute of the Start Event MUST be set to Multiple if there are more than one
incoming Message Flow.

A Start Event MUST NOT be a source for Message Flow; it MUST NOT have outgoing
Message Flow.

10.4.3. End Event
As the name implies, the End Event indicates where a Process will end. In terms of Sequence Flow, the
End Event ends the flow of the Process, and thus, will not have any outgoing Sequence Flow—no
Sequence Flow can connect from an End Event.

The End Event shares the same basic shape of the Start Event and Intermediate Event, a circle with an
open center so that markers can be placed within the circle to indicate variations of the Event.

An End Event is a circle that MUST be drawn with a single thick line (see Figure 10-67).

The use of text, color, size, and lines for an End Event MUST follow the rules defined in Section “Use
of Text, Color, Size, and Lines in a Diagram” on page 63 with the exception that:

- The thickness of the line MUST remain thick so that the End Event may be distinguished
from the Intermediate and Start Events.

Figure 10-67 - End Event

To continue discussing how flow proceeds throughout the Process, an End Event consumes a token that had
been generated from a Start Event within the same level of Process. If parallel Sequence Flow targets the
End Event, then the tokens will be consumed as they arrive. All the tokens that were generated within the
Process must be consumed by an End Event before the Process has been completed. In other circumstances,
if the Process is a Sub-Process, it can be stopped prior to normal completion through interrupting
Intermediate Events (See Section 10.2.2, “Exception Flow,” on page 131 for more details). In this situation
the tokens will be consumed by an Intermediate Event attached to the boundary of the Sub-Process.

Semantics of the End Event include:

There MAY be multiple End Events within a single level of a Process.

An End Event is OPTIONAL: a given Process level—a top-level Process or an expanded
Sub-Process—MAY (is not required to) have this shape:

o If an End Event is not used, then the implicit End Event for the Process SHALL NOT have a
Result.

o If there is a Start Event, then there MUST be at least one End Event.

o If an End Event is used, then there MUST NOT be other flow elements that do not have any
outgoing Sequence Flow—all other Flow Objects MUST be a source of at least one Sequence

Proposal for:
253 Business Process Model and Notation (BPMN), v2.0

Flow.

o Exceptions to this are Activities that are defined as being Compensation Activities (have the
Compensation marker). Compensation Activities MUST NOT have any outgoing
Sequence Flow, even if there is an End Event in the Process level. See page 314 for more
information on Compensation Activities.

If the End Event is not used, then all Flow Objects that do not have any outgoing Sequence
Flow (i.e., are not a source of a Sequence Flow) mark the end of a path in the Process.
However, the Process MUST NOT end until all parallel paths have completed.

Exceptions to this are Activities that are defined as being Compensation Activities (have
the Compensation marker). Compensation Activities are not considered a part of the
normal flow and MUST NOT mark the end of the Process.

Note – A Process may have more than one Process level (i.e., it can include Expanded Sub-Processes).
The use of Start and End Events is independent for each level of the Diagram.

For Processes without an End Event, a token entering a path-ending Flow Object will be consumed when
the processing performed by the object is completed (i.e., when the path has completed), as if the token had then
gone on to reach an End Event. When all tokens for a given instance of the Process are consumed, then the
Process will reach a state of being completed.

End Event Results

There are nine (9) types of End Events in BPMN: None, Message, Escalation, Error, Cancel,
Compensation, Signal, Terminate, and Multiple. These types define the consequence of reaching an
End Event. This will be referred to as the End Event Result.

Table 10-81 – End Event Types

Trigger Description Marker

None The None End Event does not have a defined result.

There is no specific EventDefinition subclass (see page 266) for
None End Events. If the End Event has no associated
EventDefiniton, then the Event will be displayed without a marker (see
the figure on the right).

Message This type of End indicates that a Message is sent to a Participant at the
conclusion of the Process. See page 112 for more details on Messages.

The actual Participant from which the Message is received can be
identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process – see Table 10-1.

Error This type of End indicates that a named Error should be generated. All
currently active threads in the particular Sub-Process are terminated as a
result. The Error will be caught by a Catch Error Intermediate Event with
the same errorCode or no errorCode which is on the boundary of the
nearest enclosing parent activity (hierarchically). The behavior of the

Proposal for:
Business Process Model and Notation (BPMN), v2.0 254

Process is unspecified if no Activity in the hierarchy has such an Error
Intermediate Event. The system executing the process may define
additional Error handling in this case, a common one being termination of
the Process instance.

Escalation This type of End indicates that an Escalation should be triggered. Other
active threads are not affected by this and continue to be executed. The
Escalation will be caught by a Catch Escalation Intermediate Event
with the same escalationCode or no escalationCode which is on the
boundary of the nearest enclosing parent activity (hierarchically). The
behavior of the process is unspecified if no activity in the hierarchy has
such an Escalation Intermediate Event.

Cancel This type of End is used within a Transaction Sub-Process. It will indicate
that the Transaction should be cancelled and will trigger a Cancel
Intermediate Event attached to the Sub-Process boundary. In addition, it
will indicate that a Transaction Protocol Cancel message should be sent to
any Entities involved in the Transaction.

Compensation This type of End indicates that compensation is necessary. If an Activity
is identified, and it was successfully completed, then that Activity will be
compensated. The Activity must be visible from the Compensation End
Event, i.e., one of the following must be true:

 The Compensation End Event is contained in normal flow at the
same level of Sub-Process.

 The Compensation End Event is contained in a Compensation Event
Sub-Process which is contained in the Sub-Process containing the
Activity.

If no Activity is identified, all successfully completed Activities visible
from the Compensation End Event are compensated, in reverse order of
their Sequence Flow. Visible means one of the following:

 The Compensation End Event is contained in normal flow and at
the same level of Sub-Process as the Activities.

 The Compensation End Event is contained in a Compensation Event
Sub-Process which is contained in the Sub-Process containing the
Activities.

To be compensated, an Activity MUST have a boundary Compensation
Event or contain a Compensation Event Sub-Process.

Signal This type of End indicates that a Signal will be broadcasted when the End
has been reached. Note that the Signal, which is broadcast to any Process
that can receive the Signal, can be sent across Process levels or Pools, but
is not a Message (which has a specific Source and Target). The attributes
of a Signal can be found on page 282.

Proposal for:
255 Business Process Model and Notation (BPMN), v2.0

Terminate This type of End indicates that all activities in the Process should be
immediately ended. This includes all instances of Multi-Instances. The
Process is ended without compensation or event handling.

Multiple This means that there are multiple consequences of ending the Process.
All of them will occur (e.g., there might be multiple messages sent).

There is no specific EventDefinition subclass (see page 266) for
Multiple End Events. If the End Event has more than one associated
EventDefiniton, then the Event will be displayed with the Multiple
Event marker (a pentagon—see the figure on the right).

Sequence Flow Connections
See Section “Sequence Flow Connections Rules” on page 64 for the entire set of objects and how they may be
source or targets of Sequence Flow.

An End Event MUST be a target for Sequence Flow.

An End Event MAY have multiple incoming Sequence Flow.

The Flow MAY come from either alternative or parallel paths. For modeling convenience, each path MAY
connect to a separate End Event object. The End Event is used as a Sink for all tokens that arrive at the
Event. All tokens that are generated at the Start Event for that Process must eventually arrive at an End
Event. The Process will be in a running state until all tokens are consumed.

An End Event MUST NOT be a source for Sequence Flow; that is, there MUST NOT be outgoing
Sequence Flow.

o An exception to this is when an End Event is used in an Expanded Sub-Process and is attached
to the boundary of that Sub-Process. In this case, a Sequence Flow from the higher-level
Process MAY connect from that End Event in lieu of connecting from the actual boundary of the
Sub-Process (see [-->REF]).

Message Flow Connections
See Section “Message Flow Connection Rules” on page 65 for the entire set of objects and how they may be
source or targets of Message Flow.

Note – All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to
Flow Objects within the Pool boundary. They cannot connect two objects within the same Pool.

An End Event MUST NOT be the target for Message Flow; it can have no incoming Message
Flow. If the Intermediate Event has an incoming Message Flow, then it MUST NOT have an
outgoing Message Flow.

An Intermediate Event of type Message, if it is used within normal flow, MAY be the source for
Message Flow; it can have one outgoing Message Flow. If the Intermediate Event has an
outgoing Message Flow, then it MUST NOT have an incoming Message Flow.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 256

10.4.4. Intermediate Event
As the name implies, the Intermediate Event indicates where something happens (an Event) somewhere
between the start and end of a Process. It will affect the flow of the Process, but will not start or (directly)
terminate the Process. Intermediate Events can be used to:

Show where Messages are expected or sent within the Process,

Show delays are expected within the Process,

Disrupt the normal flow through exception handling, or

Show the extra work required for compensation.

The Intermediate Event shares the same basic shape of the Start Event and End Event, a circle with an
open center so that markers can be placed within the circle to indicate variations of the Event.

An Intermediate Event is a circle that MUST be drawn with a double thin line. (see Figure 10-68).

o The use of text, color, size, and lines for an Intermediate Event MUST follow the rules defined
in Section “Use of Text, Color, Size, and Lines in a Diagram” on page 63 with the exception that:

The thickness of the line MUST remain double so that the Intermediate Event may be
distinguished from the Start and End Events.

Figure 10-68 – Intermediate Event

One use of Intermediate Events is to represent exception or compensation handling. This will be shown by
placing the Intermediate Event on the boundary of a Task or Sub-Process (either collapsed or
expanded). The Intermediate Event can be attached to any location of the Activity boundary and the
outgoing Sequence Flow can flow in any direction. However, in the interest of clarity of the Diagram, we
recommend that the modeler choose a consistent location on the boundary. For example, if the Diagram
orientation is horizontal, then the Intermediate Events can be attached to the bottom of the Activity and
the Sequence Flow directed down, then to the right. If the Diagram orientation is vertical, then the
Intermediate Events can be attached to the left or right side of the Activity and the Sequence Flow
directed to the left or right, then down.

Intermediate Event Triggers

There are twelve (12) types of Intermediate Events in BPMN: None, Message, Timer, Escalation,
Error, Cancel, Compensation, Conditional, Link, Signal, Multiple, and Parallel Multiple. Each
type of Intermediate Event will have a different icon placed in the center of the Intermediate Event
shape to distinguish one from another.

There are two (2) ways that Intermediate Events are used in BPMN:

An Intermediate Event that is placed within the normal flow of a Process can be used for one of two
purposes. The Event can respond to (“catch”) the Event Trigger or the Event can be used to set off (“throw”)

Proposal for:
257 Business Process Model and Notation (BPMN), v2.0

the Event Trigger. An Intermediate Event that is attached to the boundary of an Activity can only be used
to “catch” the Event Trigger.

Intermediate Events in Normal Flow

When a token arrives at an Intermediate Event that is placed within the normal flow of a Process, one of
two things will happen. If the Event is used to “throw” the Event Trigger, then Trigger of the Event will
immediately occur (e.g., the Message will be sent) and the token will move down the outgoing Sequence
Flow. If the Event is used to “catch” the Event Trigger, then the token will remain at the Event until the
Trigger occurs (e.g., the Message is received). Then the token will move down the outgoing Sequence
Flow.

Nine (9) of the eleven (11) Intermediate Events can be used in Normal Flow. Table 10-82

Table 10-82 – Intermediate Event Types in Normal Flow

Trigger Description Marker

None The None Intermediate Event is only valid in Normal Flow, i.e. it may not be
used on the boundary of an Activity. Although there is no specific trigger
for this Event, it is defined as throw Event. It is used for modeling
methodologies that use Events to indicate some change of state in the
Process.

There is no specific EventDefinition subclass (see page 266) for
None Intermediate Events. If the (throw) Intermediate Event has no
associated EventDefiniton, then the Event MUST be displayed
without a marker (see the figure on the right).

Throw

Message A Message Intermediate Event can be used to either send a Message
or receive a Message.

When used to “throw” the message, the Event marker MUST be filled (see
the upper figure on the right). When used to “catch” the message, then the
Event marker MUST be unfilled (see the lower figure on the right). This
causes the Process to continue if it was waiting for the message, or
changes the flow for exception handling.

The actual Participant from which the Message is received can be
identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process – see Table 10-1.

See page 112 for more details on Messages.

Throw

Catch

Timer In Normal Flow the Timer Intermediate Event acts as a delay
mechanism based on a specific time-date or a specific cycle (e.g., every
Monday at 9am) can be set that will trigger the Event.

This Event MUST be displayed with a clock marker (see the figure on the
right).

Catch

Proposal for:
Business Process Model and Notation (BPMN), v2.0 258

Escalation In Normal Flow, the Escalation Intermediate Event raises an Escalation.

Since this is a Throw Event, the arrowhead marker will be filled (see the
figure to the right).

Throw

Compensation In normal flow, this Intermediate Event indicates that compensation is
necessary. Thus, it is used to "throw" the Compensation Event, and the
Event marker MUST be filled (see figure on the right). If an Activity is
identified, and it was successfully completed, then that Activity will be
compensated. The activity must be visible from the Compensation
Intermediate Event, i.e., one of the following must be true:

 The Compensation Intermediate Event is contained in normal
flow at the same level of Sub-Process.

 The Compensation Intermediate Event is contained in a
Compensation Event Sub-Process which is contained in the
Sub-Process containing the Activity.

If no Activity is identified, all successfully completed Activities visible
from the Compensation Intermediate Event are compensated, in
reverse order of their Sequence Flow. Visible means one of the following:

 The Compensation Intermediate Event is contained in normal
flow and at the same level of Sub-Process as the Activities.

 The Compensation Intermediate Event is contained in a
Compensation Event Sub-Process which is contained in the
Sub-Process containing the Activities.

To be compensated, an Activity MUST have a boundary Compensation
Event, or contain a Compensation Event Sub-Process.

Throw

Conditional This type of event is triggered when a Condition becomes true. A Condition
is a type of Expression. The attributes of an Expression can be found
page 106.

Catch

Link The Link Intermediate Events are only valid in Normal Flow, i.e. they may
not be used on the boundary of an Activity. A Link is a mechanism for
connecting two sections of a Process. Link Events can be used to create
looping situations or to avoid long Sequence Flow lines. Link Event uses
are limited to a single Process level (i.e., they cannot link a parent Process
with a Sub-Process). Paired Intermediate Events can also be used as
“Off-Page Connectors” for printing a Process across multiple pages. They
can also be used as generic “Go To” objects within the Process level.
There can be multiple Source Link Events, but there can only be one
Target Link Event.

When used to “throw” to the Target Link, the Event marker will be filled (see
the top figure on the right). When used to “catch” from the Source Link, the
Event marker will be unfilled (see the bottom figure on the right).

Throw

Catch

Proposal for:
259 Business Process Model and Notation (BPMN), v2.0

Signal This type of event is used for sending or receiving Signals. A Signal is for
general communication within and across Process Levels, across Pools,
and between Business Process Diagrams. A BPMN Signal is similar to a
signal flare that shot into the sky for anyone who might be interested to
notice and then react. Thus, there is a source of the Signal, but no specific
intended target. This type of Intermediate Event can send or receive a
Signal if the Event is part of a Normal Flow. The Event can only receive a
Signal when attached to the boundary of an activity. The Signal Event
differs from an Error Event in that the Signal defines a more general,
non-error condition for interrupting activities (such as the successful
completion of another activity) as well as having a larger scope than Error
Events. When used to “catch” the signal, the Event marker will be unfilled
(see the middle figure on the right). When used to “throw” the signal, the
Event marker will be filled (see the top figure on the right). The attributes of
a Signal can be found on page 280.

Throw

Catch

Multiple This means that there are multiple Triggers assigned to the Event. If used
within normal flow, the Event can “catch” the Trigger or “throw” the
Triggers. When attached to the boundary of an activity, the Event can only
“catch” the Trigger. When used to “catch” the Trigger, only one of the
assigned Triggers is required and the Event marker will be unfilled (see the
middle figure on the right). When used to “throw” the Trigger (the same as
a Multiple End Event), all the assigned Triggers will be thrown and the
Event marker will be filled (see the top figure on the right).

There is no specific EventDefinition subclass (see page 266) for
Multiple Intermediate Events. If the Intermediate Event has more
than one associated EventDefiniton, then the Event will be displayed
with the Multiple Event marker.

Throw

Catch

Parallel Multiple This means that there are multiple triggers assigned to the Event. If used
within normal flow, the Event can only “catch” the trigger. When attached to
the boundary of an activity, the Event can only “catch” the trigger.

Unlike the normal Multiple Intermediate Event, all of the assigned
triggers are required for the Event to be triggered.

The Event marker will be an unfilled plus sign (see the figure on the right).

There is no specific EventDefinition subclass (see page 266) for
Parallel Multiple Intermediate Events. If the Intermediate Event has
more than one associated EventDefiniton and the
parallelMultiple attribute of the Intermediate Event is true, then
the Event will be displayed with the Parallel Multiple Event marker.

Intermediate Events Attached to an Activity Boundary

Table 10-83 describes the Intermediate Events that can be attached to the boundary of an Activity.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 260

Table 10-83 – Intermediate Event Types Attached to an Activity Boundary

Trigger Description Marker

Message A Message arrives from a participant and triggers the Event. If a Message
Event is attached to the boundary of an Activity, it will change the Normal
Flow into an Exception Flow upon being triggered.

For a Message Event that interrupts the Activity to which it is attached,
the boundary of the Event is solid (see upper figure on the right). Note that
if using this notation, the attribute cancel Activity of the Activity to which the
Event is attached is implicitly set to true.

For a Message Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancel Activity of the
Activity to which the Event is attached is implicitly set to false.

The actual Participant from which the Message is received can be
identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process – see Table 10-1.

Interrupting

Non-
Interrupting

Timer A specific time-date or a specific cycle (e.g., every Monday at 9am) can be
set that will trigger the Event. If a Timer Event is attached to the boundary
of an Activity, it will change the Normal Flow into an Exception Flow upon
being triggered.

For a Timer Event that interrupts the Activity to which it is attached, the
boundary of the Event is solid (see upper figure on the right). Note that if
using this notation, the attribute cancel Activity of the Activity to which the
Event is attached is implicitly set to true.

For a Timer Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancel Activity of the
Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-
Interrupting

Proposal for:
261 Business Process Model and Notation (BPMN), v2.0

Escalation This type of Event is used for handling a named Escalation. If attached to
the boundary of an activity, the Intermediate Event catches an Escalation.
In contrast to an Error, an Escalation by default is assumed to not abort the
activity to which the boundary event is attached. However, a modeler may
decide to override this setting by using the notation described in the
following.

For an Escalation Event that interrupts the Activity to which it is attached,
the boundary of the Event is solid (see upper figure on the right). Note that
if using this notation, the attribute cancel Activity of the Activity to which the
Event is attached is implicitly set to true.

For an Escalation Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancel Activity of the
Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-
Interrupting

Error An Intermediate Error Catch Event can only be attached to the boundary of
an activity, i.e. it may not be used in Normal Flow. If used in this context, it
reacts to (catches) a named error, or to any error if a name is not specified.

Note that an Error Event always interrupts the Activity to which it is
attached, i.e. there is not a non-interrupting version of this Event. The
boundary of the Event thus always solid (see figure on the right).

Interrupting

Cancel This type of Intermediate Event is used within a Transaction
Sub-Process. This type of Event MUST be attached to the boundary of a
Sub-Process. It SHALL be triggered if a Cancel End Event is reached
within the Transaction Sub-Process. It also SHALL be triggered if a
Transaction Protocol “Cancel” message has been received while the
Transaction is being performed.

Note that a Cancel Event always interrupts the Activity to which it is
attached, i.e. there is not a non-interrupting version of this Event. The
boundary of the Event thus always solid (see figure on the right).

Interrupting

Compensation When attached to the boundary of an Activity, this Event is used to
"catch" the Compensation Event, thus the Event marker MUST be
unfilled (see figure on the right). The Event will be triggered by a thrown
compensation targeting that Activity. When the Event is triggered, the
Compensation Activity that is Associated to the Event will be performed
(see page 314).

Note that the interrupting a non-interrupting aspect of other Events does
not apply in the case of a Compensation Event. Compensations can only
be triggered after completion of the activity to which they are attached.
Thus they cannot interrupt the Activity. The boundary of the Event is
always solid.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 262

Conditional This type of event is triggered when a Condition becomes true. A Condition
is a type of Expression. The attributes of an Expression can be found
page 106. If a Conditional Event is attached to the boundary of an Activity,
it will change the normal flow into an exception flow upon being triggered.

For a Conditional Event that interrupts the Activity to which it is attached,
the boundary of the Event is solid (see upper figure on the right). Note that
if using this notation, the attribute cancel Activity of the Activity to which the
Event is attached is implicitly set to true.

For a Conditional Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancel Activity of the
Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-
Interrupting

Signal The Signal Event can only receive a Signal when attached to the boundary
of an activity. In this context, it will change the Normal Flow into an
Exception Flow upon being triggered. The Signal Event differs from an
Error Event in that the Signal defines a more general, non-error condition
for interrupting activities (such as the successful completion of another
activity) as well as having a larger scope than Error Events. When used to
“catch” the signal, the Event marker will be unfilled. The attributes of a
Signal can be found on page 280.

For a Signal Event that interrupts the Activity to which it is attached, the
boundary of the Event is solid (see upper figure on the right). Note that if
using this notation, the attribute cancel Activity of the Activity to which the
Event is attached is implicitly set to true.

For a Signal Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancel Activity of the
Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-
Interrupting

Proposal for:
263 Business Process Model and Notation (BPMN), v2.0

Multiple A Multiple Event indicates that there are multiple Triggers assigned to the
Event. When attached to the boundary of an activity, the Event can only
“catch” the Trigger. In this case, only one of the assigned Triggers is
required and the Event marker will be unfilled Upon being triggered, the
Event that occurred will change the Normal Flow into an Exception Flow.
There is no specific EventDefinition subclass (see page 266) for
Multiple Intermediate Events. If the Intermediate Event has more
than one associated EventDefiniton, then the Event will be displayed
with the Multiple Event marker.

For a Multiple Event that interrupts the Activity to which it is attached, the
boundary of the Event is solid (see upper figure on the right). Note that if
using this notation, the attribute cancel Activity of the Activity to which the
Event is attached is implicitly set to true.

For a Multiple Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancel Activity of the
Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-
Interrupting

Parallel Multiple This means that there are multiple triggers assigned to the Event. When
attached to the boundary of an activity, the Event can only “catch” the
trigger.

Unlike the normal Multiple Intermediate Event, all of the assigned
triggers are required for the Event to be triggered.

The Event marker will be an unfilled plus sign (see the figures on the right).

There is no specific EventDefinition subclass (see page 266) for
Parallel Multiple Intermediate Events. If the Intermediate Event has
more than one associated EventDefiniton and the
parallelMultiple attribute of the Intermediate Event is true, then
the Event will be displayed with the Parallel Multiple Event marker.

For a Parallel Multiple Event that interrupts the Activity to which it is
attached, the boundary of the Event is solid (see the upper figure to the
right). Note that if using this notation, the attribute cancel Activity of the
Activity to which the Event is attached is implicitly set to true.

For a Parallel Multiple Event that does not interrupt the Activity to which
it is attached, the boundary of the Event is dashed (see the lower figure to
the right). Note that if using this notation, the attribute cancel Activity of the
Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-
Interrupting

Attributes for Boundary Events

For boundary Events, the following additional attributes exists:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 264

The BoundaryEvent element inherits the attributes and model associations of CatchEvent (see Table
8-45). Table 8-47 presents the additional attributes and model associations of the Boundary Event element:

Table 10-84 – Boundary Event attributes

Attribute Name Description/Usage

attachedTo: Activity Denotes the Activity that boundary Event is attached to.

cancelActivity: boolean Denotes whether the activity should be cancelled or not, i.e., whether the
boundary catch event acts as an error or an escalation. If the activity is not
cancelled, multiple instances of that handler can run concurrently.

This attribute cannot be applied to error events (where it’s always true), or
Compensation Events (where it doesn’t apply).

The following table specifies whether the cancel Activity attribute can be set on a boundary Event depending
on the EventDefinition it catches.

Table 10-85 – Possible Values of the cancel Activity Attribute

Trigger Possible Values for the cancel Activity Attribute

None N/A as this event cannot be attached to the activity border.

Message True/False

Timer True/False

Escalation True/False

Error True

Cancel True

Compensation N/A as the scope was already executed and can no longer be canceled when
compensation is triggered.

Conditional True/False

Proposal for:
265 Business Process Model and Notation (BPMN), v2.0

Signal True/False

Multiple True/False if all Event Triggers allow this option (see this table for details).
Otherwise the more restrictive option, i.e. Yes in case any Error or Cancel triggers
are used.

Activity Boundary Connections

An Intermediate Event can be attached to the boundary of an Activity under the following conditions:

(One or more) Intermediate Events MAY be attached directly to the boundary of an Activity.

o To be attached to the boundary of an Activity, an Intermediate Event MUST be one of the
following Triggers (EventDefinition): Message, Timer, Error, Escalation, Cancel,
Compensation, Conditional, Signal, Multiple, and Parallel Multiple.

An Intermediate Event with a Cancel Trigger MAY be attached to a Sub-Process
boundary only if the Transaction attribute of the Sub-Process is set to true.

Sequence Flow Connections
See Section “Sequence Flow Connections Rules” on page 64 for the entire set of objects and how they may be
source or targets of Sequence Flow.

The Intermediate Events with the following Triggers (EventDefinition) MAY be attached to
the boundary of an Activity: Message, Timer, Error, Cancel (only Sub-Process that is a
Transaction), Compensation, Conditional, Signal, Multiple, and Parallel Multiple.
Thus, the following MUST NOT: None, and Link.

o If the Intermediate Event is attached to the boundary of an Activity:
The Intermediate Event MUST NOT be a target for Sequence Flow; it cannot have an
incoming Flow.

The Intermediate Event MUST be a source for Sequence Flow.

Multiple Sequence Flow MAY originate from an Intermediate Event. For each
Sequence Flow that has the Intermediate Event as a source, a new parallel path SHALL
be generated.

- An exception to this: an Intermediate Event with a Compensation Trigger MUST
NOT have an outgoing Sequence Flow (it MAY have an outgoing Association).

The Intermediate Events with the following Triggers (EventDefinition) MAY be used in
normal flow: None, Message, Timer, Compensation, Conditional, Link, and Signal.
Thus, the following MUST NOT: Cancel, Error, Multiple, and Parallel Multiple.

o If the Intermediate Event is used within normal flow:
Intermediate Events MUST be a target of a Sequence Flow.

Note – this is a change from BPMN 1.2 semantics, which allowed some Intermediate Events to not have
an incoming Sequence Flow.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 266

An Intermediate Event MAY have multiple incoming Sequence Flow.

- Note – If the Event has multiple incoming Sequence Flow, then this is considered
uncontrolled flow. This means that when a token arrives from one of the Paths, the Event
will be enabled (to catch or throw). It will not wait for the arrival of tokens from the other
paths. If another token arrives from the same path or another path, then a separate instance
of the Event will be created. If the flow needs to be controlled, then the flow should
converge with a Gateway that precedes the Event (see page 295 for more information on
Gateways).

An Intermediate Event MUST be a source for Sequence Flow.

Multiple Sequence Flow MAY originate from an Intermediate Event. For each Sequence
Flow that has the Intermediate Event as a source, a new parallel path SHALL be generated.

o An exception to this: a source Link Intermediate Event (as defined below), it is not required to
have an outgoing Sequence Flow.

A Link Intermediate Event MUST NOT be both a target and a source of a Sequence Flow.

To define the use of a Link Intermediate Event as an “Off-Page Connector” or a “Go To” object:

A Link Intermediate Event MAY be the target (target Link) or a source (source Link) of a
Sequence Flow, but MUST NOT be both a target and a source.

o If there is a source Link, there MUST be a matching target Link (they have the same name).
There MAY be multiple source Links for a single target Link.

There MUST NOT be multiple target Links for a single source Link.

Message Flow Connections
See Section “Message Flow Connection Rules” on page 65 for the entire set of objects and how they may be
source or targets of Message Flow.

Note – All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to
Flow Objects within the Pool boundary. They cannot connect two objects within the same Pool.

A Message Intermediate Event MAY be the target for Message Flow; it can have one
incoming Message Flow.

A Message Intermediate Event MAY be a source for Message Flow; it can have one outgoing
Message Flow.

A Message Intermediate Event MAY have an incoming Message Flow or an outgoing
Message Flow, but not both.

10.4.5. Event Definitions
Event Definitions refers to the Triggers of Catch Events (Start and receive Intermediate Events)
and the Results of Throw Events (End Events and send Intermediate Events). The types of Event
Definitions are: CancelEventDefinition, CompensationEventDefinition,
ConditionalEventDefinition, ErrorEventDefinition, EscalationEventDefinition,
MessageEventDefinition, LinkEventDefinition, SignalEventDefinition,

Proposal for:
267 Business Process Model and Notation (BPMN), v2.0

TerminateEventDefinition, and TimerEventDefinition (see Table 10-86). A None Event is
determined by an Event that does not specify an Event Definition. A Multiple Event is determined by an
Event that specifies more than one Event Definition. The different types of Events (Start, End, and
Intermediate) utilize a subset of the available types of Event Definitions.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 268

Table 10-86 – Types of Events and their Markers

Types Start Intermediate End
Top-
Level

Event
Sub-Process
Interrupting

Event
Sub-Process
Non-
Interrupting

Catching Boundary
Interrupting

Boundary
Non-
Interrupting

Throwing

None

Message

Timer

Error

Escalation

Cancel

Compensation

Conditional

Link

Signal

Terminate

Multiple

Parallel
Multiple

Proposal for:
269 Business Process Model and Notation (BPMN), v2.0

The following sections will present the attributes common to all Event Definitions and the specific attributes
for the Event Definitions that have additional attributes. Note that the Cancel and Terminate Event Definitions
do not have additional attributes.

Event Definition Metamodel

Figure 10-69 shows the class diagram for the abstract class EventDefinition. When one of the
EventDefinition sub-types (e.g., TimerEventDefinition) is defined it is contained in
Definitions.

Figure 10-69 – EventDefinition Class Diagram

The EventDefinition element inherits the attributes and model associations of BaseElement (see Table
8-5) through its relationship to RootElement, but does not contain any additional attributes or model
associations.

The ErrorEventDefinition, EscalationEventDefinition and SignalEventDefinition
subclasses comprise of attributes to carry data. The data is defined as part of the Events package. The
MessageEventDefinition subclass comprises of an attribute that refers to a Message which is defined
as part of the Collaboration package.

The following sections will present the sub-types of EventDefinitions.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 270

Cancel Event

Cancel Events are only used in the context of modeling Transaction Sub-Processes (see page 188 for
more details on Transactions). There are two (2) variations: a catch Intermediate Event and an End Event
(Figure 10-70).

The catch Cancel Intermediate Event MUST only be attached to the boundary of a
Transaction Sub-Process and, thus, MAY NOT be used in Normal Flow.

The Cancel End Event MUST only be used within a Transaction Sub-Process and, thus,
MAY NOT be used in any other type of Sub-Process or Process.

Figure 10-70 – Cancel Events

The CancelEventDefinition element inherits the attributes and model associations of BaseElement
(see Table 8-5) through its relationship to the EventDefinition element (see page 269).

Compensation Event

Compensation Events are used in the context of triggering or handling compensation (see page 314 for
more details on compensation). There are four (4) variations: a Start Event, both a catch and throw
Intermediate Event, and an End Event (Figure 10-71).

The Compensation Start Event MAY NOT be used for a top-level Process.

The Compensation Start Event MAY be used for an Event Sub-Process.

The catch Compensation Intermediate Event MUST only be attached to the boundary of an
Activity and, thus, MAY NOT be used in Normal Flow.

The throw Compensation Intermediate Event MAY be used in Normal Flow.

The Compensation End Event MAY be used within any Sub-Process or Process.

Figure 10-71 – Compensation Events

Figure 10-72 displays the class diagram for the CompensationEventDefinition.

Proposal for:
271 Business Process Model and Notation (BPMN), v2.0

Figure 10-72 – CompensationEventDefinition Class Diagram

The CompensationEventDefinition element inherits the attributes and model associations of
BaseElement (see Table 8-5) through its relationship to the EventDefinition element (see page 269).
Table 10-87 presents the additional attributes and model associations of the
CompensationEventDefinition element:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 272

Table 10-87 – CompensationEventDefinition attributes and model associations

Attribute Name Description/Usage

activityRef: Activity
[0..1]

For a Start Event:

This Event “catches” the compensation for an Event Sub-Process. No further
information is required. The Event Sub-Process will provide the Id necessary
to match the Compensation Event with the Event that threw the
compensation, or the compensation will have been a broadcast.

For an End Event:

The Activity to be compensated MAY be supplied. If an Activity is not
supplied, then the compensation is broadcast to all completed Activities in the
current Sub-Process (if present), or the entire Process Instance (if at the
global level).

For an Intermediate Event within Normal Flow:

The Activity to be compensated MAY be supplied. If an Activity is not
supplied, then the compensation is broadcast to all completed Activities in the
current Sub-Process (if present), or the entire Process Instance (if at the
global level). This “throws” the compensation.

For an Intermediate Event attached to the boundary of an Activity:

This Event “catches” the compensation. No further information is required. The
Activity the Event is attached to will provide the Id necessary to match the
Compensation Event with the Event that threw the compensation, or the
compensation will have been a broadcast.

waitForCompletion:
boolean = True

For a throw Compensation Event, this flag determines whether the throw
Intermediate Event waits for the triggered compensation to complete (the
default), or just triggers the compensation and immediately continues (the BPMN
1.2 behavior).

Conditional Event

Figure 10-73 displays the class diagram for the ConditionalEventDefinition.

Figure 10-73 – Conditional Events

The ConditionalEventDefinition element inherits the attributes and model associations of
BaseElement (see Table 8-5) through its relationship to the EventDefinition element (see page 269).
Table 10-88 presents the additional model associations of the ConditionalEventDefinition element:

Proposal for:
273 Business Process Model and Notation (BPMN), v2.0

Table 10-88 – ConditionalEventDefinition model associations

Attribute Name Description/Usage

condition: Expression The Expression might be underspecified and provided in the form of natural
language. For executable Processes (processType = executable), if the trigger
is Conditional, then a FormalExpression MUST be entered.

Error Event

Figure 10-74 – ErrorEventDefinition Class Diagram

Figure 10-75

Figure 10-75 – Error Events

Proposal for:
Business Process Model and Notation (BPMN), v2.0 274

The ErrorEventDefinition element inherits the attributes and model associations of BaseElement
(see Table 8-5) through its relationship to the EventDefinition element (see page 269). Table 10-89
presents the additional attributes and model associations of the ErrorEventDefinition element:

Table 10-89 – ErrorEventDefinition attributes and model associations

Attribute Name Description/Usage

errorCode: string For an End Event:

If the Result is an Error, then the errorCode MUST be supplied (if the
processType attribute of the Process is set to executable) This “throws”
the error.

For an Intermediate Event within Normal Flow:

If the Trigger is an Error, then the errorCode MUST be entered (if the
processType attribute of the Process is set to executable). This “throws”
the Error.

For an Intermediate Event attached to the boundary of an Activity:

If the Trigger is an Error, then the errorCode MAY be entered. This Event
“catches” the error. If there is no errorCode, then any error SHALL trigger the
Event. If there is an errorCode, then only an error that matches the
errorCode SHALL trigger the Event.

error: Error [0..1] If the Trigger is an Error, then an Error payload MAY be provided.

Proposal for:
275 Business Process Model and Notation (BPMN), v2.0

Escalation Event Definition

Figure 10-76 – EscalationEventDefinition Class Diagram

Figure 10-77

Figure 10-77 – Escalation Events

Proposal for:
Business Process Model and Notation (BPMN), v2.0 276

The EscalationEventDefinition element inherits the attributes and model associations of
BaseElement (see Table 8-5) through its relationship to the EventDefinition element (see page 269).
Table 10-90 presents the additional attributes and model associations of the
EscalationEventDefinition element:

Table 10-90 – EscalationEventDefinition attributes and model associations

Attribute Name Description/Usage

escalationCode: string For an End Event:

If the Result is an Escalation, then the escalationCode MUST be supplied (if
the processType attribute of the Process is set to executable). This
“throws” the escalation.

For an Intermediate Event within Normal Flow:

If the Trigger is an Escalation, then the escalationCode MUST be entered (if
the processType attribute of the Process is set to executable). This
“throws” the escalation.

For an Intermediate Event attached to the boundary of an Activity:

If the Trigger is an Escalation, then the escalationCode MAY be entered.
This Event “catches” the escalation. If there is no escalationCode, then any
escalation SHALL trigger the Event. If there is an escalationCode, then only
an escalation that matches the escalationCode SHALL trigger the Event.

escalationRef:
Escalation [0..1]

If the Trigger is an Escalation, then an Escalation payload MAY be provided

Link Event Definition

A Link Event is a mechanism for connecting two sections of a Process. Link Events can be used to create
looping situations or to avoid long Sequence Flow lines. The use of Link Events is limited to a single
Process level (i.e., they cannot link a parent Process with a Sub-Process).

Figure 10-78 – Link Events

Paired Link Events can also be used as “Off-Page Connectors” for printing a Process across multiple pages.
They can also be used as generic “Go To” objects within the Process level. There can be multiple source Link
Events, but there can only be one target Link Event. When used to “catch” from the source Link, the Event
marker will be unfilled (see the top figure on the right). When used to “throw” to the target Link, the Event
marker will be filled (see the bottom figure on the right).

Since Process models often extend beyond the length of one printed page, there is often a concern about
showing how Sequence Flow connections extend across the page breaks. One solution that is often employed

Proposal for:
277 Business Process Model and Notation (BPMN), v2.0

is the use of Off-Page connectors to show where one page leaves off and the other begins. BPMN provides
Intermediate Events of type Link for use as Off-Page connectors (see Figure 10-79--Note that the figure
shows two different printed pages, not two Pools in one diagram). A pair of Link Events is used. One of the
pair is shown at the end of one page. This Event is named and has an incoming Sequence Flow and no
outgoing Sequence Flow. The second Link Event is at the beginning of the next page, shares the same name,
and has an outgoing Sequence Flow and no incoming Sequence Flow.

Receive
Confirmation

2 Days

Request Flights
within Parameters

Request Rooms
within Parameters

Send Cancellation
Notice

+

Prepare and
Send Candidate

Itineraries
Travel
Order

Page 1

A

A +

Book
Reservations

Page 2

Send ConfirmationCharge
Buyer

Source
Link Event

Target
Link Event

Figure 10-79 – Link Events Used as Off-Page Connector

Another way that Link Events can be used is as “Go To” objects. Functionally, they would work the same as
for Off-Page Connectors (described above), except that they could be used anywhere in the diagram--on the
same page or across multiple pages. The general idea is that they provide a mechanism for reducing the length of
Sequence Flow lines. Some modelers may consider long lines as being hard to follow or trace. Go To Objects
can be used to avoid very long Sequence Flow (see Figure 10-80 and Figure 10-81). Both diagrams will
behave equivalently. For Figure 10-81, if the “Order Rejected” path is taken from the Decision, then the token
traversing the Sequence Flow would reach the source Link Event and then “jump” to the target Link
Event and continue down the Sequence Flow. The Process would continue as if the Sequence Flow had
directly connected the two objects.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 278

Figure 10-80 – Process with Long Sequence Flow

Figure 10-81 – Process with Link Intermediate Events Used as Go To Objects

Some methodologies prefer that all Sequence Flow only move in one direction; that is, forward in time. These
methodologies do not allow Sequence Flow to connect directly to upstream objects. Some consistency in
modeling can be gained by such a methodology, but situations that require looping become a challenge. Link
Events can be used to make upstream connections and create loops without violating the Sequence Flow
direction restriction (see Figure 10-82).

Figure 10-82 – Link Events Used for looping

Proposal for:
279 Business Process Model and Notation (BPMN), v2.0

The LinkEventDefinition element inherits the attributes and model associations of BaseElement (see
Table 8-5) through its relationship to the EventDefinition element (see page 269). Table 10-91 presents
the additional attributes of the LinkEventDefinition element:

Table 10-91 – LinkEventDefinition attributes

Attribute Name Description/Usage

name: string If the Trigger is a Link, then the name MUST be entered.

Message Event Definition

Figure 10-83 – MessageEventDefinition Class Diagram

Figure 10-84

Figure 10-84 – Message Events

The MessageEventDefinition element inherits the attributes and model associations of BaseElement
(see Table 8-5) through its relationship to the EventDefinition element (see page 269). Table 10-92
presents the additional model associations of the MessageEventDefinition element:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 280

Table 10-92 – MessageEventDefinition model associations

Attribute Name Description/Usage

messageRef: Message
[0..1]

The Message MUST be supplied (if the processType attribute of the Process is
set to executable).

operationRef:
Operation [0..1]

This attribute specifies the operation that is used by the Message Event. It
MUST be specified for executable Processes.

Multiple Event

For a Start Event:

If the Trigger is Multiple, there are multiple ways of starting the Process. Only one of them is necessary to
trigger the start of the Process. The EventDefinition subclasses will define which Triggers apply

For an End Event:

If the Result is Multiple, there are multiple consequences of ending the Process. All of them will occur. The
EventDefinition subclasses will define which Results apply

For an Intermediate Event within normal flow:

If the Trigger is Multiple, only one EventDefinition is required to catch the trigger. When used to
throw, all of the EventDefinitions are considered and the subclasses will define which Results apply

For an Intermediate Event attached to the boundary of an Activity:

If the Trigger is Multiple, only one EventDefinition is required to "catch" the trigger.

Figure 10-85

Figure 10-85 – Multiple Events

None Event

None Events are Events that do not have a defined EventDefinition. There are three (3) variations of
None Events: a Start Event, a catch Intermediate Event, and an End Event (see Figure 10-86).

The None Start Event MAY be used for a top-level Process or any type of Sub-Process
(except an Event Sub-Process)

Proposal for:
281 Business Process Model and Notation (BPMN), v2.0

The None Start Event MAY NOT be used for an Event Sub-Process.

The catch None Intermediate Event MUST only be used in Normal Flow and, thus, MAY NOT
be attached to the boundary of an Activity.

The None End Event MAY be used within any Sub-Process or Process.

Figure 10-86 – None Events

Parallel Multiple Event

For a Start Event:

If the trigger is Multiple, there are multiple triggers required to start the Process. All of them are necessary
to trigger the start of the Process. The EventDefinition subclasses will define which triggers apply. In
addition, the parallelMultiple attribute of the Start Event MUST be set to true.

For an Intermediate Event within normal flow:

If the trigger is Multiple, all of the defined EventDefinitions are required to trigger the Event. In
addition, the parallelMultiple attribute of the Intermediate Event MUST be set to true.

For an Intermediate Event attached to the boundary of an Activity:

If the trigger is Multiple, all of the defined EventDefinitions are required to trigger the Event. In
addition, the parallelMultiple attribute of the Intermediate Event MUST be set to true.

Figure 10-85 shows the variations of Parallel Multiple Events.

Figure 10-87 – Multiple Events

Proposal for:
Business Process Model and Notation (BPMN), v2.0 282

Signal Event

Figure 10-88 – SignalEventDefinition Class Diagram

Figure 10-89 – Signal Events

The SignalEventDefinition element inherits the attributes and model associations of BaseElement
(see Table 8-5) through its relationship to the EventDefinition element (see page 269). Table 10-93
presents the additional model associations of the ConditionalSignalDefinition element:

Table 10-93 – SignalEventDefinition model associations

Attribute Name Description/Usage

signalRef: Signal If the Trigger is a Signal, then a Signal is provided

Terminate Event
Figure 10-90

Proposal for:
283 Business Process Model and Notation (BPMN), v2.0

Figure 10-90 – Terminate Event

The CancelEventDefinition element inherits the attributes and model associations of BaseElement
(see Table 8-5) through its relationship to the EventDefinition element (see page 269).

Timer Event
Figure 10-91

Figure 10-91 – Timer Events

The TimerEventDefinition element inherits the attributes and model associations of BaseElement
(see Table 8-5) through its relationship to the EventDefinition element (see page 269). Table 10-94
presents the additional model associations of the TimerEventDefinition element:

Table 10-94 – TimerEventDefinition model associations

Attribute Name Description/Usage

timeDate: Expression
[0..1]

If the Trigger is a Timer, then a timeDate MAY be entered. If a timeDate is not
entered, then a timeCycle MUST be entered (see attribute below—if the
processType attribute of the Process is set to executable).

timeCycle: Expression
[0..1]

If the Trigger is a Timer, then a timeCycle MAY be entered. If a timeCycle is
not entered, then a timeDate MUST be entered (see attribute above—if the
processType attribute of the Process is set to executable).

10.4.6. Handling Events
BPMN provides advanced constructs for dealing with Events that occur during the execution of a Process
(i.e., the “catching” of an Event). Furthermore, BPMN supports the explicit creation of an Event in the
Process (i.e., the “throwing” of an Event). Both catching and throwing of an Event as well as the resulting
Process behavior is referred to as Event handling. There are three (3) types of Event handlers: those that start a
Process, those that are part of the normal Sequence Flow, and those that are attached to Activities, either
via boundary Events or via separate inline handlers in case of an Event Sub-Process.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 284

Handling Start Events

There are multiple ways in which a Process can be started. For single Start Events, handling consists of
starting a new Process instance each time the Event occurs. Sequence Flow leaving the Event is then
followed as usual. . For multiple Start Events, BPMN supports several modeling scenarios that can be applied
depending on the scenario.

Exclusive start: the most common scenario for starting a Process is its instantiation by exactly one out of
many possible Start Events. Each occurrence of one of these Events will lead to the creation of a new
Process instance. The following example shows two Events connected to a single Activity (see Figure
10-92). At runtime, each occurrence of one of the Events will lead to the creation of a new instance of the
Process instance and activation of the Activity. Note that a single Multiple Start Event that contains the
Message Event Definitions would behave in the same way.

Figure 10-92 – Exclusive start of a Process

A Process can also be started via an Event-Based Gateway, as in the following example:

Figure 10-93 – A Process initiated by an Event-Based Gateway

In that case, the first matching Event will create a new instance of the Process, and waiting for the other
Events originating from the same decision stops, following the usual semantics of the Event-Based

Proposal for:
285 Business Process Model and Notation (BPMN), v2.0

Exclusive Gateway. Note that this is the only scenario where a Gateway can exist without an incoming
Sequence Flow.

It is possible to have multiple groups of Event-Based Gateways starting a Process, provided they
participate in the same Conversation and hence share the same correlation information. In that case, one
Event out of each group needs to arrive; the first one creates a new Process instance, while the subsequent
ones are routed to the existing instance, which is identified through its correlation information.

Event synchronization: if the modeler requires several disjoint Start Events to be merged into a single
Process instance, then the following notation must be applied:

Figure 10-94 – Event synchronization at Process start

The Parallel Start Event may group several disjoint Start Events each of which must occur once in order
for an Instance of the Process to be created. Sequence Flow leaving the Event is then followed as usual.

See page 442 for the execution semantics for the Event Handling of Start Events.

Handling Events within normal Sequence Flow (Intermediate Events)

For Intermediate Events, the handling consists of waiting for the Event to occur. Waiting starts when the
Intermediate Event is reached. Once the Event occurs, it is consumed. Sequence flow leaving the
Event is followed as usual.

Handling Events attached to an Activity (Intermediate boundary Events and
Event Sub-Processes)

For boundary Events, handling consists of consuming the Event occurrence and either canceling the Activity
the Event is attached to, followed by normal Sequence Flow leaving that Activity, or by running an Event
Handler without canceling the Activity (only for Message, Signal, Timer and Conditional Events, not
for Error Events).

An interrupting boundary Event is defined by a true value of its cancelActivity attribute. Whenever the
Event occurs, the associated Activity is terminated. A downstream token is then generated, which activates the
next element of the Process (connected to the Event by an unconditional Sequence Flow called an
Exception Flow).

For non-interrupting boundary Events, the cancelActivity attribute is set to false. Whenever the Event
occurs, the associated Activity continues to be active. As a token is generated for the Sequence Flow from
the boundary Event in parallel to the continuing execution of the Activity, care must be taken when this flow is
merged into the main flow of the Process – typically it should be ended with its own End Event.

The following example shows a fragment (see Figure 10-95) from a trip booking Process. It contains a
Sub-Process that consists of a main part, and three Event Sub-Processes to deal with Events within the

Proposal for:
Business Process Model and Notation (BPMN), v2.0 286

same context: an error Event Sub-Process that cancels the Sub-Process, a Message Event
Sub-Process that updates the state of the Sub-Process while allowing it to continue, and a
Compensation Event Sub-Process (see page 188).

Figure 10-95 – Example of inline Event Handling via Event Sub-Processes

The following example (see Figure 10-96) shows the same fragment of that Process, using boundary Event
handlers rather than inline Event Sub-Processes. Note that in this example, the handlers do not have access
to the context of the “Booking” Sub-Process, as they run outside of it. Therefore, the actually compensation
logic is shown as a black box.

Proposal for:
287 Business Process Model and Notation (BPMN), v2.0

Figure 10-96 – Example of boundary Event Handling

Note that there is a distinction between interrupting and non-interrupting Events and the handling of these
Events, which is described in the sections below. For an interrupting Event (Error, Escalation, Message,
Signal, Timer, Conditional, Multiple, and Parallel Multiple), only one Event Sub-Process for the
same Event Declaration may be modeled. This excludes any further non-interrupting handlers for that
Event Declaration.

The reason for this restriction lies in the nature of interrupting Event Sub-Processes and boundary Events.
They execute synchronously and after their completion, the hosting Activity is immediately terminated. This
implies that only one such handler can be executed at a time. However, this does not restrict the modeler in
specifying several interrupting handlers, if each handler refers to a different Event Declaration.

For non-interrupting Events (Escalation, Message, Signal, Timer, Conditional, Mulitple, and
Parallel Multiple), an unlimited number of Event Sub-Processes for the same Event Declaration can
be modeled and executed in parallel. At runtime, they will be invoked in a non-deterministic order. The same
restrictions apply for boundary Events.

If for a given Sub-Process, both an inline Event Sub-Process and a boundary Event handler are modeled
that Process the same EventDefinition, the following semantics apply:

If the inline Event Sub-Process “rethrows” the Event after completion, the boundary Event is
triggered

If the inline Event Sub-Process completes without “rethrowing” the Event, the Activity is
considered to have completed and normal Sequence Flow resumes. In other terms, the Event
Sub-Process “absorbs” the Event.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 288

Interrupting Event Handlers (Error, Escalation, Message, Signal, Timer, Conditional,
Multiple, and Parallel Multiple)

Interrupting Event Handlers are those that have the cancelActivity attribute is set to true. Whenever the
Event occurs, regardless of whether the Event is handled inline or on the boundary, the associated Activity is
canceled. If an inline error handler is specified (in case of a Sub-Process), it is run within the context of that
Sub-Process. If a boundary Error Event is present, Sequence Flow from that boundary Event is then
followed.

In the example above, the “Booking” Sub-Process has an Error handler that defines what should happen in
case a “Booking” Error occurs within the Sub-Process, namely, the already performed bookings are
canceled using compensation. The Error handler is then continued outside the Sub-Process through a
boundary Error Event.

Non-interrupting Event Handlers (Escalation, Message, Signal, Timer, Conditional,
Multiple, and Parallel Multiple)

Interrupting Event Handlers are those that have the cancelActivity attribute is set to false.

For Event Sub-Processes, whenever the Event occurs it is consumed and the associated Event
Sub-Process is performed. If there are several Events that happen in parallel, then they are handled
concurrently, i.e., several Event Sub-Process instances are created concurrently. The non-interrupting
Start Event indicates that the Event Sub-Process instance runs concurrently to the Sub-Process
proper.

For boundary Events, whenever the Event occurs the handler runs concurrently to the Activity. If an Event
Sub-Process is also specified for that Event (in case of a Sub-Process), it is run within the context of that
Sub-Process. Then, Sequence Flow from the boundary Event is followed. As a token is generated for the
Sequence Flow from the boundary Event in parallel to the continuing execution of the Activity, care must
be taken when this flow is merged into the main flow of the Process – typically it should be ended with its own
End Event.

In the example above, an Event Handler allows to update the credit card information during the “Booking”
Sub-Process. It is triggered by a credit card information Message: such a Message can be received
whenever the control flow is within the main body of the Sub-Process. Once such a Message is received,
the Activities within the corresponding Event Handler run concurrently with the Activities within the body of
the Sub-Process.

See page 442 for the exact semantics of boundary Intermediate Events and page 443 for the operational
semantics of non-interrupting Event Sub-Processes.

Handling End Events

For a Terminate End Event, all remaining active Activities within the Process are terminated.

A Cancel End Event is only allowed in the context of a Transaction Sub-Process and, as such, cancels
the Sub-Process and aborts an associated Transaction of the Sub-Process.

Proposal for:
289 Business Process Model and Notation (BPMN), v2.0

For all other End Events, the behavior associated with the EventDefinition is performed. When there
are no further active Activities, then the Sub-Process or Process instance is completed. See page 443 for
exact semantics.

10.4.7. Scopes
A scope describes the context in which execution of an Activity happens. This consists of:

The set of Data Objects available (including DataInput and DataOutput)

The set of Events available for catching or throwing triggers

The set of Conversations going on in that scope

In general, a scope contains exactly one main flow of Activities which is started, when the scope gets activated.
Vice versa, all Activities are enclosed by a scope. Scopes are hierarchically nested.

Scopes may have several scope instances at runtime. They are also hierarchically nested according to their
generation. In a scope instance several tokens may be active.

Scope instances in turn have a lifecycle, containing amongst others the states:

Activated

In execution

Completed

In Compensation

Compensation

In Error

In Cancellation

Cancelled

BPMN has the following model elements with scope characteristics:

Choreography

Pool

Sub-Process

Task

Activity

Multi-instances body

Scopes are used to define the semantics of

Visibility of Data Objects (including DataInput and DataOutput)

Event resolution

Starting/stopping of token execution

Proposal for:
Business Process Model and Notation (BPMN), v2.0 290

The Data Objects, Events and correlation keys described by a scope may be explicitly modeled or
implicitly defined.

10.4.8. Events Package XML Schemas

Table 10-95 – BoundaryEvent XML schema

<xsd:element name="boundaryEvent" type="tBoundaryEvent" substitutionGroup="flowElement"/>
<xsd:complexType name="tBoundaryEvent">

<xsd:complexContent>
<xsd:extension base="tCatchEvent">

<xsd:attribute name="cancelActivity" type="xsd:boolean" default="true"/>
<xsd:attribute name="attachedToRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-96 – CancelEventDefinition XML schema

<xsd:element name="cancelEventDefinition" type="tCancelEventDefinition"
substitutionGroup="eventDefinition"/>

<xsd:complexType name="tCancelEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition"/>
</xsd:complexContent>

</xsd:complexType>

Table 10-97 – CatchEvent XML schema

<xsd:element name="catchEvent" type="tCatchEvent"/>
<xsd:complexType name="tCatchEvent" abstract="true">

<xsd:complexContent>
 <xsd:extension base="tEvent">
 <xsd:sequence>

<xsd:element ref="dataOutput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataOutputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="outputSet" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="eventDefinition" minOccurs="0" maxOccurs="1"/>
<xsd:element name="eventDefinitionRef" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="parallelMultiple" type="xsd:boolean" default="false"/>

 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
291 Business Process Model and Notation (BPMN), v2.0

Table 10-98 – CancelEventDefinition XML schema

<xsd:element name="cancelEventDefinition" type="tCancelEventDefinition"
substitutionGroup="eventDefinition"/>

<xsd:complexType name="tCancelEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition"/>
</xsd:complexContent>

</xsd:complexType>

Table 10-99 – CompensateEventDefinition XML schema

<xsd:element name="compensateEventDefinition" type="tCompensateEventDefinition"
substitutionGroup="eventDefinition"/>

<xsd:complexType name="tCompensateEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition">
<xsd:attribute name="waitForCompletion" type="xsd:boolean"/>
<xsd:attribute name="activityRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-100 – ConditionalEventDefinition XML schema

<xsd:element name="conditionalEventDefinition" type="tConditionalEventDefinition"
substitutionGroup="eventDefinition"/>

<xsd:complexType name="tConditionalEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition">
<xsd:sequence>

<xsd:element name="condition" type="tExpression"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-101 – ErrorEventDefinition XML schema

<xsd:element name="errorEventDefinition" type="tErrorEventDefinition"
substitutionGroup="eventDefinition"/>

<xsd:complexType name="tErrorEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition">
<xsd:attribute name="errorCode" type="xsd:string"/>
<xsd:attribute name="errorRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 292

Table 10-102 – Escalation XML schema

<xsd:element name="escalation" type="tEscalation" substitutionGroup="reusableElement"/>
<xsd:complexType name="tEscalation">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:attribute name="structureRef" type="xsd:QName"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10-103 – EscalationEventDefinition XML schema

<xsd:element name="escalationEventDefinition" type="tEscalationEventDefinition"
substitutionGroup="eventDefinition"/>

<xsd:complexType name="tEscalationEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition">
<xsd:attribute name="escalationCode" type="xsd:string"/>
<xsd:attribute name="escalationRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-104 – Event XML schema

<xsd:element name="event" type="tEvent" substitutionGroup="flowElement"/>
<xsd:complexType name="tEvent" abstract="true">

<xsd:complexContent>
<xsd:extension base="tFlowNode"/>

</xsd:complexContent>
</xsd:complexType>

Table 10-105 – EventDefinition XML schema

<xsd:element name="eventDefinition" type="tEventDefinition"/>
<xsd:complexType name="tEventDefinition" abstract="true">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType>

Table 10-106 – IntermediateCatchEvent XML schema

<xsd:element name="intermediateCatchEvent" type="tIntermediateCatchEvent"
substitutionGroup="flowElement"/>

<xsd:complexType name="tIntermediateCatchEvent">
<xsd:complexContent>

<xsd:extension base="tCatchEvent"/>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
293 Business Process Model and Notation (BPMN), v2.0

Table 10-107 – IntermediateThrowEvent XML schema

<xsd:element name="intermediateThrowEvent" type="tIntermediateThrowEvent"
substitutionGroup="flowElement"/>

<xsd:complexType name="tIntermediateThrowEvent">
<xsd:complexContent>

<xsd:extension base="tThrowEvent"/>
</xsd:complexContent>

</xsd:complexType>

Table 10-108 – LinkEventDefinition XML schema

<xsd:element name="linkEventDefinition" type="tLinkEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tLinkEventDefinition">

<xsd:complexContent>
<xsd:extension base="tEventDefinition">

<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10-109 – MessageEventDefinition XML schema

<xsd:element name="messageEventDefinition" type="tMessageEventDefinition"
substitutionGroup="eventDefinition"/>

<xsd:complexType name="tMessageEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition">
<xsd:sequence>

<xsd:element name="operationRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>

<xsd:attribute name="messageRef" type="xsd:QName"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10-110 – Signal XML schema

<xsd:element name="signal" type="tSignal" substitutionGroup="reusableElement"/>
<xsd:complexType name="tSignal">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="structureRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 294

Table 10-111 – SignalEventDefinition XML schema

<xsd:element name="signalEventDefinition" type="tSignalEventDefinition"
substitutionGroup="eventDefinition"/>

<xsd:complexType name="tSignalEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition">
<xsd:attribute name="signalRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-112 – StartEvent XML schema

<xsd:element name="startEvent" type="tStartEvent" substitutionGroup="flowElement"/>
<xsd:complexType name="tStartEvent">

<xsd:complexContent>
<xsd:extension base="tCatchEvent"/>

</xsd:complexContent>
</xsd:complexType>

Table 10-113 – TerminateEventDefinition XML schema

<xsd:element name="terminateEventDefinition" type="tTerminateEventDefinition"
substitutionGroup="eventDefinition"/>

<xsd:complexType name="tTerminateEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition"/>
</xsd:complexContent>

</xsd:complexType>

Table 10-114 – ThrowEvent XML schema

<xsd:element name="throwEvent" type="tThrowEvent"/>
<xsd:complexType name="tThrowEvent" abstract="true">

<xsd:complexContent>
 <xsd:extension base="tEvent">
 <xsd:sequence>

<xsd:element ref="dataInput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataInputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="inputSet" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="eventDefinition" minOccurs="0" maxOccurs="1"/>
<xsd:element name="eventDefinitionRef" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
295 Business Process Model and Notation (BPMN), v2.0

Table 10-115 – TimerEventDefinition XML schema

<xsd:element name="timerEventDefinition" type="tTimerEventDefinition"
substitutionGroup="eventDefinition"/>

<xsd:complexType name="tTimerEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition">
<xsd:choice>

<xsd:element name="timeDate" type="tExpression" minOccurs="0" maxOccurs="1"/>
<xsd:element name="timeCycle" type="tExpression" minOccurs="0" maxOccurs="1"/>

</xsd:choice>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

10.5. Gateways
Gateways are used to control how Sequence Flows interact as they converge and diverge within a
Process. If the flow does not need to be controlled, then a Gateway is not needed. The term “Gateway”
implies that there is a gating mechanism that either allows or disallows passage through the Gateway--that is,
as Tokens arrive at a Gateway, they can be merged together on input and/or split apart on output as the
Gateway mechanisms are invoked.

A Gateway is a diamond, which has been used in many flow chart notations for exclusive branching and is
familiar to most modelers.

A Gateway is a diamond that MUST be drawn with a single thin line (see Figure 10-97).

The use of text, color, size, and lines for a Gateway MUST follow the rules defined in Section
“Use of Text, Color, Size, and Lines in a Diagram” on page 63 with the exception that:

Figure 10-97 – A Gateway

Gateways, like Activities, are capable of consuming or generating additional tokens, effectively controlling
the execution semantics of a given Process. The main difference is that Gateways do not represent ‘work’
being done and they are considered to have zero effect on the operational measures of the Process being
executed (cost, time, etc.).

Gateways can define all the types of Business Process Sequence Flow behavior: Decisions/branching
(exclusive, inclusive, and complex), merging, forking, and joining. Thus, while the diamond has been used
traditionally for exclusive decisions, BPMN extends the behavior of the diamonds to reflect any type of
Sequence Flow control. Each type of Gateway will have an internal indicator or marker to show the type of
Gateway that is being used (see Figure 10-98).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 296

Parallel

Exclusive

Complex

Event-Based

Inclusive

Xor

Figure 10-98 – The Different types of Gateways

The Gateway controls the flow of both diverging and converging Sequence Flow. That is, a single
Gateway could have multiple input and multiple output flows. Modelers and modeling tools may want to
enforce a best practice of a Gateway only performing one of these functions. Thus, it would take two
sequential Gateways to first converge and then to diverge the Sequence Flow.

Proposal for:
297 Business Process Model and Notation (BPMN), v2.0

Figure 10-99 – Gateway class diagram

Gateways are described in this section on an abstract level. The execution semantics of Gateways is detailed
on page 436.

10.5.1. Sequence Flow Considerations
Note – Although the shape of a Gateway is a diamond, it is not a requirement that incoming and outgoing
Sequence Flow must connect to the corners of the diamond. Sequence Flow can connect to any position
on the boundary of the Gateway shape.

This section applies to all Gateways. Additional Sequence Flow Connection rules may be specified for
each type of Gateway in the sections below.

A Gateway MAY be a target for Sequence Flow. It can have zero (0), one (1), or more incoming
Sequence Flow.

If the Gateway does not have an incoming Sequence Flow, and there is no Start Event for
the Process, then the Gateway’s divergence behavior, depending on the type of Gateway
(see below), SHALL be performed when the Process is instantiated.

A Gateway MAY be a source of Sequence Flow; it can have zero (0), one (1), or more outgoing
Sequence Flow.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 298

A Gateway MUST have either multiple incoming Sequence Flow or multiple outgoing
Sequence Flow (i.e., it must merge or split the flow).

A Gateway with a gatewayDirection of unspecified MAY have both multiple
incoming and outgoing Sequence Flow.

A Gateway with a gatewayDirection of mixed MUST have both multiple incoming and
outgoing Sequence Flow.

A Gateway with a gatewayDirection of converging MUST have multiple incoming
Sequence Flow, but MUST NOT have multiple outgoing Sequence Flow.

A Gateway with a gatewayDirection of diverging MUST have multiple outgoing
Sequence Flow, but MUST NOT have multiple incoming Sequence Flow.

10.5.2. Exclusive Gateway
A diverging Exclusive Gateway (Decision) is used to create alternative paths within a
Process flow. This is basically the “diversion point in the road” for a Process. For a given instance of the
Process, only one of the paths can be taken.

A Decision can be thought of as a question that is asked at a particular point in the Process. The question has a
defined set of alternative answers. Each question is associated with a condition expression that is associated with
a Gateway’s outgoing Sequence Flow.

The Exclusive Gateway MAY use a marker that is shaped like an “X” and is placed within the
Gateway diamond (see Figure 10-101) to distinguish it from other Gateways. This marker is not
required (see Figure 10-100).

A diagram SHOULD be consistent in the use of the “X” internal indicator. That is, a diagram
SHOULD NOT have some Gateways with an indicator and other Gateways without an
indicator.

Figure 10-100 – An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator

Proposal for:
299 Business Process Model and Notation (BPMN), v2.0

Figure 10-101 – A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator

Note – as a modeling preference, the Exclusive Gateways shown in examples within this specification will
be shown without the internal indicator.

A default path can optionally be identified, to be taken in the event that none of the conditional expressions
evaluate to true. If a default path is not specified and the Process is executed such that none of the conditional
expressions evaluates to true, a runtime exception occurs.

A converging Exclusive Gateway is used to merge alternative paths. Each incoming control flow token is
routed to the outgoing Sequence Flow without synchronization.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 300

Figure 10-102 – Exclusive Gateway class diagram

The Exclusive Gateway element inherits the attributes and model associations of Gateway (see Table
8-47). Table 10-116 presents the additional attributes and model associations of the Exclusive Gateway
element:

Table 10-116 – ExclusiveGateway Attributes & Model Associations

Attribute Name Description/Usage

default: SequenceFlow [0..1] The Sequence Flow that will receive a Token when none of the
conditionExpressions on other outgoing Sequence Flow evaluate to true.
The default Sequence Flow should not have a conditionExpression. Any
such Expression SHALL be ignored.

10.5.3. Inclusive Gateway
A diverging Inclusive Gateway (Inclusive Decision) can be used to create alternative but also parallel paths
within a Process flow. Unlike the Exclusive Gateway, all condition expressions are evaluated. The true
evaluation of one condition expression does not exclude the evaluation of other condition expressions. All
Sequence Flow with a true evaluation will be traversed by a Token. Since each path is considered to be

Proposal for:
301 Business Process Model and Notation (BPMN), v2.0

independent, all combinations of the paths may be taken, from zero to all. However, it should be designed so that
at least one path is taken.

The Inclusive Gateway MUST use a marker that is in the shape of a circle or an “O” and is placed
within the Gateway diamond (see Figure 10-103) to distinguish it from other Gateways

Figure 10-103 – An example using an Inclusive Gateway

A default path can optionally be identified, to be taken in the event that none of the conditional expressions
evaluate to true. If a default path is not specified and the Process is executed such that none of the conditional
expressions evaluates to true, a runtime exception occurs.

A converging Inclusive Gateway is used to merge a combination of alternative and parallel paths. A control
flow Token arriving at an Inclusive Gateway may be synchronized with some other Tokens that arrive later
at this Gateway. The precise synchronization behavior of the Inclusive Gateway can be found on page
438.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 302

Figure 10-104 – Inclusive Gateway class diagram

The Inclusive Gateway element inherits the attributes and model associations of Gateway (see Table 8-47).
Table 10-117 presents the additional attributes and model associations of the Inclusive Gateway element:

Table 10-117 – InclusiveGateway Attributes & Model Associations

Attribute Name Description/Usage

default: SequenceFlow [0..1] The Sequence Flow that will receive a Token when none of the
conditionExpressions on other Sequence Flow evaluate to true. The
default Sequence Flow should not have a conditionExpression. Any
such Expression SHALL be ignored.

10.5.4. Parallel Gateway
A Parallel Gateway is used to synchronize (combine) parallel flows and to create parallel flows.

The Parallel Gateway MUST use a marker that is in the shape of a plus sign and is placed within
the Gateway diamond (see Figure 10-105) to distinguish it from other Gateways

Proposal for:
303 Business Process Model and Notation (BPMN), v2.0

A

C

B

Figure 10-105 – An example using an Parallel Gateway

Parallel Gateways are used for synchronizing parallel flow (see Figure 10-106).

A

C

B

Figure 10-106 – An example of a synchronizing Parallel Gateway

A Parallel Gateway creates parallel paths without checking any conditions; each outgoing Sequence Flow
receives a token upon execution of this Gateway. For incoming flows, the Parallel Gateway will wait for all
incoming flows before triggering the flow through its outgoing Sequence Flows.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 304

Figure 10-107 – Parallel Gateway class diagram

The Parallel Gateway element inherits the attributes and model associations of Gateway (see Table 8-47),
but adds no additional attributes or model associations.

10.5.5. Complex Gateway
The Complex Gateway can be used to model complex synchronization behavior. An Expression
activationCondition is used to describe the precise behavior. For example, this Expression could
specify that tokens on three out of five incoming Sequence Flow are needed to activate the Gateway. What
tokens are produced by the Gateway is determined by conditions on the outgoing Sequence Flow as in the
split behavior of the Inclusive Gateway. If token arrive later on the two remaining Sequence Flow, those
tokens cause a reset of the Gateway and new token can be produced on the outgoing Sequence Flow. To
determine whether it needs to wait for additional tokens before it can reset, the Gateway uses the
synchronization semantics of the Inclusive Gateway.

The Complex Gateway MUST use a marker that is in the shape of an asterisk and is placed within
the Gateway diamond (see Figure 10-108) to distinguish it from other Gateways

Proposal for:
305 Business Process Model and Notation (BPMN), v2.0

Alternative 2

Alternative 1

Alternative 3

Alternative 4

Figure 10-108 – An example using a Complex Gateway

The Complex Gateway has, in contrast to other Gateways, an internal state, which is represented by the
Boolean instance attribute waitingForStart, which is initially true and becomes false after activation. This
attribute can be used in the conditions of the outgoing Sequence Flow to specify where tokens are produced
upon activation and where tokens are produced upon reset. It is recommended that each outgoing Sequence
Flow may either get a token upon activation or upon reset but not both. At least one outgoing Sequence Flow
should receive a token upon activation but no token may be produced upon reset.

Figure 10-109 shows the class diagram for the Complex Gateway.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 306

Figure 10-109 – Complex Gateway class diagram

The Complex Gateway element inherits the attributes and model associations of Gateway (see Table 8-47).
Table 10-118 presents the additional model associations of the Complex Gateway element:

Table 10-118 – Complex Gateway model associations

Attribute Name Description/Usage

activationCondition: Expression
[0..1]

Determines which combination of incoming tokens will be synchronized
for activation of the Gateway.

default: SequenceFlow [0..1] The Sequence Flow that will receive a token when none of the
conditionExpressions on other Sequence Flow evaluate to true.
The default Sequence Flow should not have a
conditionExpression. Any such Expression SHALL be ignored.

Proposal for:
307 Business Process Model and Notation (BPMN), v2.0

Table 10-119 – Instance Attributes related to the Complex Gateway

Attribute Name Description/Usage

activationCount: integer Refers at runtime to the number of tokens that are present on an
incoming Sequence Flow of the Complex Gateway.

waitingForStart: boolean = True Represents the internal state of the Complex Gateway. It is either
waiting for start (=true) or waiting for reset (=false).

10.5.6. Event-Based Gateway
The Event-Based Gateway represents a branching point in the Process where the alternative paths that
follow the Gateway are based on Events that occur, rather than the evaluation of Expressions using
Process data (as with an Exclusive or Inclusive Gateway). A specific Event, usually the receipt of a
Message, determines the path that will be taken. Basically, the decision is made by another Participant, based
on data that is not visible to Process, thus, requiring the use of the Event-Based Gateway.

For example, if a company is waiting for a response from a customer they will perform one set of Activities if
the customer responds “Yes” and another set of Activities if the customer responds “No.” The customer’s
response determines which path is taken. The identity of the Message determines which path is taken. That is,
the “Yes” Message and the “No” Message are different Messages—i.e., they are not the same Message
with different values within a property of the Message. The receipt of the Message can be modeled with an
Intermediate Event with a Message Trigger or a Receive Task. In addition to Messages, other
Triggers for Intermediate Events can be used, such as Timers.

The Event Gateway shares the same basic shape of the Gateways, a diamond, with a marker placed within
the diamond to indicate variations of the Gateway.

An Event Gateway is a diamond that MUST be drawn with a single thin line.

The use of text, color, size, and lines for a Start Event MUST follow the rules defined in
Section “Use of Text, Color, Size, and Lines in a Diagram” on page 63.

The marker for the Event Gateway MUST look like a catch Multiple Intermediate Event
(see Figure 10-110).

Figure 10-110 – Event-Based Gateway

Unlike other Gateways, the behavior of the Event Gateway is determined by a configuration of elements,
rather than the single Gateway.

An Event Gateway MUST have two (2) or more outgoing Sequence Flow.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 308

The outgoing Sequence Flow of the Event Gateway MUST NOT have a
conditionExpression.

The objects that are on the target end of the Gateway’s outgoing Sequence Flow are part of the
configuration of the Gateway.

Event-Based Gateways are configured by having outgoing Sequence Flow target an
Intermediate Event or a Receive Task in any combination (see figures Figure 10-111 and
Figure 10-112) except that:

If Message Intermediate Events are used in the configuration, then Receive Tasks
MUST NOT be used in that configuration and vice versa.

Receive Tasks used in an Event Gateway configuration MUST NOT have any attached
Intermediate Events.

Only the following Intermediate Event triggers are valid: Message, Signal, Timer,
Conditional, and Multiple (which can only include the previous triggers). Thus, the
follow Intermediate Event triggers are not valid: Error, Cancel, Compensation, and
Link.

Target elements in an Event Gateway configuration MUST NOT have any addition incoming
Sequence Flow (other than that from the Event Gateway).

Figure 10-111 – An Event-Based Gateway example using Message Intermediate Events

Proposal for:
309 Business Process Model and Notation (BPMN), v2.0

Figure 10-112 – An Event-Based Gateway example using Receive Tasks

When the first Event in the Event Gateway configuration is triggered, then the path that follows that Event
will used (a token will be sent down the Event’s outgoing Sequence Flow). All the remaining paths of the
Event Gateway configuration will no longer be valid. Basically, the Event Gateway configuration is a
race condition where the first Event that is triggered wins.

There are variations of the Event Gateway that can be used at the start of the Process. The behavior and
marker of the Gateway will change.

Event Gateways can be used to instantiate a Process. By default the Gateway’s instantiate attribute
is false, but if set to true, then the Process is instantiated when the first Event of the Gateway’s
configuration is triggered.

If the Event Gateway’s instantiate attribute is set to true, then the marker for the Event
Gateway looks like a Multiple Start Event (see Figure 10-113).

Figure 10-113 – Exclusive Event-Based Gateway to start a Process

In order for an Event Gateway to instantiate a Process, it must meet one of the following conditions:

The Process does not have a Start Event and the Gateway has no incoming Sequence Flow,
or

The incoming Sequence Flow for the Gateway has a source of a None Start Event.

Note that no other incoming Sequence Flow are allowed for the Gateway (in particular, a
loop connection from a downstream object).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 310

In some situations a modeler may want the Process to be instantiated by one of a set of Messages while still
requiring all of the Messages for the working of the same Process instance. To handle this, there is another
variation of the Event Gateway.

If the Event Gateway’s instantiate attribute is set to true and the eventGatewayType
attribute is set to Parallel, then the marker for the Event Gateway looks like a Parallel
Multiple Start Event (see Figure 10-114).

The Event Gateway’s instantiate attribute MUST be set to true in order for the
eventGatewayType attribute to be set to Parallel (i.e., for Event Gateway’s that do not
instantiate the Process MUST be Exclusive—a standard Parallel Gateway can be used to
include parallel Events in the middle of a Process).

Figure 10-114 – Parallel Event-Based Gateway to start a Process

The Parallel Event Gateway is also a type of race condition. In this case, however, when the first Event is
triggered and the Process is instantiated, the other Events of the Gateway configuration are not disabled.
The other Events are still waiting and are expected to be triggered before the Process can (normally)
complete. In this case, The Messages that trigger the Events of the Gateway configuration must share the
same correlation information.

Proposal for:
311 Business Process Model and Notation (BPMN), v2.0

Figure 10-115 – Event-Based Gateway class diagram

The Event-Based Gateway element inherits the attributes and model associations of Gateway (see Table
8-47). Table 10-120 presents the additional attributes and model associations of the Event-Based Gateway
element:

Table 10-120 – EventBasedGateway Attributes & Model Associations

Attribute Name Description/Usage

instantiate: boolean = False When true, receipt of one of the events will instantiate the process instance.

eventGatewayType:
EventGatewayType =
Exclusive

{ Exclusive | Parallel }

The eventGatewayType determines the behavior of the Gateway when
used to instantiate a Process (as described above).

The attribute can only be set to Parallel when the instantiate attribute
is set to true.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 312

Event-Based Gateways can be used at the start of a Process, without having to be a target of a
Sequence Flow. There can be multiple such Event-Based Gateways at the start of a Process. Ordinary
Start Events and Event-Based Gateways can be used together.

10.5.7. Gateway Package XML Schemas

Table 10-121 – ComplexGateway XML schema

<xsd:element name="complexGateway" type="tComplexGateway"
substitutionGroup="flowElement"/>
<xsd:complexType name="tComplexGateway">

<xsd:complexContent>
<xsd:extension base="tGateway">

<xsd:sequence>
<xsd:element name="activationCondition" type="tExpression"
minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="default" type="xsd:IDREF"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10-122 – EventBasedGateway XML schema

<xsd:element name="eventBasedGateway" type="tEventBasedGateway"
substitutionGroup="flowElement"/>
<xsd:complexType name="tEventBasedGateway">

<xsd:complexContent>
<xsd:extension base="tGateway">

<xsd:attribute name="instantiate" type="xsd:boolean" default="false"/>
<xsd:attribute name="eventGatewayType"
type="tEventBasedGatewayType" default="Exclusive"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="tEventBasedGatewayType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Exclusive"/>
<xsd:enumeration value="Parallel"/>

</xsd:restriction>
</xsd:simpleType>

Proposal for:
313 Business Process Model and Notation (BPMN), v2.0

Table 10-123 – ExclusiveGateway XML schema

<xsd:element name="exclusiveGateway" type="tExclusiveGateway" substitutionGroup="flowElement"/>
<xsd:complexType name="tExclusiveGateway">

<xsd:complexContent>
<xsd:extension base="tGateway">

<xsd:attribute name="default" type="xsd:IDREF" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10-124 – Gateway XML schema

<xsd:element name="gateway" type="tGateway" abstract="true"/>
<xsd:complexType name="tGateway">

<xsd:complexContent>
<xsd:extension base="tFlowElement">

<xsd:attribute name="gatewayDirection" type="tGatewayDirection" default="unspecified"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tGatewayDirection">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="unspecified"/>
<xsd:enumeration value="converging"/>
<xsd:enumeration value="diverging"/>
<xsd:enumeration value="mixed"/>

</xsd:restriction>
</xsd:simpleType>

Table 10-125 – InclusiveGateway XML schema

<xsd:element name="inclusiveGateway" type="tInclusiveGateway" substitutionGroup="flowElement"/>
<xsd:complexType name="tInclusiveGateway">

<xsd:complexContent>
<xsd:extension base="tGateway">

<xsd:attribute name="default" type="xsd:IDREF" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10-126 – ParallelGateway XML schema

<xsd:element name="parallelGateway" type="tParallelGateway" substitutionGroup="flowElement"/>
<xsd:complexType name="tParallelGateway">

<xsd:complexContent>
<xsd:extension base="tGateway"/>

</xsd:complexContent>
</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 314

10.6. Compensation
Compensation is concerned with undoing steps that were already successfully completed, because their results
and possibly side effects are no longer desired and need to be reversed. If an Activity is still active, it cannot be
compensated, but rather needs to be canceled. Cancellation in turn may result in compensation of already
successfully completed portions of an active Activity, in case of a Sub-Process.

Compensation is performed by a compensation handler. A compensation handler performs the steps necessary
to reverse the effects of an Activity. In case of a Sub-Process, the compensation handler has access to
Sub-Process data at the time of its completion (“snapshot data”).

Compensation is triggered by a throw Compensation Event, which typically will be raised by an error
handler, as part of cancellation, or recursively by another compensation handler. That Event specifies the
Activity for which compensation is to be performed, either explicitly or implicitly

10.6.1. Compensation Handler
A compensation handler is a set of Activities that are not connected to other portions of the BPMN model. The
compensation handler starts with a catch Compensation Event. That catch Compensation Event either
is a boundary Event, or, in case of a Compensation Event Sub-Process, the handler’s Start Event.

A compensation handler connected via a boundary Event can only perform “black-box” compensation of the
original Activity. This compensation is modeled with a specialized Compensation Activity, which is
connected to the boundary Event through an Association (see Figure 10-116). The Compensation
Activity, which can be either a Task or a Sub-Process, has a marker to show that it is used for compensation
only and is outside the normal flow of the Process.

Book Hotel

Cancel
Hotel

Figure 10-116 – Compensation through a boundary Event

A Compensation Event Sub-Process is contained within a Process or a Sub-Process (see Figure
10-117). Like the Compensation Activity, the Compensation Event Sub-Process is outside the
normal flow of the Process. The Event Sub-Process, which is marked with a dotted line boundary, can
access data that is part of its parent, a snapshot at the point in time when its parent completed. A
Compensation Event Sub-Process can recursively trigger compensation for Activities contained in its
parent.

Proposal for:
315 Business Process Model and Notation (BPMN), v2.0

Figure 10-117 – Monitoring Class Diagram

It is possible to specify that a Sub-Process can be compensated without having to define the compensation
handler. The Sub-Process attribute compensable, when set, specifies that default compensation is
implicitly defined, which recursively compensates all successfully completed Activities within that
Sub-Process.

The example on page 286 contains a custom Compensation Event Sub-Process, triggered by a
Compensation Start Event. Note that this compensation handler deviates from default compensation in
that it runs Compensation Activities in an order different from the order in the forward case; it also contains
an additional Activity adding Process logic that cannot be derived from the body of the Sub-Process itself.

10.6.2. Compensation Triggering
Compensation is triggered using a compensation throw Event, which can either be an Intermediate or an
End Event. The Activity which needs to be compensated is referenced. If the Activity is clear from the
context, it doesn’t have to be specified and defaults to the current Activity. A typical scenario for that is an
inline error handler of a Sub-Process that cannot recover the error, and as a result would trigger
compensation for that Sub-Process. If no Activity is specified in a “global” context, all completed
Activities in the Process are compensated.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 316

By default, compensation is triggered synchronously, that is, the compensation throw Event waits for the
completion of the triggered compensation handler. Alternatively, compensation can just be triggered without
waiting for its completion, by setting the throw Compensation Event’s waitForCompletion attribute
to false.

Multiple instances typically exist for Loop or Multi-Instance Sub-Processes. Each of these has its own
instance of its Compensation Event Sub-Process, which has access to the specific snapshot data that was
current at the time of completion of that particular instance. Triggering compensation for the Multi-Instance
Sub-Process individually triggers compensation for all instances within the current scope. If compensation is
specified via a boundary compensation handler, this boundary compensation handler also is invoked once for
each instance of the Multi-Instance Sub-Process in the current scope.

10.6.3. Relationship between Error Handling and Compensation
The following items define the relationship between error handling and compensation:

Compensation employs a “presumed abort principle”, with the following consequences: Compensation
of a failed Activity results in a null operation.

When an Activity fails, i.e., is left because an error has been thrown, it’s the error handlers
responsibility to ensure that no further compensation will be necessary once the error handler has
completed.

If no error Event Sub-Process is specified for a particular Sub-Process and a particular error, the
default behavior is to automatically call compensation for all contained Activities of that
Sub-Process if that error is thrown, ensuring the behavior in for auditing and monitoring.

10.7. Lanes
A Lane is a sub-partition within a Pool or a Process and will extend the entire length of the Diagram, either
vertically (see Figure 10-118) or horizontally (see Figure 10-119). If the Process is invisibly bounded, the
Lane must extend the entire length of the Process. Text associated with the Lane (e.g., its name and/or that of
any Process element attribute) can be placed inside the shape, in any direction or location, depending on the
preference of the modeler or modeling tool vendor. Our examples place the name as a banner on the left side (for
horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool name,
however, this is not a requirement.

A Lane is a square-cornered rectangle that MUST be drawn with a solid single line (see Figure
10-118 and Figure 10-119).

The label for the Pool MAY be placed in any location and direction within the Pool, but MUST
NOT be separated from the contents of the Pool by a single line (except in the case that there are
sub-Lanes within the Lane).

Proposal for:
317 Business Process Model and Notation (BPMN), v2.0

Name
NameName

Figure 10-118 – Two Lanes in a Vertical Pool

Figure 10-119 – Two Lanes in a horizontal Pool

Lanes are used to organize and categorize Activities within a Pool. The meaning of the Lanes is up to the
modeler. BPMN does not specify the usage of Lanes. Lanes are often used for such things as internal roles
(e.g., Manager, Associate), systems (e.g., an enterprise application), an internal department (e.g., shipping,
finance), etc. In addition, Lanes can be nested (see Figure 10-120) or defined in a matrix. For example, there
could be an outer set of Lanes for company departments and then an inner set of Lanes for roles within each
department.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 318

S
al

es
M

ar
ke

tin
g

S
up

pl
ie

r

C
on

su
lti

ng

P
re

-S
al

es
P

os
t-S

al
es

En
gi

ne
er

in
g

Figure 10-120 – An Example of Nested Lanes

Figure 10-121 shows the Lane class diagram. When a Lane is defined it is contained within a LaneSet,
which is contained within a Process.

Proposal for:
319 Business Process Model and Notation (BPMN), v2.0

Figure 10-121 – The Lane class diagram

The LaneSet element defines the container for one or more Lanes. A Process can contain one or more
LaneSets. Each LaneSet and its Lanes can partition the Flow Elements in a different way.

The LaneSet element inherits the attributes and model associations of BaseElement (see Table 8-5). Table
10-127 presents the additional attributes and model associations of the LaneSet element:

Table 10-127 – LaneSet attributes and model associations

Attribute Name Description/Usage

process: Process The process owning the LaneSet

lanes: Lane [0..*] One or more Lane elements, which define a specific partition in the LaneSet

parentLane: Lane [0..1] The reference to a Lane element which is the parent of this LaneSet.

A Lane element defines one specific partition in a LaneSet. The Lane can define a partition element which
specifies the value and element type, a tool can use to determine the list of Flow Elements to be partitioned into
this Lane. All Lanes in a single LaneSet must define partition element of the same type, e.g. all Lanes in a
LaneSet defines the Performer element as the partition element, but all with different values.

The Lane element inherits the attributes and model associations of BaseElement (see Table 8-5). Table
10-128 presents the additional attributes and model associations of the Lane element:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 320

Table 10-128 – Lane attributes and model associations

Attribute Name Description/Usage

name: string The name of the Lane

partitionElement:
BaseElement [0..1]

A reference to a BaseElement which specify the partition value and partition
type. Using this partition element a BPMN compliant tool can determine the
FlowElements which have to be partitioned in this Lane.

partitionElementRef:
BaseElement [0..1]

A reference to a BaseElement which specify the partition value and partition
type. Using this partition element a BPMN compliant tool can determine the
FlowElements which have to be partitioned in this Lane.

childLaneSet: LaneSet
[0..1]

A reference to a LaneSet element for embedded Lanes.

flowElementRefs:
FlowElement [0..*]

The list of FlowElement partitioned into this Lane according to the
partitionElement defined as part of the Lane element

10.8. Process Instances, Unmodeled Activities, and Public
Processes

A Process can be executed or performed many times, but each time is expected to follow the steps laid out in
the Process model. For example, the Process in Figure 10-1 will occur every Friday, but each instance is
expected to perform Task “Receive Issue List,” then Task “Review Issue List,” and so on, as specified in the
model. Each instance of a Process is expected to be valid for the model, but some instances might not, for
example if the Process has manual Activities, and the performers have not had proper instruction on how to
carry out the Process.

In some applications it is useful to allow more Activities and Events to occur when a Process is executed or
performed than are contained the Process model. This enables other steps to be taken as needed without
changing the Process. For example, instances of the Process in Figure 10-1 might execute or perform an
extra Activity between Task “Receive Issue List” and Task “Review Issue List.” These instances are still
valid for the Process model in Figure 10-1, because the instances still execute or perform the Activities in the
Process, in the order they are modeled and under conditions specified for them.

There are two ways to specify whether unmodeled Activities are allowed to occur in Process instances:

If the isClosed attribute of a Process has a value of false or no value, then interactions, such as
sending and receiving Messages and Events, MAY occur in an instance without additional flow
elements in the Process. Unmodeled interactions can still be restricted on particular Sequence
Flow in the Process (see next bullet). If the isClosed attribute of a Process has a value of true,
then interactions, such as sending and receiving Messages and Events, MAY NOT occur without
additional flow elements in the Process. This restriction overrides any unmodeled interactions
allowed by Sequence Flow in the next bullet.

Proposal for:
321 Business Process Model and Notation (BPMN), v2.0

If the isImmediate attribute of a Sequence Flow in a Process has a value of false, then other
Activities and interactions not modeled in the Process MAY be executed or performed during the
Sequence Flow. If the isImmediate attribute has a value of true, then Activities and
interactions not modeled in the Process MAY NOT be executed or performed during Sequence
Flow. In public Processes (processType attribute has value public) Sequence Flow with no
value for isImmediate are treated as if the value were false. In private Processes
(processType attribute has value executable or non-executable) Sequence Flow with
no value for isImmediate are treated as if the value were true. Executable Processes cannot have
a false value for the isImmediate attribute.

Restrictions on unmodeled Activities specified with isClosed and isImmediate apply only under
executions or performances (instances) of the Process containing the restriction. These Activities MAY
occur in instances of other Processes.

When a Process allows Activities to occur that the Process does not model, those Activities might appear
in other Process models. The executions or performances (instances) of these other Processes might be valid
for the original Process. For example, a Process might be defined similar to the one in Figure 10-1 that adds
an extra Activity between Task “Receive Issue List” and Task “Review Issue List.” The Process in Figure
10-1 might use isClosed or isImmediate to allow other Activities to occur in between Task “Receive
Issue List” and Task “Review Issue List.” When the Process is executed or performed, then instances of the
other Process (the one with the extra step in between Task “Receive Issue List” and Task “Review Issue
List”) will be valid for the Process in Figure 10-1. Modelers can declare that they intend all instances of one
Process will be valid for another Process using the supports association between the Processes. During
development of these Processes, support might not actually hold, because the association just expresses
modeler intent.

A common use for model support is between private and public Processes, see Section “Overview” (page 40).
A public Process contain Activities visible to external parties, such as Participants in a Collaboration,
while a private Process includes other Activities that are not visible to external parties. The hidden
Activities in a private Process are not modeled in the public Process. However, it is expected that instances
of the private Process will appear to external parties as if they could be instances of the public Process. This
means the private Process supports the public Process (it is expected that all instances of the private
Process will be valid for the public one).

A Process that supports another, as a private Process can to a public Process, does not need to be entirely
similar to the other Process. It is only required that instances of the Process appear as if they could be
instance of the other Process. For example Figure 10-122 shows a public Process at the top with a Send
Task and Receive Task. A supporting private Process is shown at the bottom. The private Process sends
and receives the same Messages, but using Events instead of Tasks. It also introduces an Activity not
modeled in the public Process. However all instances of the private Process will appear as if they could be
instances of the public one, because the Messages are sent and received in the order required by the public
Process, and the public Process allows unmodeled Activities to occur.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 322

Figure 10-122 – One Process supporting to another

In practice, a public Process looks like an underspecified private Process. Anything not specified in the
public Process is determined by the private one. For example, if none of the outgoing Sequence Flow for
an Exclusive Gateway have conditions, the private Process will determine which one of the
Activities targeted by the Sequence Flow will occur. Another example is a Timer Event with no
EventDefinition. The private Process will determine when the timer goes off.

Proposal for:
323 Business Process Model and Notation (BPMN), v2.0

10.9. Auditing
The Auditing element and its model associations allow defining attributes related to auditing. It leverages the
BPMN extensibility mechanism. This element is used by FlowElements and Process. The actual definition
of auditing attributes is out of scope of this specification. BPMN 2.0 implementations may define their own set
of attributes and their intended semantics.

Figure 10-123 – Auditing Class Diagram

Proposal for:
Business Process Model and Notation (BPMN), v2.0 324

10.10. Monitoring
The Monitoring and its model associations allow defining attributes related to monitoring. It leverages the
BPMN extensibility mechanism. This element is used by FlowElements and Process. The actual definition
of monitoring attributes is out of scope of this specification. BPMN 2.0 implementations may define their own
set of attributes and their intended semantics.

Figure 10-124 – Monitoring Class Diagram

10.11. Process within Collaboration

Proposal for:
325 Business Process Model and Notation (BPMN), v2.0

10.12. Process Package XML Schemas

Table 10-129 – Process XML schema

<xsd:element name="process" type="tProcess" substitutionGroup="rootElement"/>
<xsd:complexType name="tProcess">

<xsd:complexContent>
<xsd:extension base="tCallableElement">

<xsd:sequence>
<xsd:element ref="auditing" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="monitoring" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="processRole" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="property" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="laneSet" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="flowElement" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="supports" type="xsd:QName" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="processType" type="tProcessType" default="none"/>
<xsd:attribute name="isClosed" type="xsd:boolean" default="false"/>
<xsd:attribute name="definitionalCollaborationRef" type="xsd:QName"
use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:simpleType name="tProcessType">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="none"/>
<xsd:enumeration value="public"/>
<xsd:enumeration value="executable"/>
<xsd:enumeration value="non-executable"/>

</xsd:restriction>
</xsd:simpleType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 326

Table 10-130 – Auditing XML schema

<xsd:element name="auditing" type="tAuditing"/>
<xsd:complexType name="tAuditing">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType>

Table 10-131 – GlobalTask XML schema

<xsd:element name="globalTask" type="tGlobalTask" substitutionGroup="rootElement"/>
<xsd:complexType name="tGlobalTask">

<xsd:complexContent>
<xsd:extension base="tCallableElement">

<xsd:sequence>
<xsd:element ref="performer" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10-132 – Lane XML schema

<xsd:element name="lane" type="tLane"/>
<xsd:complexType name="tLane">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="partitionElement" type="tBaseElement"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="flowElementRef" type="xsd:IDREF"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="childLaneSet" type="tLaneSet"
minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="partitionElementRef" type="xsd:IDREF"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
327 Business Process Model and Notation (BPMN), v2.0

Table 10-133 – LaneSet XML schema

<xsd:element name="laneSet" type="tLaneSet"/>
<xsd:complexType name="tLaneSet">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element ref="lane" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10-134 – Monitoring XML schema

<xsd:element name="monitoring" type="tMonitoring"/>
<xsd:complexType name="tMonitoring">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType>

Table 10-135 – Performer XML schema

<xsd:element name="performer" type="tPerformer" substitutionGroup="activityResource"/>
<xsd:complexType name="tPerformer">

<xsd:complexContent>
<xsd:extension base="tActivityResource"/>

</xsd:complexContent>
</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 328

11. Conversation

The Conversation diagram is similar to a Collaboration diagram. However, the Pools of a
Conversation are not allowed to contain a Process and a Choreography is not allowed to be placed in
between the Pools of a Conversation diagram.

The view includes two (2) additional graphical elements that do not exist in other BPMN views:

A Communication
A CommunicationLink

A Conversation is set of Message exchanges (Message Flow) that share the same Correlation.

A Conversation is the logical relation of Message exchanges. The logical relation, in practice, often
concerns a business object(s) of interest, e.g. “Order,” “Shipment and Delivery,” and “Invoice.” Hence, a
Conversation is associated with a set of name-value pairs, or a Correlation Key (e.g. “Order Identifier,”
“Delivery Identifier”), which is recorded in Messages that are exchanged. In this way, a Message can be
routed to the specific Process instance responsible for receiving and processing the Message.

Figure 11-1 shows a simple example of a Conversation diagram

Figure 11-1 – A Conversation diagram

Figure 11-2 shows a variation of the example above where the Conversation node has been expanded into its
component Message Flow.

Proposal for:
329 Business Process Model and Notation (BPMN), v2.0

Figure 11-2 – A Conversation diagram where the Conversation is expanded into Message Flow

Message exchanges are related to each other and reflect distinct business scenarios. The relation is sometimes
simple, e.g. a request followed by a response (and can be described as part of a structural interface of a service,
e.g. as a WSDL operation definition). However for commercial business transactions managed through
Business Processes, the relation can be complex, involving long-running, reciprocal Message exchanges,
and that could extend beyond bilateral to complex, multilateral Collaborations. For example, in logistics,
stock replenishments involve the following types scenarios: creation of sales orders; assignment of carriers for
shipments combining different sales orders; crossing customs/quarantine; processing payment and investigating
exceptions.

In addition to an orchestration Process, Conversations are relevant to a Choreography. The difference is
that a Choreography provides a multi-party perspective of a Conversation. This is because the Message
exchanges modeled using Choreography Activities concern multiple Participants, unlike an orchestration
Process where the Message sending and receiving elements relate to one Participant only. Other than the
difference in perspective, the notion of Conversation remains the same across Choreography and
orchestration - and the Message exchanges of a Conversation will ultimately to be executed through an
orchestration Process.

Since Choreography provides a top-down, design-time modeling perspective for Message exchanges and
their Conversations, an abstracted view of the all Conversations pertaining to a domain being modeled is
available through a Conversation diagram. A Conversation diagram, as depicted in Figure 11-3, shows
Conversations (as hexagons) between Participants. This provides a “bird’s eye” perspective of the different
Conversations which relate to the domain.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 330

Delivery / Dispatch
Plan

Delivery
Negotiations

Shipment Schedule

Delivery / Dispatch
Plan

Delivery / Dispatch
Plan

SupplierRetailer

Consignee

Consolidator

Customs/
Quarantine

Shipper

Insurance

Carrier
(Land, Sea, Rail, or Air)

Breakdown
Service Locative Service

Carrier Planning

Coverage
Notification

Clearance Pre-
Notification

Truck Breakdown
Provision

Arrival/Pickup
Confirmation

Traffic Optimization
Guidance

Figure 11-3 – Conversation diagram depicting several conversations between Participants in a related
domain

Figure 11-3, above, depicts 13 distinct Conversations between collaborating Participants in a logistics
domain. As examples, Retailer and Supplier are involved in a Delivery Negotiations Conversation, and
Consignee converses with Retailer and Supplier through Delivery/Dispatch Plan and Shipment Schedule
Conversations respectively. More than two participants may be involved in a Conversation, e.g.
Consignee, Consolidator and Shipper in Detailed Shipment Schedule. The association of Participants to a
Conversation are constrained to indicate whether one or many of Participants are involved. For example, one
instance of Retailer converses with one instance of Supplier for Deliver Negotiations. However, one instance of
Shipper converses with multiple instances of Carrier (indicated by the multiplicity symbol “*” near Carrier) for
Carrier Planning. Note, multiplicity in constraints of Conversation diagrams means one or more (not zero or
more).

The behavior of different Conversations is modeled through separate Choreographies, detailing the
Message exchange sequences. In practice, Conversations which are closely related could be combined in
the same Choreography models – e.g. a Message exchange in the Delivery Negotiation leads to Shipment
Schedule, Delivery Planning and Delivery/Dispatch Conversations and these could be combined together in
the same Choreography. Alternatively, they could be separated in different models.

Proposal for:
331 Business Process Model and Notation (BPMN), v2.0

Figure 11-4 shows how Message exchanges can be expanded from a Conversation in the Conversation
diagram of Figure 11-3, above. This expands the Conversation with the Message Flow, providing a
structural view of a Conversation without the “clutter” of sequencing details in the same diagram. Figure 11-4
also indicates the Correlation Key involved in the Message Flow of the Conversation. For example,
Order Id is required for in all Messages of Message Flow in Delivery Negotiation. In addition, some
Message Flow also require Variation Id (for dealing with shipment variations on a per line item basis).

Delivery
Negotiations

SupplierRetailer

Planned Order Variations

Planned Order Variations Ack

Retailer Order and Delivery Variations

Retailer Order and Delivery Variations Ack

Delivery Checkpoint Request Ack

Updated PO and Delivery Schedule Order

Delivery Checkpoint Request
Order ID

Variation
ID

Figure 11-4 – Conversational view choreographies

In Figure 11-3, above, a hierarchical structure of Conversations can be seen with one set of Message Flow
occurring within another in a parent-child relationship. In particular, after Planned Order Variations (keyed on
Order Id) at the parent, a number of Message Flow of the child follow till Retailer Order and Delivery
Variations Ack (keyed on Variable Id and Order Id). The remaining Message Flow (keyed on Order Id) are at
the parent level. The child Conversation, as such, is part of the parent Conversation. Nesting is indicated
graphically on a Conversation symbol (by a “+”) to alert the modeler that one of more Conversations can
take place inside the Conversation exposed in the Conversation diagram. Nesting can go to an arbitrary
number of levels.

A common dependency between Conversations is overlap. Overlap occurs when two or more
Conversations have some Message exchanges in common but not others. As an example in Figure 11-3,
above, a Message is sent as part of Detailed Shipment Schedule (keyed on Carrier Schedule Id) to trigger

Proposal for:
Business Process Model and Notation (BPMN), v2.0 332

Delivery Monitoring (keyed on Shipment Id). During Delivery Monitoring, Message could be sent to Detailed
Shipment Schedule (to request modifications when transportation exceptions occur).

Splits and joins are special types of overlap scenarios. A Conversation split arises when, as part of a
Conversation, a message is exchanged between two or more Participants that at the same time spawns a new,
distinct Conversation (either between the same set of Participants or another set). Additionally, no further
Message exchanges are shared by the split Conversations as well as no subsequent merges of them occur.
An example is Delivery Planning which leads to Carrier Planning and Special Cover. A Conversation join
occurs when several Conversations are merged into one Conversation and no further Message
exchanges occur in the original Conversations, i.e. these Conversations are finalized. The generalization
of a split and join is a Conversation refactor where Conversations are split into parallel Conversations
and then are merged at a later point in time.

Figure 11-5 displays the Conversation class diagram. When a Conversation is defined it is contained
within Definitions.

Proposal for:
333 Business Process Model and Notation (BPMN), v2.0

Figure 11-5 – The Conversation Metamodel

Proposal for:
Business Process Model and Notation (BPMN), v2.0 334

The Conversation element inherits the attributes and model associations of CallableElement (see
Table 8-30), InteractionSpecification (see Table 8-48), and ConversationContainer (see
Table 11-2). Table 11-1 presents the additional model associations for the Conversation element:

Table 11-1 – Conversation Model Associations

Attribute Name Description/Usage

correlationKeys:
CorrelationKey [0..*]

This association specifies correlationKeys used to associate Messages
to a particular Conversation.

messageFlowRefs:
MessageFlow [0..*]

A reference to all Message Flow (and consequently Messages) included in
the Collaboration or Choreography where the Conversation is
contained. This is only used when the Conversation is contained in a
Choreography or Collaboration, not when the Conversation is reusable (and
contained in Definitions).

Note: The CallableElement attributes supportedInterfaceRefs, ioSpecification, and
ioBinding are not applicable to a Conversation.

11.1. Conversation Container
ConversationContainer is an abstract super class for the Conversation diagrams and defines the
superset of elements that are contained in those diagrams. Basically, a ConversationContainer contains
ConversationNodes, which are Communication (see page 336), Sub-Conversation (see page 336),
and Call Conversation (see page 337).

There are two (2) types of FlowElementContainers (see Figure 11-6): Conversation and
Sub-Conversation.

Proposal for:
335 Business Process Model and Notation (BPMN), v2.0

Figure 11-6 – A ConversationContainer element

The ConversationContainer element inherits the attributes and model associations of BaseElement
(see Table 8-5). Table 11-2 presents the additional model associations for the ConversationContainer
element:

Table 11-2 – ConversationContainer Model Associations

Attribute Name Description/Usage

conversationNodes:
ConversationNode [0..*]

This association specifies the particular ConversationNodes contained in
a ConversationContainer. ConversationNodes are
Communications, Sub-Conversations, and Call Conversations.

artifacts: Artifact [0..*] This attribute provides the list of Artifacts that are contained within the
ConversationContainer.

11.2. Conversation Node
ConversationNode is the abstract super class for all elements that can appear in a Conversation diagram,
which are Communication (see page 336), Sub-Conversation (see page 336), and Call Conversation
(see page 337).

ConversationNodes are linked to and from Participants using Communication Links (see page 338).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 336

The ConversationNode element inherits the attributes and model associations of BaseElement (see
Table 8-5). Table 11-3 presents the additional attributes and model associations for the ConversationNode
element:

Table 11-3 – ConversationNode Model Associations

Attribute Name Description/Usage

name: string [0..1] Name is a text description of the ConversationNode.

participantRefs: Participant
[0..*]

This provides the list of Participants that are used in the ConversationNode
from the list provided by the ConversationNode’s parent Conversation.

11.3. Communication
A Communication is an atomic element for a Conversation diagram. It represents a set of Message
Flow grouped together based on a single CorrelationKey. A Communication will involve two (2) or
more Participants.

A Communication is a hexagon that MUST be drawn with a single thin line (see Figure 11-7).

Figure 11-7 – A Communication element

The Communication element inherits the attributes and model associations of ConversationNode (see
Table 11-3). Table 11-4 presents the additional model associations for the Communication element:

Table 11-4 – Communication Model Associations

Attribute Name Description/Usage

correlationKeyRef:
CorrelationKey [0..1]

This is a reference to one of the Conversation’s correlationKeys, which is
used to group Message Flow for the Communication.

messageFlowRefs:
MessageFlow [0..*]

A reference to all Message Flow (and consequently Messages) included in
a Communication.

11.4. Sub-Conversation
A Sub-Conversation is a ConversationNode that is a hierarchical division within the parent
Conversation. A Sub-Conversation is a graphical object within a Conversation, but it also can be
“opened up” to show the lower-level Conversation, which consist of Message Flow, Communications,
and/or other Sub-Conversations. The Sub-Conversation shares the Participants of its parent
Conversation.

Proposal for:
337 Business Process Model and Notation (BPMN), v2.0

A Sub-Conversation is a hexagon that MUST be drawn with a single thin line (see Figure 11-8).

The Sub- Conversation marker MUST be a small square with a plus sign (+) inside. The
square MUST be positioned at the bottom center of the shape.

Figure 11-8 – A compound Conversation element

The Sub-Conversation element inherits the attributes and model associations of ConversationNode
(see Table 11-3). Table 11-5 presents the additional model associations for the Sub-Conversation element:

Table 11-5 – Sub-Conversation Model Associations

Attribute Name Description/Usage

correlationKeyRefs:
CorrelationKeys [0..*]

This is a reference to the Conversation’s correlationKeys, which are
used to group Message Flow for the Sub-Conversation.

11.5. Call Conversation
A Call Conversation identifies a place in the Conversation where a global Conversation or a
GlobalCommunication is used.

If the Call Conversation calls a GlobalCommunication, then the shape will be the same as a
Communication, but the boundary of the shape will MUST have a thick line (see Figure 11-9)

If the Call Activity calls a Conversation, then the shape will be the same as a
Sub-Conversation, but the boundary of the shape will MUST have a thick line (see Figure 11-10)

Figure 11-9 – A Call Conversation calling a GlobalCommunication

Figure 11-10 – A Call Conversation calling a Conversation

Proposal for:
Business Process Model and Notation (BPMN), v2.0 338

The Call Conversation element inherits the attributes and model associations of ConversationNode (see
Table 11-3). Table 11-6 presents the additional model associations for the Communication element:

Table 11-6 – Communication Model Associations

Attribute Name Description/Usage

calledElementRef:
CallableElement [0..1]

The element to be called, which will be either a Conversation or a
GlobalCommunication. Other CallableElements, such as Process,
GlobalTask, Choreography, and GlobalChoreographyTask MUST
NOT be called by the Call Conversation element.

participantAssociations:
Participant Association [0..*]

This attribute provides a list of mappings from the Participants of a referenced
GlobalCommunication or Conversation to the Participants of the parent
Conversation.

11.6. Global Communication
A GlobalCommunication is a reusable, atomic Communication definition that can be called from
within any Conversation by a Call Conversation.

The GlobalCommunication element inherits the attributes and model associations of
InteractionSpecification (see Table 8-48) and CallableElement (see Table 8-30). Table 11-7
presents the additional model associations for the GlobalCommunication element:

Table 11-7 – GlobalCommunication Model Associations

Attribute Name Description/Usage

correlationKeys:
CorrelationKey [0..1]

This association specifies correlationKeys used to associate Message
Flow to the GlobalCommunication.

Note: The CallableElement attributes supportedInterfaceRefs, ioSpecification, and
ioBinding are not applicable to a Global Communication.

11.7. Communication Link
Conversation Links are used to connect ConversationNodes to and from Participants (Pools). If the
target Participant has a participantMultiplicity of greater than one (1), then the end of the connector
is forked (see Figure 11-11).

Proposal for:
339 Business Process Model and Notation (BPMN), v2.0

Figure 11-11 – A Conversation Link element

Figure 11-12 – Where Conversation Links are derived in the metamodel

There is not a specific BPMN metamodel element to represent the Conversation Link. Instead, the graphical
element is derived from the relationship between ConversationNode and Participant (as seen in Figure
11-12).

11.8. Conversation Package XML Schemas

Table 11-8 – Call Conversation XML schema
<xsd:element name="callConversation" type="tCallConversation" substitutionGroup="conversationNode"/>
<xsd:complexType name="tCallConversation">

<xsd:complexContent>
<xsd:extension base="tConversationNode">

<xsd:sequence>
<xsd:element ref="participantAssociation" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="calledElementRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 340

Table 11-9 – Communication XML schema

<xsd:element name="communication" type="tCommunication" substitutionGroup="conversationNode"/>
<xsd:complexType name="tCommunication">

<xsd:complexContent>
<xsd:extension base="tConversationNode">

<xsd:sequence>
<xsd:element name="messageFlowRef" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name=" correlationKeyRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 11-10 – Conversation XML schema

<xsd:element name="conversation" type="tConversation" substitutionGroup="rootElement"/>
<xsd:complexType name="tConversation">

<xsd:complexContent>
<xsd:extension base="tCallableElement">

<xsd:sequence>
<xsd:element ref="conversationNode" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="participant" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="messageFlow" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="messageFlowRef" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element ref="correlationKey" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 11-11 – Conversation Node XML schema

<xsd:element name="conversationNode" type="tConversationNode"/>
<xsd:complexType name="tConversationNode" abstract="true">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="participantRef" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Proposal for:
341 Business Process Model and Notation (BPMN), v2.0

Table 11-12 – Global Communication XML schema

<xsd:element name="globalCommunication" type="tGlobalCommunication"
substitutionGroup="rootElement"/>

<xsd:complexType name="tGlobalCommunication">
<xsd:complexContent>

<xsd:extension base="tCallableElement">
<xsd:sequence>

<xsd:element ref="participant" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="messageFlow" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="correlationKey" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 11-13 – Sub-Conversation XML schema

<xsd:element name="subConversation" type="tSubConversation" substitutionGroup="conversationNode"/>
<xsd:complexType name="tSubConversation">

<xsd:complexContent>
<xsd:extension base="tConversationNode">

<xsd:sequence>
<xsd:element ref="conversationNode" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="correlationKeyRefs" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 342

12. Choreography

Note: The content of this chapter is required for BPMN Choreography Modeling Conformance or for BPMN
Complete Conformance. However, this chapter is not required for BPMN Process Modeling Conformance,
BPMN Process Execution Conformance, or BPMN BPEL Process Execution Conformance. For more
information about BPMN conformance types, see page 28.

A Choreography is a type of process, but differs in purpose and behavior from a standard BPMN Process.
A standard Process, or an Orchestration Process (see page 153), is more familiar to most process modelers
and defines the flow of Activities of a specific PartnerEntity or organization. In contrast,
Choreography formalizes the way business Participants coordinate their interactions. The focus is not on
orchestrations of the work performed within these Participants, but rather on the exchange of information
(Messages) between these Participants.

Another way to look at Choreography is to view it as a type of business contract between two (2) or more
organizations.

This entails Message (document) exchanges in an orderly fashion: e.g. first a retailer sends a purchase order
request to a supplier; next the supplier either confirms or rejects intention to investigate the order; then supplier
proceeds to investigate stock for line-items and seeks outside suppliers if necessary; accordingly the supplier
sends a confirmation or rejection back; during this period the retailer can send requests to vary the order, etc.

Message exchanges between partners go beyond simple request-response interactions into multi-cast,
contingent requests, competing receives, streaming and other service interaction patterns (REF for SIP).
Moreover, they cluster around distinct scenarios such as: creation of sales orders; assignment of carriers of
shipments involving different sales orders; managing the “red tape” of crossing customs and quarantine;
processing payment and investigating exceptions. A Choreography is a definition of expected behavior,
basically a procedural business contract, between interacting Participants (see page 124 for more information on
Participants). It brings Message exchanges and their logical relation as Conversations into view. This
allows partners to plan their Business Processes for inter-operation without introducing conflicts. An
example of a conflict could arise if a retailer was allowed to send a variation on a purchase order immediately
after sending the initial request. The Message exchange sequences in Choreography models need to be
reflected in the orchestration Processes of participants. A Choreography model makes it possible to derive
the Process interfaces of each partner’s Process (REF: Decker & Weske, 2007).

To leverage the familiarity of flow charting types of Process models, BPMN Choreographies also have
“activities” that are ordered by Sequence Flow. These “activities” consist of one (1) or more interactions
between Participants. These interactions are often described as being message exchange patterns (MEPs). A
MEP is the atomic unit (“Activity”) of a Choreography.

Some MEPs involve a single Message (e.g., a “Customer” requests an “Order” from a “Supplier”). Other
MEPs will involve two (2) Messages in a request and response format (e.g., a “Supplier” request a “Credit
Rating” from a “Financial Institution,” who then returns the “Credit Rating” to the “Supplier”). There can be
even more complex MEPs that involve error Messages, for example.

A single MEP is defined as a BPMN Choreography Task (see page 350). Thus, a Choreography defines
the order in which Choreography Tasks occur. Choreography Sub-Processes allow the
composition/decomposition of Choreographies.

Proposal for:
343 Business Process Model and Notation (BPMN), v2.0

Choreographies are designed in BPMN to allow stand-alone, scalable models of these Participant
interactions. However, since BPMN provides other Business Process modeling views, Choreographies
are designed to fit within BPMN Collaboration diagrams to display of the relationship between the
Choreography and Orchestration Processes (thus, expanding BPMN 1.2 capabilities—see page 143,
above, for more information on Collaborations, and page 394 for Choreographies within
Collaborations).

Figure 12-1 shows displays the metamodel of the key BPMN elements that contribute to Choreography
modeling. The sections of this chapter will describe the characteristics of these elements and how they are used
in a Choreography.

Figure 12-1 – The Choreography metamodel

The Choreography element inherits the attributes and model associations of CallableElement (see
Table 8-30) and of FlowElementContainer (see Table 8-46). Table 12-1 presents the additional model
associations of the Choreography element.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 344

Table 12-1 – Choreography Model Associations

Attribute Name Description/Usage

IsClosed: boolean = false A Boolean value specifying whether Choreography Activities not modeled
in the Choreography can occur when the Choreography is carried out. If the
value is true, they MAY NOT occur. If the value is false, they MAY occur.

conversations:
Conversation
[0..*]

The conversation model aggregation relationship allows to have
Conversations contained in a Choreography, to group Message Flow of
the Choreography and associate correlation information. Such a
Conversation SHOULD only use Message Flow references to group the
Message Flow of the enclosing Choreography.

conversationAssociations:
ConversationAssociation
[0..*]

This attribute provides the list of ConversationAssociations that are used
to apply a Conversation to the Choreography.

The ConversationAssociations is used to identify the Message Flow
that are grouped by the referenced Conversation. This grouping can be
done automatically through the CorrelationKey of the Conversation
(matching the CorrelationKey to the Messages of the Message Flow)
or done through user selection if a CorrelationKey has not been defined.

If the Conversation lists Participants, then the
participantAssociations (see below) are used to map the
Participants of the Conversation to the Participants of the Collaboration.

If the Conversation lists Message Flow, then the
conversationMessageFlowAssociations (see below) are used to
map the Message Flow of the Conversation to the Message Flow of the
Collaboration.

participantAssociations:
Participant Association [0..*]

This attribute provides a list of mappings from the Participants of a
referenced Choreography or Conversation to the Participants of the
Choreography.

messageFlowAssociations:
Message Flow Association
[0..*]

This attribute provides a list of mappings from the Message Flow of a
referenced Choreography or Conversation to the Message Flow of the
Choreography.

12.1. Basic Choreography Concepts
A key to understanding Choreographies and how they are used in BPMN is their relationship to Pools (see
page 124 for more information on Pools). Choreographies exist outside of or in between Pools. A
Process, within a Pool, represents the work of a specific PartnerEntity (e.g., “FedEx”), often substituted
by a PartnerRole (e.g., “Shipper”) when a PartnerEntity is not identified and can be decided later. The
PartnerEntity/PartnerRole is called a Participant in BPMN. Pools are the graphical representation of
Participants. A Choreography, on the other hand, is a different kind of process. A Choreography defines
the sequence of interactions between Participants. Thus, a Choreography does not exist in a single Pool—it
is not the purview of a single Participant. Each step in the Choreography involves two (2) or more

Proposal for:
345 Business Process Model and Notation (BPMN), v2.0

Participants (these steps are called Choreography Activities—see below). This means that the
Choreography, in BPMN terms, is defined outside of any particular Pool.

The key question that needs to be continually asked during the development of a Choreography is “what
information do the Participants in the Choreography have?” Basically, each Participant can only understand
the status of the Choreography through observable behavior of the other Participants–which are the
Messages that have been sent and received. If there are only two (2) Participants in the Choreography,
then it is very simple—both Participants will be aware of who is responsible for sending the next Message.
However, if there are more than two (2) Participants, then the modeler must be careful to sequence the
Choreography Activities in such a way that the Participants know when they are responsible for initiating
the interactions.

Figure 12-2 presents a sample Choreography. The details of Choreography behavior and elements will be
described in the sections below.

Figure 12-2 – An example of a Choreography

To illustrate the correspondence between Collaboration and Choreography, consider an example from
logistics. Figure 12-3 shows a Collaboration where the Pools are expanded to reveal orchestration details per
participant (for Shipper, Retailer etc). Message Flow connect the elements in the different Pools related to
different participants, indicating Message exchanges. For example, a Planned Order Variations Message is
sent by the Supplier to the Retailer; the corresponding send and receive have been modeled using regular BPMN
messaging Events. Also, a number of Messages of the same type being sent, for example a number of
Retailer Order and Delivery Variations Messages can be sent from the Retailer to the Supplier, indicated by
respective multi-instances constructs (for brevity, the actual elements for sending/receiving inside the
multi-instances construct have been omitted).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 346

S
hi

pp
er

S
hi

pp
er

C
on

si
gn

ee

R
et

ai
le

r

Figure 12-3 – A Collaboration diagram logistics example

The scenario modeled in Figure 12-4 entails shipment planning for the next supply replenishment variations: the
Supplier confirms all previously accepted variations for delivery with the Retailer; the Retailer sends back a
number of further possible variations; the Supplier requests to the Shipper and Consignee possible changes in
delivery; accordingly, the Retailer interacts with the Supplier and Consignee for final confirmations.

A problem with model interconnections for complex Choreographies is that they are vulnerable to errors –
interconnections may not be sequenced correctly, since the logic of Message exchanges is considered from
each partner at a time. This in turn leads to deadlocks. For example, consider the PartnerRole of Retailer in
Figure 12-4 and assume that, by error, the order of Confirmation Delivery Schedule and Retailer Confirmation
received (far right) were swapped. This would result in a deadlock since both, Retailer and Consignee would
wait for the other to send a Message. Deadlocks in general, however, are not that obvious and might be
difficult to recognize in a Collaboration.

Figure 12-4 shows the Choreography corresponding to the Collaboration of Figure 12-3 above.

Proposal for:
347 Business Process Model and Notation (BPMN), v2.0

Planned Order
Variations

Supplier

Retailer

Deliver
Checkpoint

Request

Supplier

Retailer

Order & Delivery
Variations

Supplier

Retailer

Shipper

Supplier

Provide Item

Shipper

Supplier

Deliver Item

Consignee

Supplier

Provide Item

Consignee

Supplier

Deliver Item

Supplier

Shipper

Supplier

Consignee

Update PO
and Delivery

Schedule

Supplier

Retailer

Accept PO and
Delivery

Schedule

Supplier

Retailer

PO and Delivery
Schedule Mods

Supplier

Retailer

Confirmation of
Delivery

Schedule

Consignee

Retailer

Retailer
Confirmation

Received

Consignee

Retailer

Finalized PO
and Delivery

Schedule

Supplier

Retailer

Figure 12-4 – The corresponding Choreography diagram logistics example

12.2. Data
A Choreography does not have a central control mechanism and, thus, there is no mechanism for maintaining
any central Process (Choreography) data. Thus, any element in a Process that would normally depend on
conditional or assignment expressions, would not have any central source for this data to be maintained and
understood by all the Participants involved in the Choreography.

As mentioned above, neither Data Objects nor Repositories are used in Choreographies. Both of these
elements are used exclusively in Processes and require the concept of a central locus of control. Data
Objects are basically variables and there would be no central system to manage them. Data can be used in
expressions that are used in Exclusive Gateways, but only that data which has been sent through a
Message in the Choreography.

12.3. Use of BPMN Common Elements
Some BPMN elements are common to both Process and Choreography diagrams, as well as
Collaboration; they are used in these diagrams. The next few sections will describe the use of Messages,
Message Flow, Participants, Sequence Flow, Artifacts, Correlations, Expressions, and Services in
Choreography.

The key graphical elements of Gateways and Events are also common to both Choreography and
Process. Since their usage has a large impact, they are described in major sections of this chapter (see page 369
for Events and page 375 for Gateways).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 348

12.3.1. Sequence Flow
Sequence Flow are used within Choreographies to show the sequence of the Choreography
Activities, which may have intervening Gateways. They are used in the same way as they are in Processes.
They are only allowed to connect with other Flow Objects. For Processes, they can only connect Events,
Gateways, and Activities. For Choreographies, they can only connect Events, Gateways, and
Choreography Activities (see Figure 12-5).

Figure 12-5 – The use of Sequence Flow in a Choreography

There are two additional variations of Sequence Flow:

Conditional Sequence Flow: Conditions can be added to Sequence Flow in two situations:

o From Gateways: Outgoing Sequence Flow have conditions for Exclusive and Inclusive
Gateways. The data referenced in the conditions must be visible to two (2) or more Participants in
the Choreography. The data becomes visible if it is part of a Message that had been sent
(previously) within the Choreography. See pages 375 and 383 for more information about how
Exclusive and Inclusive Gateways are used in Choreography.

o From Choreography Activities: Outgoing Sequence Flow may have conditions for
Choreography Activities. Since these act similar to Inclusive Gateways, the Conditional
Sequence Flow can be used in Choreographies. The conditions have the same restrictions
that apply to the visibility of the data for Gateways.

Default Sequence Flow: For Exclusive Gateways, Inclusive Gateways, and
Choreography Activities that have Conditional Sequence Flow, one of the outgoing
Sequence Flow may be a Default Sequence Flow. Because the other outgoing Sequence Flow
will have appropriately visible of data as described above, the Participants would know if all the other
conditions would be false, thus the Default Sequence Flow would be selected and the
Choreography would move down that Sequence Flow.

In some applications it is useful to allow more Messages to be sent between Participants when a
Choreography is carried out than are contained the Choreography model. This enables Participants to
exchange other Messages as needed without changing the Choreography. There are two ways to specify
this:

Proposal for:
349 Business Process Model and Notation (BPMN), v2.0

If the isClosed attribute of a Choreography has a value of false or no value, then Participants
MAY send Messages to each other without additional Choreography Activities in the
Choreography. Unmodeled messaging can be restricted on particular Sequence Flow in the
Choreography, see next bullet. If the isClosed attribute of a Choreography has a value of true,
then Participants MAY NOT send Messages to each other without additional Choreography
Activities in the Choreography. This restriction overrides any unmodeled messaging allowed by
Sequence Flow in the next bullet.

If the isImmediate attribute of a Sequence Flow has a value of false or no value, then
Participants MAY send Messages to each other between the elements connected by the Sequence
Flow without additional Choreography Activities in the Choreography. If the isImmediate
attribute of a Sequence Flow has a value of true, then Participants MAY NOT send Messages to
each other between the elements connected by the Sequence Flow without additional
Choreography Activities in the Choreography. The value of isImmediate attribute of a
Sequence Flow has no effect if the isClosed attribute of the containing Choreography has a
value of true.

Restrictions on unmodeled messaging specified with isClosed and isImmediate applies only under the
Choreography containing the restriction. PartnerEntities and PartnerRoles of the Participants
MAY send Messages to each other under other Choreographies, Collaborations, and
Conversations.

12.3.2. Artifacts
Both Text Annotations and Groups can be used within Choreographies and all BPMN diagrams. There
are no restrictions on their use.

12.3.3. Correlations
Correlation will only indirectly impact a Choreography.

12.4. Choreography Activities
A Choreography Activity represents a point in a Choreography flow where an interaction occurs
between two (2) or more Participants.

The Choreography Activity class is an abstract element, sub-classing from FlowElement (as shown in
Figure 12-6). When Choreography Activities are defined they are contained within a Choreography or a
Choreography Sub-Process, which are FlowElementContainers (other
FlowElementContainers are not allowed to contain Choreography Activities).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 350

Figure 12-6 – The metamodel segment for a Choreography Activity

The Choreography Activity element inherits the attributes and model associations of FlowElement (see
Table 8-45) through its relationship to FlowNode. Table 12-2 presents the additional model associations of the
Choreography Activity element

Table 12-2 – Choreography Activity Model Associations

Attribute Name Description/Usage

participantRefs: Participant
[2..*]

A Choreography Activity has two (2) or more Participants (see page 146
for more information on Participants).

initiatingParticipant:
Participant

One (1) of the Participants will be the one that initiates the Choreography
Activity.

12.4.1. Choreography Task
A Choreography Task is an atomic Activity in a Choreography Process. It represents an Interaction,
which is a coherent set (1 or more) of Message exchanges between two (2) Participants. Using a
Collaboration diagram to view these elements (see page 143 for more information on Collaboration), we

Proposal for:
351 Business Process Model and Notation (BPMN), v2.0

would see the two (2) Pools representing the two (2) Participants of the Interaction (see Figure 12-7). The
communication between the Participants is shown as a Message Flow.

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

Figure 12-7 – A Collaboration view of Choreography Task elements

In a Choreography diagram, this Interaction is collapsed into a single object, a Choreography Task. The
name of the Choreography Task and each of the Participants are all displayed in the different bands that
make up the shape’s graphical notation. There are two (2) more Participant Bands and one Task Name
Band (see Figure 12-8).

Choreography
Task Name

Participant 1

Participant 2

Task Name
Band

Participant
Band

Participant
Band

Figure 12-8 – A Choreography Task

Proposal for:
Business Process Model and Notation (BPMN), v2.0 352

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

Figure 12-9 – A Choreography Task

The interaction defined by a Choreography Task can be shown in an expanded format through a
Collaboration diagram (see Figure 12-7—see page 143 for more information on Collaborations). In the
Collaboration view, the Participants of the Choreography Task Participant Band’s will be
represented by Pools. The interaction between them will be a Message Flow.

Choreography
Task Name

Participant A

Participant B

Initiating
Message

Return
Message

Figure 12-10 – A two-way Choreography Task

Proposal for:
353 Business Process Model and Notation (BPMN), v2.0

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

Figure 12-11 – A Choreography Task

In a Choreography Diagram, the Choreography Task object shares the same shape as a Task or any
other BPMN Activity, which is a rectangle that has rounded corners.

A Choreography Task is a rounded corner rectangle that MUST be drawn with a single line.
The use of text, color, size, and lines for a Choreography Task MUST follow the rules
defined in Section “Use of Text, Color, Size, and Lines in a Diagram” on page 63.

The three (3) bands in the Choreography Task shape provide the distinction between this type of Task and
an Orchestration Task (in a traditional BPMN diagram).

As with a standard Orchestration Task, the Choreography Task may have internal markers to show how the
Choreography Task may be repeated. There are two types of internal markers (see Figure 12-12):

A Choreography Task MAY have only one of the two (2) markers at one time.

The marker for a Choreography Task that is a standard loop MUST be a small line with an
arrowhead that curls back upon itself.

The marker for a Choreography Task that is multi-instance MUST be a set of three vertical
lines.

The marker that is present MUST be centered at the bottom of the Task Name Band of the shape.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 354

Figure 12-12 – Choreography Task Markers

Figure 12-13

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

Figure 12-13 – The Collaboration view of a looping Choreography Task

Proposal for:
355 Business Process Model and Notation (BPMN), v2.0

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

Figure 12-14 – The Collaboration view of a Multi-Instance Choreography Task

There are situations when a Participant for a Choreography Task is actually a multi-instance Participant. A
multi-instance Participant represents a situation where there are more than one possible related Participants
(PartnerRoles/PartnerEntities) that may be involved in the Choreography. For example, in a
Choreography that involves the shipping of a product, there may be more than one type of shipper used,
depending on the destination. When a Participant in a Choreography contains multiple instances, then a
multi-instance marker will be added to the Participant Band for that Participant (see Figure 12-15).

The marker for a Choreography Task that is multi-instance MUST be a set of three vertical lines.

The marker that is present MUST be centered at the bottom of the Participant Band of the shape.

The width of the Participant Band will be expanded to contain both the name of the
Participant and the multi-instance marker.

Figure 12-15 – A Choreography Task with a multiple Participant

Proposal for:
Business Process Model and Notation (BPMN), v2.0 356

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

Figure 12-16 – A Collaboration view of a Choreography Task with a multiple Participant

The Choreography Task element inherits the attributes and model associations of Choreography
Activity (see Table 12-2). Table 12-3 presents the additional model associations of the Choreography Task
element.

Table 12-3 – Choreography Task Model Associations

Attribute Name Description/Usage

messageFlow: Message
Flow [1..*]

Although not graphical represented, Choreography Task contain one (1) or
more Message Flow that represent the interaction(s) between the
Participants referenced by the Choreography Task.

12.4.2. Choreography Sub-Process
A Choreography Sub-Process is a compound Activity in that it has detail that is defined as a flow of other
Activities, in this case, a Choreography. Each Choreography Sub-Process involves two (2) or more
Participants. The name of the Choreography Sub-Process and each of the Participants are all displayed in
the different bands that make up the shape’s graphical notation. There are two (2) more Participant Bands
and one Sub-Process Name Band.

The Choreography Sub-Process can be in a collapsed view that hides its details (see Figure 12-17) or a
Choreography Sub-Process can be expanded to show its details (a Choreography Process) within the
Choreography Process in which it is contained (see Figure 12-19). In the collapsed form, the
Sub-Process object uses a marker to distinguish it as a Choreography Sub-Process, rather than a
Choreography Task.

Proposal for:
357 Business Process Model and Notation (BPMN), v2.0

The Sub-Process marker MUST be a small square with a plus sign (+) inside. The square MUST be
positioned at the bottom center of the Sub-Process Name Band within the shape.

Figure 12-17 – A Choreography Sub-Process

Figure 12-18 shows an example of a potential Collaboration view of the above Choreography
Sub-Process.

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

Figure 12-18 – A Collaboration view of a Choreography Sub-Process

Figure 12-19 shows an example of an expanded Choreography Sub-Process.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 358

Participant B

Participant C

Choreography
Task Name

Participant C

Participant A

Choreography
Task Name

Choreography Sub-Process Name
Participant C
Participant A

Participant B

Figure 12-19 – An expanded Choreography Sub-Process

Figure 12-20 shows an example of a potential Collaboration view of the above Choreography
Sub-Process.

Proposal for:
359 Business Process Model and Notation (BPMN), v2.0

M1 M2

Send
Message

Receive
Message

Send
Message

Receive
Message

Figure 12-20 – A Collaboration view of an expanded Choreography Sub-Process

The Parent Choreography Sub-Process (Expanded)

The Choreography Activity shares the same shape as a Sub-Process or any other BPMN Activity, which
is in this state.

A Choreography Sub-Process is a rounded corner rectangle that MUST be drawn with a single
thin line.

The use of text, color, size, and lines for a Choreography Sub-Process MUST follow
the rules defined in Section “Use of Text, Color, Size, and Lines in a Diagram” on page 63.

The three (3) or more partitions in the Choreography Sub-Process shape provide the distinction between
this type of Task and an Orchestration Sub-Process (in a traditional BPMN diagram).

It is possible for a Choreography Sub-Process to involve more than two (2) Participants. In this case, an
additional Participant Band will be added to the shape for each additional Participant (see Figure 12-21).
The ordering and position of the Participant Band (either in the upper or lower positions) is up to the modeler
or modeling tool. In addition, any Participant Band beyond the first two optional; it is displayed at the
discretion of the modeler or modeling tool. However, each Participant Band that is added MUST be added to
the upper and lower sections of the Choreography Sub-Process in an alternative manner.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 360

Choreography
Task Name

Participant 1

Participant 2

Participant 3 Choreography
Sub-Process

Name

Participant 1

Participant 2

Participant 3

Participant 4

Figure 12-21 –Choreography Sub-Process (Collapsed) with More than Two (2) Participants

As with a standard Orchestration Sub-Process, the Choreography Sub-Process may have internal
markers to show how the Choreography Sub-Process may be repeated. There are two types of internal
markers (see Figure 12-22):

A Choreography Sub-Process MAY have only one of the two (2) markers at one time.

The marker for a Choreography Sub-Process that is a standard loop MUST be a small line
with an arrowhead that curls back upon itself.

The marker for a Choreography Sub-Process that is multi-instance MUST be a set of three
vertical lines.

The marker that is present MUST be centered at the bottom of the Sub-Process Name Band of
the shape.

Figure 12-22 – Choreography Sub-Process Markers

There are situations when a Participant for a Choreography Sub-Process is actually a multi-instance
Participant. A multi-instance Participant represents a situation where there are more than one possible related
Participants (PartnerRoles/PartnerEntities) that may be involved in the Choreography. For
example, in a Choreography that involves the shipping of a product, there may be more than one type of
shipper used, depending on the destination. When a Participant in a Choreography contains multiple
instances, then a multi-instance marker will be added to the Participant Band for that Participant (see Figure
12-23).

The marker for a Choreography Sub-Process that is multi-instance MUST be a set of three
vertical lines.

The marker that is present MUST be centered at the bottom of the Participant Band of the shape.

The width of the Participant Band will be expanded to contain both the name of the
Participant and the multi-instance marker.

Proposal for:
361 Business Process Model and Notation (BPMN), v2.0

Figure 12-23 – Choreography Sub-Process Markers

This includes Compensation Event Sub-Processes (contained within a Choreography
Sub-Process) as well as the external Compensation Activity connected through an Association.

The Choreography Sub-Process element inherits the attributes and model associations of
Choreography Activity (see Table 12-2). The Choreography Sub-Process does not have any
additional attributes or model associations.

12.4.3. Call Choreography Activity
A Call Choreography Activity identifies a point in the Process where a global Choreography or a
Global Choreography Task is used. The Call Choreography Activity acts as a place holder for the
inclusion of the Choreography element it is calling. This pre-defined called Choreography element
becomes a part of the definition of the parent Choreography.

A Call Choreography Activity object shares the same shape as the Choreography Task and
Choreography Sub-Process, which is a rectangle that has rounded corners, two (2) or more Participant
Bands, and an Activity Name Band. However, the target of what the Choreography Activity calls will
determine the details of its shape.

 If the Call Choreography Activity calls a Global Choreography Task, then the shape will
be the same as a Choreography Task, but the boundary of the shape will MUST have a thick line
(see Figure 12-24)

 If the Call Choreography Activity calls a Choreography, then there are two (2) options:

The details of the called Choreography can be hidden and the shape will be the same as a
collpased Choreography Sub-Process, but the boundary of the shape MUST have a thick
line (see Figure 12-25).

The details of the called Choreography can be shown and the shape will be the same as an
expanded Choreography Sub-Process, but the boundary of the shape MUST have a thick
line (see Figure 12-26).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 362

Figure 12-24 – A Call Choreography Activity calling a Global Choreography Task

Figure 12-25 – A Call Choreography Activity calling a Choreography (Collapsed)

Figure 12-26 – A Call Choreography Activity calling a Choreography (expanded)

Proposal for:
363 Business Process Model and Notation (BPMN), v2.0

Figure 12-27 – The Call Choreography Activity class diagram

The Call Choreography Activity element inherits the attributes and model associations of
ChoreographyActivity (see Figure 12-27 and Table 12-2). Table 12-4 presents the additional model
associations of the Call Choreography Activity element

Table 12-4 – Call Choreography Activity Model Associations

Attribute Name Description/Usage

calledElement:
CallableElement [0..1]

The element to be called, which will be either a Choreography or a
GlobalChoreographyTask. Other CallableElements, such as
Process, GlobalTask, Conversation, and GlobalCommunication
MUST NOT be called by the Call Conversation element.

participantAssociations:
ParticipantAssociation [0..*]

Specifies how Participants in a nested Choreography or Global
Choreography Task match up with the Participants in the Choreography
containing the Call Choreography Activity.

12.4.4. Global Choreography Task
A GlobalChoreographyTask is a reusable, atomic Choreography Task definition that can be called
from within any Choreography by a Call Choreography Activity.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 364

The GlobalChoreographyTask element inherits the attributes and model associations of
CallableElement (see Table 8-30) and InteractionSpecification (see Table 8-48). Table 12-5
presents the additional model associations of the GlobalChoreographyTask element

Table 12-5 – Global Choreography Task Model Associations

Attribute Name Description/Usage

initiatingParticipantRef:
Participant

One (1) of the Participants will be the one that initiates the Global
Choreography Task.

12.4.5. Looping Activities
Both Choreography Sub-Processes can have standard loops and multi-instances. The data used to define
the loop conditions must be visible to all Participants

12.4.6. The Sequencing of Activities
There are constraints on how Choreography Activities can be sequenced (through Sequence Flow) in a
Choreography. These constraints are due to the limited visibility of the Participants, which only know of the
progress of the Choreography by the Messages that occur. When a Participant sends or receives a
Message, then that Participant knows exactly how far the Choreography has progressed. This means that
the ordering of Choreography Activities must take into account when the Participants send or receive
Messages so that they Participants are not required to guess about when it is their turn to send a Message.

The basic rule of Choreography Activity sequencing is this:

The Initiator of a Choreography Activity MUST have been involved (as Initiator or Receiver) in
the previous Choreography Activity.

Of course, the first Choreography Activity in a Choreography does not have this constraint.

Figure 12-28 shows a sequence of two (2) Choreography Activities that follow this constraint. “Participant
B” is the Initiator of “Choreography Task 2” after being the Receiver in “Choreography Task 1.” While there is
no requirement that “Participant B” sends the Message immediately, since there may be internal work that the
Participant needs to do prior to the Message. But in this situation there is no ambiguity that “Participant B”
will be the Initiator of the next Choreography Task. “Participant C” does not know exactly when the
Message will arrive from “Participant B,” but “Participant C” knows that one will arrive and there are not any
additional requirements on the Participant until the Message arrives.

Proposal for:
365 Business Process Model and Notation (BPMN), v2.0

Choreography
Task 2

Participant C

Participant B

Choreography
Task 1

Participant A

Participant B

The Initiator of a
Choreography Task must
be involved in the previous
Activity

Figure 12-28 – A valid sequence of Choreography Activities

Naturally, the sequence of Choreography Activities shown in Figure 12-28, above can be expanded into a
Collaboration diagram to show how the sequence can be enforced. Figure 12-29 shows the corresponding
Collaboration. The diagram shows how the Activities within the individual Pools fit with the design of the
Choreography.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 366

Send
Message

Receive
Message

Send
Message

Receive
Message

M1

M2

Figure 12-29 – The corresponding Collaboration for a valid Choreography sequence

When determining a valid sequence of Choreography Tasks, it is important to consider the type of
Choreography Tasks that are being used. A single Choreography Task can be used for one (1) or more
Messages. Most of the time there will be one (1) or two (2) Messages for a Choreography Task. Figure
12-30 shows a sequence of Choreography Tasks, the first one being a two-way interaction, where the
initiator sends a Message and gets a response from the other Participant.

Figure 12-30 – A valid sequence of Choreography Activities with a two-way Activity

Proposal for:
367 Business Process Model and Notation (BPMN), v2.0

Figure 12-31 shows the corresponding Collaboration and how the two Choreography Tasks are reflected
in the Processes within the Pools. The Choreography Task that has two Messages will is reflected by
three Process Tasks. Usually in these cases, the initiating Participant will use a single Activity to handle both
the sending and receiving of the Messages. A BPMN Service Task can be used for this purpose and these
types of Tasks are often referred to as “request-response” Tasks for Choreography modelers.

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

P
ar

tic
ip

an
t C

Figure 12-31 – The corresponding Collaboration for a valid Choreography sequence with a two-way
Activity

Figure 12-32 shows how a sequence of Choreography Activities can be designed that would be invalid in
the sense that an Initiating Participant would not know when the appropriate time would be to send a Message.
In this example, “Participant A” is scheduled to send a Message to “Participant C” after “Participant B” sends
a Message to “Participant C.” However, “Participant A” will not know when the Message from “Participant
B” has been sent. So, there is no way to enforce the sequence that is modeled in the Choreography.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 368

Figure 12-32 – An invalid sequence of Choreography Activities

Figure 12-33 shows the Collaboration view of the above Choreography diagram. It becomes clear that
“Participant A” will not know the appropriate time to send Message “M3” to “Participant C.” If the Message
is sent too soon, then “Participant C” will not be prepared to receive it. Thus, as a Choreography, the model in
Figure 12-32, above, cannot be enforced.

Proposal for:
369 Business Process Model and Notation (BPMN), v2.0

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

P
ar

tic
ip

an
t C

Not Valid –
There is no way to
enforce the sequence of
“M2” and “M3”

Receive
Message

Send
Message

Receive
Message

Send
Message

Send
Message

Receive
Message

M1

M2

M3

Figure 12-33 – The corresponding Collaboration for an invalid Choreography sequence

12.5. Events

12.5.1. Start Events
Start Events provide the graphical marker for the start of a Choreography. They are used much in the same
way as they are used for a Process (see “Start Event” on page 244).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 370

This table shows how the types of Start Events are applied to Choreography.

Table 12-6 – Use of Start Events in Choreography

Type of Event Usage in Choreography?

None Yes. This is really just a graphical marker since the arrival of the first
Message in the Choreography is really the Trigger for the Choreography.
Sub-Processes, however, we should look at. The Parent Process may be
considered the Trigger.

Not used in an Event Sub-Process.

Message No. A Message Start Event, in a stand-alone Choreography, has no way
to show who the senders or receivers of the Message should be. A
Choreography Task should be used instead. Thus, a None Start Event
should be used as a graphical marker for the “start” of the Choreography.

Not used in an Event Sub-Process.

Timer Yes. All Participants have to have an agreement to the approximate time..

Can be used in an Event Sub-Process.

Escalation

Error No. An Error is only visible to a single Participant. That Participant will have to
send a Message to the other Participants.

Compensation

Conditional [Used only for Event Sub-Processes] Yes. This is actually determined internal
to Participant, but then the other Participants know this has happened based
the first interaction that follows.

Signal Yes. The source of the Signal is not required (and may not even be a
Participant in the Choreography). There are no specific recipients of a
Signal. All Participants of the Choreography (to comply) must be able to see
the Signal.

Can be used in an Event Sub-Process.

Multiple Yes. But they can only be Multiple Signals or Timers. As in Orchestration, this
acts like an OR. Any one of the incoming Signals will Trigger the
Choreography. Any Signal that follows would create a separate instance of
the Choreography.

Can be used in an Event Sub-Process.

Proposal for:
371 Business Process Model and Notation (BPMN), v2.0

12.5.2. Intermediate Events

Table 12-7 – Use of Intermediate Events in Choreography

Type of Event Usage in Choreography?

None: in Normal Flow Yes. However, this really doesn’t have much meaning other than just
documenting that a specific point has been reached in the Choreography.
There would be no Message exchange or any delay in the Choreography.

None: Attached to Activity
boundary

No. There would be no way for Participants to know when the Activity should
be interrupted.

Message: in Normal Flow No. A Message Intermediate Event, in a stand-alone Choreography, has
no way to show who the senders or receivers of the Message should be. A
Choreography Task should be used instead. Also, would the Event be a
Catch or a Throw?

Message: Attached to
Activity boundary

Yes. Only for Choreography Tasks. The Intermediate Event has to be
attached to the Participant Band of the receiver of the Message (since it is a
catch Event). The sender of the message has to be the other Participant of
the Choreography Task.

Message: Use in Event
Gateway

No. A Message Intermediate Event, in a stand-alone Choreography, has
no way to show who the senders or receivers of the Message should be. A
Choreography Task should be used instead.

Timer: in Normal Flow Yes. Time is not precise in Choreography. It is established by the last visible
Choreography Activity. The Participants involved in the Choreography
Activity that immediately precedes will have a rough approximation of the
time—there will be no exact synchronization.

For relative timers: Only the Participants involved in the Choreography
Activity that immediately precedes the Event would know the time. The
sender of the Choreography Activity that immediately follows the timer must
be involved in the Choreography Activity that immediately precedes the timer.

For absolute timers (full time/date): All Participants would know the time.
There does not have to be a relationship between the Participants of the
Choreography Activities that are on either side the timer.

The sender of the Choreography Activity that immediately follows the timer is
the Participant that enforces the timer.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 372

Timer: Attached to
Activity boundary

Yes. Time is not exact in this case. It is established by the last visible Event.
All Participants will have a rough approximation of the time—there will be no
exact synchronization. This includes both interrupting and escalation Events.

The Participants of the Choreography Activity that has the attached timer all
enforce the timer.

For relative timers: They all have to be involved in the Choreography Activity
that immediately precedes the Activity with the attached timer.

For absolute timers (full time/date): All Participants would know the time.
They all have to be involved in the Choreography Activity that immediately
precedes the Activity with the attached timer.

Timer: Used in Event
Gateway

Yes. See Event-Based Gateway below.

Error: Attached to Activity
boundary

No. An Error is only visible to a single Participant. That Participant will have to
send a Message to the other Participants.

Escalation: Used in
Normal Flow

Escalation: Attached to
Activity boundary

Cancel: in Normal Flow No. These are Throw Events. As with a Message Event, there would be no
indicator as to who is the source of the Cancel.

Cancel: Attached to
Activity boundary

Yes. These are Catch Events. As with a Message Event, they would be
attached to the Choreography Activity on the Participant Band that is
receiving the Cancel. These would only be interrupting Events.

Compensation: in
Normal Flow

No. These are Throw Events. As with a Message, there would be no
indicator as to who is the source of the Cancel.

Compensation: Attached
to Activity boundary

Yes. These are Catch Events. As with a Message Event, they would be
attached to the Choreography Activity on the Participant Band that is
receiving the Cancel.

Conditional: in Normal
Flow

Yes. This is a delay that waits for a change in data to trigger the Event. The
data must be visible to the Participants as it was data of a previously sent
Message.

Conditional: Attached to
Activity boundary

Yes. This is an interruption that waits for a change in data to trigger the
Event. The data must be visible to the Participants as it was data of a
previously sent Message.

Conditional: Used in
Event Gateway

Yes. This is a delay that waits for a change in data to trigger the Event. The
data must be visible to the Participants as it was data of a previously sent
Message.

Proposal for:
373 Business Process Model and Notation (BPMN), v2.0

Link: in Normal Flow Yes. These types of Events merely create a virtual Sequence Flow. Thus,
as long as a Sequence Flow between two elements is valid (and within a
Choreography Process level), then a pair of Link Events can interrupt that
Sequence Flow.

Signal: in Normal Flow Yes. Only Catch Events can be used. For Throw Signal Events, there would
be no indicator of who is the source Participant.

This would be a delay in the Choreography that waits for the Signal. The
source of the Signal is not required (and may not even be a Participant in the
Choreography). There are no specific recipients of a Signal. All Participants
of the Choreography (to comply) must be able to see the Signal.

Signal: Attached to
Activity boundary

Yes. These are Catch Events. This would be an interruption in the
Choreography that waits for the Signal. The source of the Signal is not
required (and may not even be a Participant in the Choreography). There
are no specific recipients of a Signal. All Participants of the Choreography
(to comply) must be able to see the Signal. This Event should not (must not?)
be attached to a Participant Band or this would suggest that that Participant
is a specific recipient of the Signal.

Signal: Used in Event
Gateway

Yes. These are Catch Events. This would be a delay in the Choreography
that waits for the Signal. The source of the Signal is not required (and may not
even be a Participant in the Choreography). There are no specific recipients
of a Signal. All Participants of the Choreography (to comply) must be able to
see the Signal.

Multiple: in Normal Flow Yes. But they can only be a collection of valid Catch Events. As in
Orchestration, this acts like an OR. Any one of the incoming triggers will
continue the Choreography.

Multiple: Attached to
Activity Boundary

Yes. But they can only be a collection of valid Catch Events. As in
Orchestration, this acts like an OR. Any one of the incoming triggers will
interrupt the Choreography Activity.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 374

12.5.3. End Events
End Events provide a graphical marker for the end of a path within the Choreography.

Table 12-8 – Use of End Events in Choreography

Type of Event Usage in Choreography?

None Yes. This is really just a graphical marker since the sending of the previous
Message in the Choreography is really the end of the Choreography. The
Participants of the Choreography would understand that they would not
expect any further Message at that point.

Message No. A Message End Event, in a stand-alone Choreography, has no way to
show who the senders or receivers of the Message should be. A
Choreography Task should be used instead. Thus, a None End Event
should be used as a graphical marker for the “end” of the Choreography

Error No. These are Throw Events and there would be no way to indicate the
Participant that is the source of the Error.

Escalation No. These are Throw Events and there would be no way to indicate the
Participant that is the source of the Escalation..

Cancel No. These are Throw Events. As with a Message Event, there would be no
indicator as to who is the source of the Cancel.

Compensation No. These are Throw Events. As with a Message Event, there would be no
indicator as to who is the source of the compensation.

Signal No. These are Throw Events. As with a Message Event, there would be no
indicator as to who is the source of the Signal.

Multiple No. Since there are no valid End Event Results (Terminate doesn’t count)
in Choreography, there cannot be multiple of them.

Terminate Yes. However, there would be no specific ability to terminate the
Choreography, since there is no controlling system. In this case, all
Participants in the Choreography would understand that when the
Terminate End Event is reached (actually when the Message that
precedes it occurs), then no further messages will be expected in the
Choreography, even if there were parallel paths. The use of the Terminate
End Event really only works when there are only two (2) Participants. If there
are more than two (2) Participants, then any Participant that was not involved
in the last Choreography Task would not necessarily know that the
Terminate End Event had been reached.

Proposal for:
375 Business Process Model and Notation (BPMN), v2.0

12.6. Gateways
In an Orchestration Process, Gateways are used to create alternative and/or parallel paths for that Process.
Choreography has the same requirement of alternative and parallel paths. That is, interactions between
Participants may happen in sequence, in parallel, or through exclusive selection. While the paths of
Choreography follow the same basic patterns as that of an Orchestration Process, the lack of a central
mechanism to maintain data visibility, and that there is no central evaluation, there are constraints as to how the
Gateways are used in conjunction with the Choreography Activities that precede and follow the
Gateways. These constraints are an extension of the basic sequencing constraints that was defined on page 364.
The six (6) sections that follow will define how the types of Gateways are used in Choreography.

12.6.1. Exclusive Gateway
Exclusive Gateways (Decisions) are used to create alternative paths within a Process or a
Choreography. For details of how Exclusive Gateways are used within an Orchestration Process see
page 298.

Exclusive Gateways are used in Choreography, but they are constrained by the lack of a central
mechanism to store the data that will be used in the Condition expressions of the Gateway’s outgoing
Sequence Flow. Choreographies may contain natural language descriptions of the Gateway’s
Conditions to document the alternative paths of the Choreography (e.g., “large orders” will go down one path
while “small orders” will go down another path), but such Choreographies would be underspecified and
would not be enforceable. To create an enforceable Choreography, the Gateway Conditions must be
formal Condition Expressions; however:

The data used for Gateway Conditions MUST have been in a Message that was sent prior to
(upstream from) the Gateway.

More specifically, all Participants that are directly affected by the Gateway MUST have
either sent or received the Message(s) that contained the data used in the Conditions.

Furthermore, all these Participants MUST have the same understanding of the data. That is,
the actual values of the data cannot selectively change after a Participant has seen a
Message. Changes to data during the course of the Choreography MUST be visible to all
the Participants affected by the Gateway.

These constraints ensure that the Participants in the Choreography understand the basis (the actual value of
the data) for the decision behind the Gateway.

One (1) or more Participants will actually “control” the Gateway decision; that is, these Participants make the
decision through the internal Orchestration Processes. The decision is manifested by the particular Message
that occurs in the Choreography (after the Gateway). This Message is the initiating Message of a
Choreography Activity that follows the Gateway. Thus, only the Participants that are the initiators of the
Messages that follow the Gateway are the ones that control the decision. This means that:

The initiating Participants of the Choreography Activities that follow the Gateway MUST
have sent or received the Message that provided the data upon which the decision is made.

The Message that provides the data for the Gateway MAY be in any Choreography
Activity prior to the Gateway (i.e., it does not have to immediately precede Gateway).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 376

Choreography
Task 1

Participant A

Participant B

Choreography
Task 3

Participant C

Participant B

Yes

No

Choreography
Task 2

Participant A

Participant B
Decision?

Figure 12-34 – An example of the Exclusive Gateway

Figure 12-35 shows the Collaboration that demonstrates how the above Choreography that includes an
Exclusive Gateway can be enforced.

Proposal for:
377 Business Process Model and Notation (BPMN), v2.0

Figure 12-35 – The relationship of Choreography Activity Participants across the sides of the Exclusive
Gateway shown through a Collaboration

Usually, the initiators for the Choreography Activities that follow the Gateway will be the same
Participant. That is, there is only one (1) Participant controlling the decision. Often, the receivers of the
initiating Message for those Choreography Activities will be the same Participant. However, it is
possible that there could be different Participants receiving the initiating Message for each Choreography
Activity (see Figure 12-36).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 378

Choreography
Task 1

Participant A

Participant B

Choreography
Task 3

Participant C

Participant A

Yes

No

Choreography
Task 2

Participant B

Participant A
Decision?

Figure 12-36 – Different Receiving Choreography Activity Participants on the output sides of the
Exclusive Gateway

This configuration can only be valid if all the Participants in the Choreography Activities that follow the
Gateway have seen the data upon which the decision is made. If either “Participant B” or “Participant C” had
not sent or receive a Message with the appropriate data, then that Participant would not be able to know if they
are suppose to receive a Message at that point in the Choreography. There is also the assumption that the
value of the data is consistent from the point of view of all Participants.

Figure 12-37 displays the corresponding Collaboration view of the above Choreography Exclusive
Gateway configuration.

Proposal for:
379 Business Process Model and Notation (BPMN), v2.0

M1 M2

Recieve
Message

Send
Message

M3

Decision?

Yes

No
Send

Message

Recieve
Message

Decision?

Decision?

No

Yes

Yes

No

Send
Message

Receive
Message

Figure 12-37 – The corresponding Collaboration view of the above Choreography Exclusive Gateway
configuration

The required execution behavior of the Gateway and associated Choreography Activities are enforced
through the Business Processes of the Participants as follows:

Each Choreography Activity and the Sequence Flow connections are reflected in each
Participant Process.

The Gateway is reflected in the Process of each Participant Process that is an initiator of
Choreography Activities that follow the Gateway

For the receivers in Choreography Activities that follow the Gateway, an Event-Based
Gateway is used to consume the associated Message (sent as an outcome of the Gateway). When

Proposal for:
Business Process Model and Notation (BPMN), v2.0 380

a Participant is the receiver of more than one of the alternative Messages, the corresponding
receives follow the Event-Based Gateway. If the Participant is the receiver of only one such
Message, that is also consumed through a receive following the Event-Based Gateway. This is
because the Participant Process does not know whether it will receive a Message (since the
Gateway entails a choice of outcomes).

12.6.2. Event-Based Gateway
As described above, the Event-Based Gateway represents a branching point in the Process where the
alternatives are based on Events that occur at that point in the Process, rather than the evaluation of
expressions using Process data. For details of how Event-Based Gateways are used within an
Orchestration Process see Section “Event-Based Gateway” on page 307.

These Gateways are used in Choreography when the data used to make the decision is only visible to the
internal Processes of one Participant. That is, there has been no Message sent within the Choreography
that would expose the data used to make the decision. Thus, the only way that the other Participants can be
aware of the results of the decision is by the particular Message that arrives next.

On the right side of the Gateway: either
The senders MUST to be the same; or
The receivers MUST to be the same

After the first Choreography Activity occurs, the other Choreography Activities for
the Gateway MUST NOT occur.

Message Intermediate Events MUST NOT be used in the Event-Based Gateway.

Timer Intermediate Events MAY be used, but they restrict the participation in the Gateway.

For relative timers: All Participants on the right side of the Gateway MUST be involved in the
Choreography Activity that immediately precedes the Gateway.

For absolute timers (full time/date): All Participants on the right side of the Gateway MUST be
involved in the Choreography Activity that immediately precedes the Gateway.

Signal Intermediate Events MAY be used (they are visible to all Participants)

No other types of Intermediate Events are allowed.

Proposal for:
381 Business Process Model and Notation (BPMN), v2.0

Choreography
Task 1

Participant A

Participant B

Choreography
Task 3

Participant A

Participant B

Decicion?

Choreography
Task 2

Participant A

Participant B

Figure 12-38 – An example of an Event Gateway

Figure 12-39 displays the corresponding Collaboration view of the above Choreography Event
Gateway configuration.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 382

Decision?

Yes

Yes

No

No

Receive
Message

Send
Message

Receive
Message

Receive
Message

Send
Message

Send
Message

M1 M2 M3

Figure 12-39 – The corresponding Collaboration view of the above Choreography Event Gateway
configuration

The required execution behavior of the Event-Based Gateway and associated Choreography
Activities are enforced through the Business Processes of the Participants as follows:

Each Choreography Activity and the Sequence Flow connections is reflected in each Participant
Process.

If the senders following the Gateway are the same, the Event-Based Gateway is reflected as an
Exclusive Gateway in that Participant’s Process. This is because the choice of which Message
to send is determined by the same Participant. If the senders are different, sending occurs through
different Processes.

If the receivers are the same, the senders can be the same or different. In this case, the Event-Based
Gateway is reflected in the receiver’s Process, with the different Message receives following the
Gateway.

If the receivers are different, the senders need to be the same. The Event-Based Gateway is
reflected for different receiver Processes such that the respective receive follows the Gateway. A
time-out may be used to ensure that the Gateway does not wait indefinitely.

Proposal for:
383 Business Process Model and Notation (BPMN), v2.0

12.6.3. Inclusive Gateway
Inclusive Gateways are used for modeling points of synchronization of a number of branches, not all of
which are active, after which one or more alternative branches are chosen within a Choreography flow. For
example, one of more branches may be activated upstream, in parallel, depending on the nature of goods in an
order (e.g. large orders, fragile goods orders, orders belonging to pre-existing shipment contracts), and these are
subsequently merged. The point of merge results in one or more risk mitigating outcomes (e.g. special insurance
protection needed, special packaging needed, and different container categories needed). Inclusive
Gateways are also used within an Orchestration Process see page 300.

Like Exclusive Gateways, Inclusive Gateways are used in a Choreography, but they are constrained
by the lack of a central mechanism to store the data that will be used in the Condition expressions of the
Gateway’s outgoing Sequence Flows. Choreographies may contain natural language descriptions of
the Gateway’s Conditions to document the one more alternative paths of the Choreography (e.g., “special
insurance protection needed”, “special packaging needed”, and different “container category needed”), but such
Choreographies would be underspecified and would not be enforceable. To create an enforceable
Choreography, the Gateway Conditions must be formal Condition Expressions. In general the following
rules apply for the Expressions:

Like the enforceability of the Exclusive Gateway, the Inclusive Gateway in a Choreography requires
that the data in the Expressions of the outgoing Sequence Flow of the Gateway be available to the initiators
of the Choreography Activities of outgoing Sequence Flow. This means that the initiators of these
Choreography Activities should also be senders or receivers of Messages in Choreography
Activities immediately preceding the Gateway. The major difference, however, is that the synchronizing
behavior of the Inclusive Gateway can only be enforced through one participant. Hence, the rules for
enforceability are as follows:

The data used for Gateway Conditions MUST have been in a Message that was sent prior to
(upstream from) the Gateway.

More specifically, all Participants that are directly affected by the Gateway MUST have either
sent or received the Message(s) that contained the data used in the Conditions.

Furthermore, all these Participants MUST have the same understanding of the data. That is,
the actual values of the data cannot selectively change after a Participant has seen a
Message. Changes to data during the course of the Choreography MUST be visible to all
the Participants affected by the Gateway.

Merge: In order to enforce the synchronizing merge of the Gateway, the senders or receivers
Choreography Activities preceding the Gateway need to be the same Participant. This
ensures that the merge can be enforced. (This relies on the assumption of logical atomicity of a
Choreography Activity, otherwise the rule would require that all receivers are the same so
that the Gateway is enforced in the receiver’s Process only).

Split: In order to enforce the split side of the Gateway, the initiators of all Choreography
Activities immediately following the Gateway must be the same as the common sender or receiver
of Choreography Activities preceding the Gateway. The sender(s) of all the Choreography
Activities after the Gateway must be involved in all the Choreography Activities that
immediately precede the Gateway.

Figure 12-40 shows an example of a Choreography with an Inclusive Gateway. The Gateway is
enforced in the corresponding Business Processes of the Participants involved. For the merge behavior to

Proposal for:
Business Process Model and Notation (BPMN), v2.0 384

be enforced, the receivers of Choreography Activities preceding the Gateway and the initiator of
Choreography Activities immediately following the Gateway are the same Participant (i.e. B).

Figure 12-40 – An example of a Choreography Inclusive Gateway configuration

Proposal for:
385 Business Process Model and Notation (BPMN), v2.0

M1

M2

Receive
Message

Send
Message

M3

Receive
Message

Send
Message

Send
Message

Receive
Message

Figure 12-41 – The corresponding Collaboration view of the above Choreography Inclusive Gateway
configuration

Figure 12-42, a variation of Figure 12-40 above. shows an example of a Choreography illustrating the
enforcement of the split behavior of the Inclusive Gateway. For the split behavior to be enforced, the
initiators of Choreography Activities immediately following the Gateway and the receiver of
Choreography Activities immediately preceding the Gateway are the same Participant (i.e. A).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 386

Choreography
Task 1

Participant A

Participant B

Choreography
Task 3

Participant A

Participant C

Condition 1

Condition 2

Choreography
Task 2

Participant A

Participant C
Decision?

Figure 12-42 – An example of a Choreography Inclusive Gateway configuration

Proposal for:
387 Business Process Model and Notation (BPMN), v2.0

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

P
ar

tic
ip

an
t C

Figure 12-43 – The corresponding Collaboration view of the above Choreography Inclusive Gateway
configuration

Proposal for:
Business Process Model and Notation (BPMN), v2.0 388

Choreography
Task 1

Participant A

Participant B

Choreography
Task 3

Participant A

Participant D

Condition 1

Condition 2

Choreography
Task 2

Participant A

Participant C
Decision?

Figure 12-44 – Another example of a Choreography Inclusive Gateway configuration

Proposal for:
389 Business Process Model and Notation (BPMN), v2.0

M1 M2

Decision?

Condition 1

Condition 2

Send
Message

Decision?

Condition 2

Condition 1

Receive
Message

Send
Message

Send
Message

Receive
Message

M3

Decision?

Condition 2

Condition 1 Receive
Message

Figure 12-45 – The corresponding Collaboration view of the above Choreography Inclusive Gateway
configuration

12.6.4. Parallel Gateway
Parallel Gateways are used to create paths and are performed at the same time, within a Choreography
flow. For details of how Parallel Gateways are used within an Orchestration Process see page 302.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 390

Since there is no conditionality for these Gateways, they are available as-is in Choreography. They create
parallel paths of the Choreography that all Participants are aware of.

The sender(s) of all the Activities after the Gateway must be involved in all the Activities that
immediately precede the Gateway.

If there is a chain of Gateways with no Choreography Activities in between, the
Choreography Activity that precedes the chain satisfies the above constraint.

Figure 12-46 shows the relationship of Choreography Activity Participants across the sides of the Parallel
Gateway.

Figure 12-46 – The relationship of Choreography Activity Participants across the sides of the Parallel
Gateway

Figure 12-47 shows the corresponding Collaboration view of the above Choreography Parallel
Gateway configuration.

Proposal for:
391 Business Process Model and Notation (BPMN), v2.0

Decision?

Yes

No

Receive
Message

Send
Message

Receive
Message

Send
Message

Receive
Message

Send
Message

M1 M3

M2

Figure 12-47 – The corresponding Collaboration view of the above Choreography Parallel Gateway
configuration

The required execution behavior of the Parallel Gateway and associated Choreography Activities are
enforced through the Business Processes of the Participants as follows:

Each Choreography Activity and the Sequence Flow connections is reflected in each
Participant Process.

If the senders following the Parallel Gateway are the same, a Parallel Gateway is reflected in
the sender’s Process followed by Message sending actions to the corresponding receivers

If the senders are different, the Parallel Gateway is manifested by Sequence Flows followed by
the sending action in each Process.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 392

12.6.5. Complex Gateway
Complex Gateways can model partial merges in Business Processes where when some but not all of a
set of preceding branches complete, the Gateway fires. This can be considered the discriminator/n-of-m join
pattern2 and is not supported through the inclusive OR merge since it is not concerned with sets of branches, but
rather branches which have tokens. Applied in Choreographies, Complex Gateways can model
tendering and information canvassing use cases where requests are sent to participants who respond at different
times.

Consider an e-tender which sends a request for quote to service providers (e.g. warehouse storage) in a
marketplace. The e-tender Process sends out each request and anticipates a response through two
Choreography Activities with a sequential flow between these. The request-response branches merge at a
Complex Gateway to model the requirement that when 60% responses have arrived, an assessment of the
tender can proceed. The assessment occurs after the Complex Gateway. If the assessment reports that the
reserve amount indicated by the customer cannot be met, a new iteration of the tender is made. All up a
maximum of 3 tenders is run. A key issue is to ensure that the responses should not be mixed across tender
iterations.

Figure 12-48 – An example of a Choreography Complex Gateway configuration

2 http://www.workflowpatterns.com/patterns/control/advanced_branching/wcp9.php

Proposal for:
393 Business Process Model and Notation (BPMN), v2.0

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

Pa
rti

ci
pa

nt
 C

Pa
rti

ci
pa

nt
 D

Figure 12-49 – The corresponding Collaboration view of the above Choreography Complex Gateway
configuration

12.6.6. Chaining Gateways
It is possible to chain Gateways. This means that a modeler can sequence two (2) or more Gateways without
any intervening Choreography Activities, however the constraints on what participants can appear before
and after the chain must be observed.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 394

12.7. Choreography within Collaboration

Participants

Participants are used in both Collaborations and Choreographies.

Swimlanes

Swimlanes, both Pools and Lanes, are not used in Choreographies. Pools are used exclusively in
Collaborations (see page 146). Participants, which can be associated to Pools, however, are used in the
Participant Bands of Choreography Tasks (see page 350) and Choreography Sub-Processes (see
page 356). Pools can be used with Choreography diagrams when in the context of a Collaboration
diagram (see page 394).

Lanes are not used in Choreography diagrams since Lanes are sub-partitions of a Pool and
Choreographies are placed in between the Pools (if used in a Collaboration).

Figure 12-50 shows an example of a Choreography Process combined with Black Box Pools.

Figure 12-50 – An example of a Choreography Process combined with Black Box Pools

Proposal for:
395 Business Process Model and Notation (BPMN), v2.0

Figure 12-51 shows an example of a Choreography Process combined with Pools that contain
Processes.

P
at

ie
nt

D
oc

to
r’s

 O
ffi

ce

Figure 12-51 – An example of a Choreography Process combined with Pools that contain Processes

Choreography Task in Combined View

Choreography Sub-Process in Combined View

12.8. XML Schema for Choreography

Proposal for:
Business Process Model and Notation (BPMN), v2.0 396

Table 12-9 – Choreography XML schema

<xsd:element name="choreography" type="tChoreography" substitutionGroup="rootElement"/>
<xsd:complexType name="tChoreography">

<xsd:complexContent>
<xsd:extension base="tCallableElement">

<xsd:sequence>
<xsd:element ref="flowElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="messageFlow" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="participant" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="conversation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="conversationAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="messageFlowAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="participantAssociation" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="isClosed" type="xsd:boolean" default="false"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 12-10 – GlobalChoreographyTask XML schema

<xsd:element name="globalChoreographyTask" type="tGlobalChoreographyTask"
substitutionGroup="rootElement"/>

<xsd:complexType name="tGlobalChoreographyTask">
<xsd:complexContent>

<xsd:extension base="tCallableElement">
<xsd:sequence>

<xsd:element ref="participant" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="messageFlow" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="initiatingParticipantRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 12-11 – ChoreographyActivity XML schema

<xsd:element name="choreographyActivity" type="tChoreographyActivity"/>
<xsd:complexType name="tChoreographyActivity" abstract="true">

<xsd:complexContent>
<xsd:extension base="tFlowNode">

<xsd:sequence>
<xsd:element name="participantRef" type="xsd:QName" minOccurs="2"

maxOccurs="unbounded"/>
</xsd:sequence>

<xsd:attribute name="initiatingParticipant" type="xsd:QName" use="required"/>
</xsd:extension>

</xsd:complexContent>
<xsd:complexType>

Proposal for:
397 Business Process Model and Notation (BPMN), v2.0

Table 12-12 – ChoreographyTask XML schema

<xsd:element name="choreographyTask" type="tChoreographyTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tChoreographyTask">

<xsd:complexContent>
<xsd:extension base="tChoreographyActivity">

<xsd:sequence>
<xsd:element name="messageFlowRef" type="xsd:QName" minOccurs="1"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 12-13 – CallChoreographyActivity XML schema

<xsd:element name="callChoreographyActivity" type="tCallChoreographyActivity"
substitutionGroup="flowElement"/>

<xsd:complexType name="tCallChoreographyActivity">
<xsd:complexContent>

<xsd:extension base="tChoreographyActivity">
<xsd:sequence>

<xsd:element ref="participantAssociation" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

<xsd:attribute name="calledElement" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 12-14 – ChoreographySubProcess XML schema

<xsd:element name="choreographySubProcess" type="tChoreographySubProcess"
substitutionGroup="flowElement"/>

<xsd:complexType name="tChoreographySubProcess">
<xsd:complexContent>

<xsd:extension base="tChoreographyActivity">
<xsd:sequence>

<xsd:element ref="flowElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Proposal for:
Business Process Model and Notation (BPMN), v2.0 398

13. BPMN Notation and Diagrams

13.1. Diagram Interchange
The goal of the Diagram Interchange (DI) metamodel is to provide a way for BPMN to persist and interchange
diagrams. Having common interchange format benefits tool interoperability, which is an ever increasing demand
by end users. The DI metamodel, similar to the BPMN semantic metamodel, is defined as a MOF-based
metamodel and hence its instances are serialized and interchanged with XMI.

Annex B is a non-normative description of the generic diagram interchange mechanism that was applied to
BPMN 2.0 in order to derive BPMN 2.0's normative diagram interchange specification. The normative
BPMN 2.0 diagram interchange specification has two parts. One part is this Chapter 13 of this document. The
other part is document <omg document #>, which contains the diagram interchange schema. Section 13.2 of this
document defines an instance of a metamodel that is defined in Annex B..

13.2. BPMN Diagram Definition Library
This chapter describes the BPMN diagram definition (M1) library. View definitions contained in this library
define views that constitute the building blocks of BPMN diagrams.

13.2.1. BPMN Diagram Definitions
The BPMN 2.0 specification defines the following types of diagrams: Orchestration diagram (aka Process
diagram), Collaboration diagram, Conversation diagram and Choreography diagram. All of these are
described in detail in Sections 9, 10, 11 and 12.

Figure 13-1 – BPMN Diagram Definitions

Proposal for:
399 Business Process Model and Notation (BPMN), v2.0

BPMNDiagram

BPMNDiagram is an abstract DiagramDefinition that is the super definition of all BMPN diagram
definitions. BPMNDiagram has no further relationships or constraints.

ProcessDiagram

ProcessDiagram is a concrete DiagramDefinition that defines diagrams that reference a BPMN Process
element as a context.

Super Definition

BPMNDiagram

Context Type

Process

Child Definitions

Table 13-1 – ProcessDiagram children

Attribute Name Description/Usage

lane: LaneCompartment [1..*] A reference to the lane compartment elements contained in the
Process diagram.

CollaborationDiagram

CollaborationDiagram is a concrete DiagramDefinition that defines diagrams that reference a
BPMN Collaboration element as a context.

Super Definition

BPMNDiagram

Context Type

Collaboration

Proposal for:
Business Process Model and Notation (BPMN), v2.0 400

Child Definitions

Table 13-2 – CollaborationDiagram children

Attribute Name Description/Usage

pools: PoolCompartment [2..n*] A reference to two or more the pool compartment elements
contained in the Collaboration diagram.

choreographyCompartment:
ChoreographyCompartment [0..1]

A reference to the choreography compartment element contained
in the Choreography diagram.

ChoreographyDiagram

ChoreographyDiagran is a concrete DiagramDefinition that defines diagrams that reference a
BPMN Choreography element as a context.

Super Definition

BPMNDiagram

Context Type

Choreography

Child Definitions

Table 13-3 – ChoreographyDiagram children

Attribute Name Description/Usage

choreographyCompartment:
ChoreographyCompartment

A reference to the choreography compartment element contained
in the Choreography diagram.

ConversationDiagram

ConversationDiagram is a concrete DiagramDefinition that defines diagrams that reference a
BPMN Conversation element as a context.

Super Definition

BPMNDiagram

Proposal for:
401 Business Process Model and Notation (BPMN), v2.0

Context Type

Conversation

Child Definitions

Table 13-4 – Conversation children

Attribute Name Description/Usage

shape: BPMNShape [0..*] The BPMN conversation shapes displayed inside the
Conversation diagram.

13.2.2. BPMN Node Definition
BPMNNode is an abstract NodeDefinition that is the super definition for all BPMN Node types, like
BPMN Compartments (Lanes, Pools and Choreography) and BPMN shapes (e.g. Activity).

Super Definition

NodeDefinition

Style Definitions

Table 13-5 – BPMNNode styles

Attribute Name Description/Usage

width: Integer = -1 Specifies the width of the compartment. Default is auto size (-1)

height: Integer = -1 Specifies the height of the compartment. Default is auto size (-1)

x: Integer = -1 Specifies the x position of the Node relative to the Node
owning/containing the Node

y: Integer = -1 Specifies the y position of Node relative to the Node
owning/containing the Node

13.2.3. BPMN Compartment Definitions
Every one of the diagram definitions described in the previous section contains different areas which contain and
visualize certain parts of the overall BPMN diagram. These areas all called “compartments”. The BPMN 2.0

Proposal for:
Business Process Model and Notation (BPMN), v2.0 402

spec defines three types of these compartments which are Lanes, Pools and Choreographies. For more
detailed information see Sections 9.2 and 9.4.

Figure 13-2 – BPMN Compartment Definitions

BPMNCompartment

BPMNCompartment is an abstract BPMNNodeDefinition that is the super definition for all BPMN
compartment types, like Lanes, Pools and Choreography. A compartment visually partitions a diagram by
grouping some shapes in a bounded area.

Super Definition

BPMNNode

Style Definitions

Table 13-6 – BPMNCompartment styles

Attribute Name Description/Usage

isVisible: Boolean = true Whether a compartment is visible or hidden (still preserved in the
model but not shown)

Proposal for:
403 Business Process Model and Notation (BPMN), v2.0

PoolCompartment

PoolCompartment is a concrete NodeDefinition that defines the visual element of a BPMN Pool. A Pool is the
graphical representation of a Participant in a Collaboration (see page 146). It is also acts as a graphical
container for partitioning a set of Activities from other Pools, usually in the context of B2B situations.

Figure 13-3 – A Pool

Super Definition

BPMNCompartment

Child Definitions

Table 13-7 – PoolCompartment children

Attribute Name Description/Usage

lanes: LaneCompartment [1..*] A reference to all the lane elements contained in that pool.

LaneCompartment

LaneCompartment is a concrete NodeDefinition that defines the visual element of a BPMN lane. A
Lane is a sub-partition within a Pool and will extend the entire length of the Pool, either vertically or
horizontally (see on page 149). Lanes are used to organize and categorize Activities.

Figure 13-4 – Lanes within a Pool

Super Definition

BPMNCompartment

Context Type

Lane

Proposal for:
Business Process Model and Notation (BPMN), v2.0 404

Child Definitions

Table 13-8 – LaneCompartment children

Attribute Name Description/Usage

shape: BPMNShape [0..*] The BPMN shapes displayed inside the lane.

subLane: LaneCompartment [0..*] A LaneCompartment element can optionally contain other
LaneCompartments as sub lanes

ChoreographyCompartment

ChoreographyCompartment is a concrete NodeDefinition that defines the visual area displaying the
Choreography Activities. The ChoreographyCompartment contains the BPMN shape elements that
are displayed in that area.

Super Definition

BPMNCompartment

Child Definitions

Table 13-9 – ChoreographyCompartment children

Attribute Name Description/Usage

shape: BPMNShape [0..*] The BPMN shapes displayed inside the Choreography area.

13.2.4. BPMN Connectors
The BPMN 2.0 specification defines different elements for connecting BPMN elements. These are mainly
Sequence Flow connectors, Message Flow connectors, Association connectors, and Data
Association connectors.

Proposal for:
405 Business Process Model and Notation (BPMN), v2.0

Figure 13-5 – BPMN Connectors class diagram

BPMNConnector

BPMNConnector is an abstract ConnectorDefinition that defines the visual line connecting BPMN
nodes.

Super Definition

ConnectorDefinition

Child Definitions

Table 13-10 – BPMNConnector children

Attribute Name Description/Usage

source: BPMNNode A reference to the Node element which is the source of the connector

target: BPMNNode A reference to the Node element which is the target of the connector

connectorLabel: BPMNLabel [0..1] The optional label for the Connector

Proposal for:
Business Process Model and Notation (BPMN), v2.0 406

SequenceFlowConnector

A Sequence Flow is used to show the order that Activities will be performed in a Process (see page 159)
and in a Choreography (see page 348).

Figure 13-6 – A Sequence Flow

SequenceFlowConnector is a concrete BPMNConnector that defines the visual line representing a
BPMN Sequence Flow connector.

Super Definition

BPMNConnector

Context Type

Sequence Flow

DataAssociationConnector

A Data Associations are used to model a data flow between Data Objects and Activities or Events.

Figure 13-7 – A Data Association

DataAssociationConnector is a concrete BPMNConnector that defines the visual line representing a
BPMN Data Association flow connector.

Super Definition

BPMNConnector

Context Type

Data Association

MessageFlowConnector

A Message Flow is used to show the flow of Messages between two Participants that are prepared to send
and receive them (see page 119). In BPMN, two separate Pools in a Collaboration Diagram will represent the
two Participants (e.g., business PartnerEntities or business PartnerRoles).

Figure 13-8 – A Message Flow

Proposal for:
407 Business Process Model and Notation (BPMN), v2.0

MessageFlowConnector is a concrete BPMNConnector that defines the visual line representing a BPMN
Message Flow connector.

Super Definition

BPMNConnector

Context Type

Message Flow

AssociationConnector

An Association is used to link information and Artifacts with BPMN graphical elements (see page 88). Text
Annotations (see page 93) and other Artifacts (see page 86) can be associated with the graphical elements.
An arrowhead on the Association indicates a direction of flow (e.g., data), when appropriate.

Figure 13-9 – Associations

AssociationConnector is a concrete BPMNConnector that defines the visual line representing a BPMN
Association connector.

Super Definition

BPMNConnector

Context Type

Association

CompensationFlowConnector

Compensation Association occurs outside the normal flow of the Process and is based upon an Event (a
Compensation Intermediate Event) that is triggered through the failure of a transaction or a
Compensate Event (see page 270). The target of the Association must be marked as a Compensation
Activity.

Do

Compensation
Association Undo

Proposal for:
Business Process Model and Notation (BPMN), v2.0 408

Figure 13-10 – Compensation Flow from a Compensation Intermediate Event

CompensationFlowConnector is a concrete BPMNConnector that defines the visual line representing a
BPMN Association connector.

Super Definition

BPMNConnector

Context Type

Association

ConversationLinkConnector

ConversationLinkConnector is a concrete BPMNConnector that defines the visual line representing a
BPMN ConversationLink connector.

Super Definition

BPMNConnector

Context Type

ConversationLink

13.2.5. BPMN Shapes
The BPMN 2.0 specification describes different flow shapes, like Activities, Data Objects, or Text
Annotations. These shape elements are contained in the corresponding BPMN diagram element and can be
referenced by the BPMN-DI element LaneCompartment and ChoreographyCompartment. The
position of a shape is relative to the visual owner, LaneCompartment or ChoreographyCompartment.

Figure 13-11 – BPMN Shapes class diagram

BPMNShape is an abstract BPMNNode.

Proposal for:
409 Business Process Model and Notation (BPMN), v2.0

Super Definition

BPMNConnector

ActivityShape

The element ActivityShape represents an Activity contained in a Process model. It extends the
FlowNodeShape element. The type Activity is determined by the referenced semantic meta model element.

An Activity is a generic term for work that company performs (see page 159) in Process. An Activity can be
atomic or non-atomic (compound). The types of Activities that are a part of a Process model are:
Sub-Process and Task, which are rounded rectangles. Activities are used in both standard Processes and
in Choreographies.

Figure 13-12 – An Activity

ActivityShape is a concrete BPMNShape.

Super Definition

BPMNShape

Context Type

Activity

GatewayShape

A Gateway is used to control the divergence and convergence of Sequence Flow in a Process (see page
159) and in a Choreography (see page 375). Thus, it will determine branching, forking, merging, and joining
of paths. Internal markers will indicate the type of behavior control.

Figure 13-13 – A Gateway

GatewayShape is a concrete BPMNShape.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 410

Figure 13-14 – The Gateway shape class diagram

Super Definition

BPMNShape

Context Type

Gateway

EventShape

An Event is something that “happens” during the course of a Process (see page 153) or a Choreography
(see page 369). These Events affect the flow of the model and usually have a cause (Trigger) or an impact
(Result). Events are circles with open centers to allow internal markers to differentiate different Triggers or
Results. There are three types of Events, based on when they affect the flow: Start, Intermediate, and
End.

Figure 13-15 – An Event

EventShape is a concrete BPMNShape

Proposal for:
411 Business Process Model and Notation (BPMN), v2.0

Figure 13-16 – The Event shape class diagram

Super Definition

BPMNShape

Context Type

Event

DataObjectShape

Data Objects provide information about what Activities require to be performed and/or what they produce
(see page 213), Data Objects can represent a singular object or a collection of objects.

Figure 13-17 – A Data Object

Collection

Figure 13-18 – A Collection Data Object

DataObjectShape is a concrete BPMNShape.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 412

Figure 13-19 – The Data Object shape class diagram

Super Definition

BPMNShape

Context Type

Data Object

DataStoreShape

Data Stores provide a source for Activities to retrieve data or store data (see page 215),

Figure 13-20 – A Data Object

DataStoreShape is a concrete BPMNShape.

Proposal for:
413 Business Process Model and Notation (BPMN), v2.0

Figure 13-21 – The Data Store shape class diagram

Super Definition

BPMNShape

Context Type

DataStoreReference

DataInputShape

Data Input provide information about what Processes require to be performed. Data Inputs are part of the
Input Output Specification.

Figure 13-22 – A Data Input

Collection

Figure 13-23 – A Collection Data Input

DataInputShape is a concrete BPMNShape

Proposal for:
Business Process Model and Notation (BPMN), v2.0 414

Figure 13-24 – The Data Input shape class diagram

Super Definition

BPMNShape

Context Type

DataInput

DataOutputShape

Data Outputs provide information about what a Process produce as output available to the caller of the
Process.

Figure 13-25 – A Data Output

Collection

Figure 13-26 – A Collection Data Output

DataOutputShape is a concrete BPMNShape.

Proposal for:
415 Business Process Model and Notation (BPMN), v2.0

Figure 13-27 – The Data Output shape class diagram

Super Definition

BPMNShape

Context Type

DataOutput

MessageShape

A Message is used to depict the contents of a communication between two Participants (as defined by a
business PartnerRole or a business PartnerEntity—see page 112).

Figure 13-28 – A Message

MessageShape is a concrete BPMNShape.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 416

Figure 13-29 – The Message shape class diagram

Super Definition

BPMNShape

Context Type

Message

ChoreographyActivityShape

A Choreography Task is an atomic Activity in a Choreography (see page 350). It represents a set of one
(1) or more Message exchanges. Each Choreography Task involves two (2) or more Participants. The
name of the Choreography Task and each of the Participants are all displayed in the different bands that
make up the shape’s graphical notation. There are two (2) more Participant Bands and one Task Name
Band.

Figure 13-30 – A Choreography Task

ChoreographyShape is a concrete BPMNShape.

Proposal for:
417 Business Process Model and Notation (BPMN), v2.0

Figure 13-31 – The Choreography Task shape class diagram

Super Definition

BPMNShape

Context Type

Choreography Activity

GroupShape

A Group is a grouping of Activities that are within the same Category (see page 89). This type of grouping
does not affect the Sequence Flow of the Activities within the Group. The Category name appears on the
diagram as the Group label. Categories can be used for documentation or analysis purposes. Groups are one
way in which Categories of objects can be visually displayed on the diagram.

Figure 13-32 – A Group

GroupShape is a concrete BPMNShape.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 418

Figure 13-33 – The Group shape class diagram

Super Definition

BPMNShape

Context Type

Group

TextAnnotationShape

Text Annotations are a mechanism for a modeler to provide additional text information for the reader of a
BPMN Diagram (see page 92).

Figure 13-34 – A Text Annotation

TextAnnotationShape is a concrete BPMNShape.

Proposal for:
419 Business Process Model and Notation (BPMN), v2.0

Figure 13-35 – The Text Annotation shape class diagram

Super Definition

BPMNShape

Context Type

Text Annotation

EmbeddedSubProcessShape

A Sub-Process is a compound Activity that is included within a Process (see page 176). It is compound in
that it can be broken down into a finer level of detail (a Process through a set of sub-Activities).

Figure 13-36 – A Sub-Process object (collapsed)

Proposal for:
Business Process Model and Notation (BPMN), v2.0 420

Figure 13-37 – A Sub-Process object (expanded)

EmbeddedSubProcessShape is a concrete BPMNShape.

Figure 13-38 – The Sub-Process shape class diagram

Super Definition

ActivityShape

Context Type

Activity

Proposal for:
421 Business Process Model and Notation (BPMN), v2.0

Style Definitions

Table 13-11 – EmbeddedSubProcessShape styles

Attribute Name Description/Usage

diagramLink: String A reference to another BPMN diagram defining the details of the
Subprocess.

isExpanded: Boolean Indicated whether the Subprocess is expanded or collapsed.

Child Definitions

Table 13-12 – EmbeddedSubProcessShape children

Attribute Name Description/Usage

lane: LaneCompartment[0..n] A reference to all the lane elements contained in that Subprocess. In
case the SubprocessShape links to another diagram containing the
subprocess details, a Lane doesn’t have to specified.

CalledSubProcessShape

A Sub-Process is a compound Activity that is included within a Process (see page 176). It is compound in
that it can be broken down into a finer level of detail (a Process through a set of sub-Activities).

Figure 13-39 – A Call Activity object calling a Process (Collapsed)

Proposal for:
Business Process Model and Notation (BPMN), v2.0 422

Figure 13-40 – A Call Activity object calling a Process (Expanded)

CalledSubProcessShape is a concrete BPMNShape.

Figure 13-41 – The Call Activity shape class diagram

Super Definition

ActivityShape

Context Type

Activity

Proposal for:
423 Business Process Model and Notation (BPMN), v2.0

Style Definitions

Table 13-13 – CalledSubProcessShape styles

Attribute Name Description/Usage

diagramLink: String A reference to another BPMN diagram defining the details of the
Subprocess.

isExpanded: Boolean Indicated whether the Subprocess is expanded or collapsed.

CommunicationShape

CommunicationShape is a concrete BPMNShape.

Figure 13-42 – A Communication shape

Figure 13-43 – The ConversationCommunication shape class diagram

Super Definition

BPMNShape

Context Type

Communication

Proposal for:
Business Process Model and Notation (BPMN), v2.0 424

SubConversationShape

SubConversationShape is a concrete BPMNShape.

Figure 13-44 – A Sub-Conversation shape

Figure 13-45 – The SubConversation shape class diagram

Super Definition

BPMNShape

Context Type

SubConversation

CallConversationShape

CallConversationShape is a concrete BPMNShape.

Figure 13-46 – A Call Conversation object calling a GlobalCommunication

Figure 13-47 – A Call Conversation object calling a Conversation

Proposal for:
425 Business Process Model and Notation (BPMN), v2.0

Figure 13-48 – The CallConversation shape class diagram

Super Definition

BPMNShape

Context Type

CallConversation

13.2.6. BPMN Label
BPMNLabel is a concrete BPMNNode that defines a label for BPMN connectors, like
SequenceFlowConnector.

Figure 13-49 – The BPMN Label class diagram

Super Definition

BPMNNode

Proposal for:
Business Process Model and Notation (BPMN), v2.0 426

14. BPMN Execution Semantics

Note: The content of this chapter is required for BPMN Process Execution Conformance or for BPMN
Complete Conformance. However, this chapter is not required for BPMN Process Modeling Conformance,
BPMN Choreography Conformance, or BPMN BPEL Process Execution Conformance. For more
information about BPMN conformance types, see page 28.

This section defines the execution semantics for orchestrations in BPMN 2.0. The purpose of this execution
semantics is to describe a clear and precise understanding of the operation of the elements. However, for some
elements only conceptual model is provided which does not specify details needed to execute them on an engine.
These elements are called non-operational. Implementations MAY extend the semantics of non-operational
elements to make them executable, but this is considered to be an optional extension to BPMN. Non-operational
elements MAY be ignored by implementations conforming to BPMN Process Execution Conformance type.
The following elements are non-operational:

Manual Task

Abstract Task

DataState

IORules

Ad-Hoc Process

ItemDefinitions with an itemKind of Physical

the inputSetWithWhileExecuting attribute of DataInput

the outputSetWithWhileExecuting attribute of DataOutput

the isClosed attribute of Process

the isImmediate attribute of Sequence Flow

The execution semantics are described informally (textually), and this based on prior research involving the
formalization of execution semantics using mathematical formalisms.

This section provides the execution semantics of elements through the following structure:

A description of the operational semantics of the element,

Exception issues for the element where relevant,

List of workflow patterns3 supported by the element where relevant.

3 http://www.workflowpatterns.com/patterns/control/index.php

Proposal for:
427 Business Process Model and Notation (BPMN), v2.0

14.1. Process Instantiation and Termination
A Process is instantiated when one of its Start Events occurs. Each occurrence of a Start Event creates a
new Process Instance unless the Start Event participates in a Conversation that includes other Start
Events. In that case, a new Process instance is only created if none already exists for the specific
Conversation (identified through its associated correlation information) of the Event occurrence.
Subsequent Start Events that share the same correlation information as a Start Event that created a
Process instance are routed to that Process instance. Note that a global Process must neither have any
empty Start Event nor any Gateway or Activity without incoming Sequence Flow. An exception is the
Event Gateway.

A Process can also be started via an Event-Based Gateway that has no incoming Sequence Flow and
its Instantiate flag is true. If the Event-Based Gateway is exclusive, the first matching Event will
create a new instance of the Process. The Process then does not wait for the other Events originating from
the same Event-Based Gateway (see also semantics of the Event-Based Exclusive Gateway on page
437). If the Event-Based Gateway is parallel, also the first matching Event creates a new Process
instance. However, the Process then waits for the other Events to arrive. As stated above, those Events must
have the same correlation information as the Event that arrived first. A Process instance completes only if all
Events that succeed a Parallel Event-Based Gateway have occurred.

To specify that the instantiation of a Process waits for multiple Start Events to happen, a Multiple
Parallel Start Event can be used.

Note that two Start Events are alternative, A Process instance triggered by one (1) of the Start Events
does not wait for an alternative Start Event to occur. Note that there may be multiple instantiating Parallel
Event-Based Gateways. This allows the modeler to express that either all the Events after the first
Gateway occur or all the Events after the second Gateway and so forth.

Each Start Event that occurs creates a token on its outgoing Sequence Flow, which is followed as
described by the semantics of the other Process elements.

A Process instance is completed, if and only if the following three conditions hold:

If the instance was created through an instantiating Parallel Gateway, then all subsequent Events
(of that Gateway) must have occurred.

There is no token remaining within the Process instance.

No Activity of the Process is still active.

For a Process instance to become completed, all Tokens in that instance must reach an end node, i.e., a node
without outgoing Sequence Flow. A Token reaching an End Event triggers the behavior associated with the
Event type is, e.g., the associated Message is sent for a Message End Event, the associated Signal is sent
for a Signal End Event, and so on. If a Token reaches a Terminate End Event, the entire Process is
abnormally terminated.

14.2. Activities
This section specifies the semantics of Activities. First the semantics that is common to all Activities is
described. Subsequently the semantics of special types of Activities is described.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 428

14.2.1. Sequence Flow Considerations
The nature and behavior of Sequence Flow is described in Section 8.3.17. But there are special considerations
relative to Sequence Flow when applied to Activities. An Activity that is the target of multiple
Sequence Flow participates in “uncontrolled flow.”

To facilitate the definition of Sequence Flow (and other Process elements) behavior, we employ the
concept of a token that will traverse the Sequence Flow and pass through the elements in the Process. A
token is a theoretical concept that is used as an aid to define the behavior of a Process that is being performed.
The behavior of Process elements can be defined by describing how they interact with a token as it “traverses”
the structure of the Process. However, modeling and execution tools that implement BPMN are not required to
implement any form of token.

Uncontrolled flow means that, for each Token arriving on any incoming Sequence Flow into the Activity,
the Task will be enabled independently of the arrival of Tokens on other incoming Sequence Flow. The
presence of multiple incoming Sequence Flow behaves as an exclusive gateway. If the flow of Tokens
into the Task needs to be ‘controlled’, then Gateways (other than Exclusive) should be explicitly included
in the Process flow prior to the Task to fully eliminate semantic ambiguities.

If an Activity has no incoming Sequence Flow, and there are no Start Events in the containing Process
or Sub-Process, the Activity will be instantiated when the containing Process or Sub-Process is
instantiated. Exceptions to this are Event Sub-Processes and Activities marked as Compensation
Activities, as they have specialized instantiation behavior.

Activities can also be source of Sequence Flow. If an Activity has multiple outgoing Sequence Flow,
all of them will receive a token when the Activity transitions to the Completed state. Semantics for token
propagation for other termination states is defined below. Thus, multiple outgoing Sequence Flow behaves as
a parallel split. Multiple outgoing Sequence Flow with conditions behaves as an inclusive split. A mix of
multiple outgoing Sequence Flow with and without conditions is considered as a combination of a parallel
and an inclusive split as shown in the following figure.

Figure 14-1 – Behavior of multiple outgoing sequence flow of an Activity

If the Activity has no outgoing Sequence Flow and there are no End Events in the containing Process or
Sub-Process, the Activity will terminate and termination semantics for the container applied.

Token movement across a Sequence Flow does not have any timing constraints. A token might take a long or
short time to move across the Sequence Flow. If the isImmediate attribute of a Sequence Flow has a
value of false, or has no value and is taken to mean false, then Activities not in the model MAY be executed
while the token is moving along the Sequence Flow. If the isImmediate attribute of a Sequence Flow
has a value of true, or has no value and is taken to mean true, then Activities not in the model MAY NOT be
executed while the token is moving along the Sequence Flow.

Proposal for:
429 Business Process Model and Notation (BPMN), v2.0

14.2.2. Activity
An Activity is a Process step that can be atomic (Tasks) or decomposable (Sub-Processes) and is
executed by either a system (automated) or humans (manual). All Activities share common attributes and
behavior such as states and state transitions. An Activity, regardless of type, has lifecycle generally
characterizing its operational semantics. The lifecycle, described as a UML state diagram in Figure 14-2, entails
states and transitions between the states.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 430

Ready

Active

Completing

Completed

Withdrawn

Terminated

Failed

Inactive

Closed

Activity’s work
completed

Error

Compensating

Compensated

Compensation
Completes

Activity
Interrupted

Activity
Interrupted

The Process
Ends

Compensation
Occurs

The Process
Ends

The Process
Ends

The Process
Ends

The Process
Ends

Compensation
Interrupted

Compensation
Failed

Activity
Interrupted

Completing
Requirements Done

Non-Error

An Alternative
Path for Event

Gateway
Selected

A Token Arrives

Data InputSet Available

Assignments Completed

Interrupting
Event

An Alternative
Path for Event

Gateway
Selected

Interrupting
Event

Figure 14-2 – The Lifecycle of a BPMN Activity

The lifecycle of an Activity is described as follows:

Proposal for:
431 Business Process Model and Notation (BPMN), v2.0

An Activity is Ready for execution if the required number of Tokens is available to activate the
Activity. The required number of Tokens (one or more) is indicated by the attribute StartQuantity. If
the Activity has more than one Incoming Sequence Flow, there is an implied Exclusive
Gateway that defines the behavior.

When some data InputSet becomes available, the Activity changes from Ready to the Active state.
The availability of a data InputSet is evaluated as follows. The data InputSets are evaluated in
order. For each InputSet, the data inputs are filled with data coming from the elements of the context
such as Data Objects or Properties by triggering the input Data Associations. An
InputSet is available if each of its required data inputs is available. A data input is required by a data
InputSet if it is not optional in that InputSet. If an InputSet is available, it is used to start the
Activity. Further InputSets are not evaluated. If an InputSet is not available, the next
InputSet is evaluated. The Activity waits until one InputSet becomes available.

An Activity, if Ready or Active, can be Withdrawn from being able to complete in the context of a race
condition. This situation occurs for Tasks that are attached after an Event-Based Exclusive
Gateway. The first element (Task or Event) that completes causes all other Tasks to be withdrawn.

If an Activity fails during execution, it changes from the state Active to Failed.

o If a fault happens in the environment of the Activity, termination of the Activity is triggered,
causing the Activity to go into the state Terminated.

If an Activity’s execution ends without anomalies, the Activity’s state changes to Completing. This
intermediate state caters for processing steps prior to completion of the Activity. An example of where
this is useful is when non-interrupting Event Handlers (proposed for BPMN 2.0) are attached to an
Activity. They need to complete before the Activity to which it is attached can complete. The state
Completing of the main Activity indicates that the execution of the main Activity has been completed,
however, the main Activity is not allowed to be in the state Completed, as it still has to wait for all
non-interrupting Event Handlers to complete. The state Completing does not allow further processing
steps, otherwise allowed during the execution of the Activity. For example, new attached
non-interrupting Event Handlers may be created as long as the main Activity is in state Active.
However, once in the state Completing, running handlers should be completed with no possibility to
create new ones.

After all completion dependencies have been fulfilled, the state of the Activity changes to Completed.
The outgoing Sequence Flow becomes active and a number of Tokens, indicated by the attribute
CompletionQuantity, is placed on it. If there is more than one (1) outbound Sequence Flow for an
Activity, it behaves like an implicit Parallel Gateway. Upon completion, also a data OutputSet
of the Activity is selected as follows. All OutputSets are checked for availability in order. An
OutputSet is available if all its required data outputs are available. A data output is required by an
OutputSet if it is not optional in that OutputSet. If the data OutputSet is available, data is
pushed into the context of the Activity by triggering the output Data Associations of all its data
outputs. Further OutputSets are not evaluated. If the data OutputSet is not available, the next data
OutputSet is checked. If no OutputSet is available, a runtime exception is thrown. If the Activity
has an associated IORule, the chosen OutputSet is checked against that IORule, i.e., it is checked
whether the InputSet that was used in starting the Activity instance is together with the chosen
OutputSet compliant with the IORule. If not, a runtime exception is thrown.

Only completed Activities could, in principle, be compensated, however, the Activity can end in state
Completed, as compensation might not be triggered or there might be no compensation handler
specified. If the compensation handler is invoked, the Activity changes to state Compensating until

Proposal for:
Business Process Model and Notation (BPMN), v2.0 432

either compensation finishes successfully (state Compensated), an exceptions occurs (state Failed) or
controlled or uncontrolled termination is triggered (state Terminated).

14.2.3. Task
Task execution and completion for the different Task types are as follows:

Service Task: Upon instantiation, the associated service is invoked. On completion of the service, the
Service Task completes. If the invoked service returns a fault, that fault is treated as interrupting error,
and the Activity fails.

Send Task: Upon instantiation, the associated Message is sent and the Send Task completes.

Receive Task: Upon instantiation, the Receive Task begins waiting for the associated Message.
When the Message arrives, the Receive Task completes.

User Task: Upon instantiation, the User Task is distributed to the assigned person or group of
people. When the work has been done, the User Task completes.

Manual Task: Upon instantiation, the manual task is distributed to the assigned person or group of
people. When the work has been done, the Manual Task completes. This is a conceptual model only;
a Manual Task is never actually executed by an IT system.

Business Rule Task: Upon instantiation, the associated business rule is called. On completion of the
business rule, the Business Rule Task completes.

Script Task: Upon instantiation, the associated script is invoked. On completion of the script, the
Script Task completes.

Abstract Task: Upon instantiation, the Abstract Task completes. This is a conceptual model only;
an Abstract Task is never actually executed by an IT system.

14.2.4. Sub-Process/Call Activity
A Sub-Process is an Activity which encapsulates a Process which is in turn modeled by Activities,
Gateways, Events and Sequence Flow. Once a Sub-Process is instantiated, its elements behave as in a
normal Process. The instantiation and completion of a Sub-Process is defined as follows.

A Sub-Process is instantiated when it is reached by a Sequence Flow token. The Sub-Process
has either a unique empty Start Event, which gets a token upon instantiation, or it has no Start
Event but Activities and Gateways without incoming Sequence Flow. In the latter case all such
Activities and Gateways get a token. A Sub-Process must not have any non-empty Start
Events.

If the Sub-Process does not have incoming Sequence Flow but Start Events that are target of
Sequence Flow from outside the Sub-Process, the Sub-Process is instantiated when one of
these Start Events is reached by a token. Multiple such Start Events are alternative, i.e., each such
Start Event that is reached by a token generates a new instance.

A Sub-Process instance completes when there are no more tokens in the Sub-Process and none of
its Activities is still active.

If a “terminate” End Event is reached, the Sub-Process is abnormally terminated. For a “cancel”
End Event, the Sub-Process is abnormally terminated and the associated Transaction is aborted.

Proposal for:
433 Business Process Model and Notation (BPMN), v2.0

Control leaves the Sub-Process through a cancel intermediate boundary Event. For all other End
Events, the behavior associated with the Event type is performed, e.g., the associated Message is
sent for a Message End Event, the associated signal is sent for a signal End Event, and so on.

If a global Process is called through a Call Activity, then the Call Activity has the same
instantiation and termination semantics as a Sub-Process. However, in contrast to a Sub-Process,
the global Process that is called may also have non-empty Start Events. These non-empty Start
Events are alternative to the empty Start Event and hence they are ignored when the Process is
called from another Process.

14.2.5. Ad-Hoc Sub-Process
An Ad-Hoc Sub-Process or Process contains a number of embedded inner Activities and is intended to
be executed with a more flexible ordering compared to the typical routing of Processes. Unlike regular
Processes, it does not contain a complete, structured BPMN diagram description—i.e., from Start Event to
End Event. Instead the Ad-Hoc Sub-Process contains only Activities, Sequence Flow, Gateways
and Intermediate Events. An Ad-Hoc Sub-Process may also contain Data Objects and Data
Associations. The Activities within the Ad-Hoc Sub-Process are not required to have incoming and
outgoing Sequence Flow. However, it is possible to specify Sequence Flow between some of the
contained Activities. When used, Sequence Flow will provide the same ordering constraints as in a regular
Process. To have any meaning, Intermediate Events will have an outgoing Sequence Flow and they
can be triggered multiple times while the Ad-Hoc Sub-Process is active.

The contained Activities are executed sequentially or in parallel, they can be executed multiple times in an
order that is only constrained through the specified Sequence Flow, Gateways, and data connections.

Operational semantics:

At any point in time, a subset of the embedded Activities is enabled. Initially, all Activities without
incoming Sequence Flow are enabled. One of the enabled Activities is selected for execution. This
is not done by the implementation but usually by a Human Performer. If the ordering attribute is set
to sequential, another enabled Activity can be selected for execution only if the previous one has
terminated. If the ordering attribute is set to parallel, another enabled Activity can be selected for
execution at any time. This implies the possibility of the multiple parallel instances of the same inner
Activity.

After each completion of an inner Activity, a condition specified through the
completionCondition attribute is evaluated:

o If false, the set of enabled inner Activities is updated and new Activities can be selected for
execution.

o If true, the Ad-Hoc Sub-Process completes without executing further inner Activities. In case
the ordering attribute is set to parallel and the attribute cancelRemainingInstances is true,
running instances of inner Activities are canceled. If cancelRemainingInstances is set to
false, the Ad-Hoc Sub-Process completes after all remaining inner instances have completed or
terminated.

When an inner Activity with outgoing Sequence Flow completes, a number of tokens are produced
on its outgoing Sequence Flow. This number is specified through its attribute
completionQuantity. The resulting state may contain also other tokens on incoming Sequence
Flow of either Activities, converging Parallel or Complex Gateways, or an Intermediate

Proposal for:
Business Process Model and Notation (BPMN), v2.0 434

Event. Then all tokens are propagated as far as possible, i.e., all activated Gateways are executed
until no Gateway and Intermediate Event is activated anymore. Consequently, a state is obtained
where each token is on an incoming Sequence Flow of either an inner Activity, a converging
Parallel or Complex Gateway or an Intermediate Event. An inner Activity is now enabled if
it has either no incoming Sequence Flow or there are sufficiently many tokens on its incoming
Sequence Flow (as specified through startQuantity).

Workflow patterns: WCP-17 Interleaved parallel routing.

14.2.6. Loop Activity
The Loop Activity is a type of Activity that acts as a wrapper for an inner Activity that can be executed
multiple times in sequence.

Operational semantics: Attributes can be set to determine the behavior. The Loop Activity executes the inner
Activity as long as the loopCondition evaluates to true. A testBefore attribute is set to decide when the
loopCondition should be evaluated: either before the Activity is executed or after, corresponding to a pre- and
post-tested loop respectively. A loopMaximum attribute can be set to specify a maximal number of iterations. If
it is not set, the number is unbounded.

Workflow Patterns Support: WCP-21 Structured Loop.

14.2.7. Multiple Instances Activity
The multi-instance (MI) Activity is a type of Activity that acts as a wrapper for an Activity which has
multiple instances spawned in parallel or sequentially.

Operational semantics: The MI specific attributes are used to configure specific behavior. The attribute
isSequential determines whether instances are generated sequentially (true) or in parallel (false). The number
of instances to be generated is either specified by the integer-valued expression loopCardinality or as the
cardinality of a specific collection-valued data item of the data input of the MI Activity. The latter is described
in detail below.

The number of instances to be generated is evaluated once. Subsequently the number of instances are generated.
If the instances are generated sequentially, a new instance is generated only after the previous has been
completed. Otherwise, multiple instances to be executed in parallel are generated.

Attributes are available to support the different possibilities of behavior. The completionCondition
Expression is a Boolean predicate that is evaluated every time an instance completes. When evaluated to
true, the remaining instances are cancelled, a token is produced for the outgoing Sequence Flow, and the MI
Activity completes.

The attribute behavior defines if and when an Event is thrown from an Activity instance that is about to
complete. It has values of none, one, all, and complex, assuming the following behavior:

none: an EventDefinition is thrown for all instances completing.

one: an EventDefinition is thrown upon the first instance completing.

all: no Event is ever thrown.

Proposal for:
435 Business Process Model and Notation (BPMN), v2.0

complex: the complexBehaviorDefinitions are consulted to determine if and which Events
to throw.

For the behaviors of none and one, an EventDefinition (which is referenced from
MultipleInstanceLoopCharacteristics through the noneEvent and oneEvent associations,
respectively) is thrown which automatically carries the current runtime attributes of the MI Activity. That is,
the ItemDefinition of these SignalEventDefinitions is implicitly given by the specific runtime
attributes of the MI Activity.

The complexBehaviorDefinition association references multiple ComplexBehaviorDefinition
entities which each point to a Boolean condition being a FormalExpression and an Event which is an
ImplicitThrowEvent. Whenever an Activity instance completes, the conditions of all
ComplexBehaviorDefinitions are evaluated. For each ComplexBehaviorDefinition whose
condition is evaluated to true, the associated Event is automatically thrown. That is, a single Activity
completion may lead to multiple different Events that are thrown. The Events may then be caught on the
boundary of the MI Activity. Multiple ComplexBehaviorDefinitions offer an easy way of implicitly
spawning different flow at the MI Activity boundary for different situations indicating different states of
progress in the course of executing the MI Activity.

The completionCondition, the condition in the ComplexBehaviorDefinition, and the
DataInputAssociation of the Event in the ComplexBehaviorDefinition can refer to the MI
Activity instance attributes and the loopDataInput, loopDataOutput, inputDataItem, and
outputDataItem that are referenced from the MultiInstanceLoopCharacteristics.

In practice, a MI Activity is executed over a data collection, processing as input the data values in the collection
and producing as output data values in a collection. The input data collection is passed to the MI outer
Activity’s loopDataInput from a Data Object in the Process scope of the MI Activity. Under BPMN
data flow constraints, the Data Object is linked to MI activity’s loopDataInput through a
DataInputAssociation. To indicate that the Data Object is a collection, its respective symbol is
marked with the MI indicator (three-bar). The items of the loopDataInput collection are used to determine
the number of instances required to be executed (whether sequentially or in parallel). Accordingly, the inner
instances are created and data values from the loopDataInput are extracted and assigned to the respective
instances. Specifically, the values from the loopDataInput items are passed to an inputDataItem,
created in the scope of the outer Activity. The value in the inputDataItem can be passed to the
loopDataInput of each inner instance, where a DataInputAssociation links both. The process of
extraction is left under-specified. In practice, it would entail a special-purpose mediator which not only provides
the extraction and data assignment, but also any required data transformation.

Each instance processes the data value of its DataInput. It produces a value in its DataOutput if it
completes successfully. The DataOutPut value of the instance is passed to a corresponding
outputDataItem in the outer Activity, where a DataOutputAssociation links both. Each
outputDataItem value is updated in the loopDataOutput collection, in the corresponding item. The
mechanism of this update is left underspecified, and again would be implemented through a special purpose
mediator. The loopDataOutput is passed to the MI Activity’s Process scope through a Data Object
that has a DataOutputAssociation linking both.

It should be noted that the collection in the Process scope should not be accessible until all its items have been
written to. This is because, it could be accessed by an Activity running concurrently, and therefore control flow
through token passing cannot guarantee that the collection is fully written before it is accessed.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 436

The MI Activity is compensated only if all its instances have completed successfully.

Workflow Patterns Support: WCP-21 Structured Loop, Multiple Instance Patterns WCP 13, 14, 34, 36

14.3. Gateways

This section describes the behavior of Gateways.

14.3.1. Parallel Gateway (Fork and Join)

Figure 14-3 – Merging and Branching Sequence Flow for a Parallel Gateway

On the one hand, the Parallel Gateway is used to synchronize multiple concurrent branches (merging
behavior). On the other hand, it is used to spawn new concurrent threads on parallel branches (branching
behavior).

Table 14-1 – Parallel Gateway Execution Semantics

Operational Semantics The parallel gateway is activated if there is at least one Token on each
incoming sequence flow.

The parallel gateway consumes exactly one Token from each incoming
sequence flow and produces exactly one Token at each outgoing
sequence flow.

If there are excess Tokens at an incoming sequence flow, these Tokens
remain at this sequence flow after execution of the gateway.

Exception Issues The parallel gateway cannot throw any exception.

Workflow Patterns Support Parallel Split (WCP-2)

Synchronization (WCP-3)

Proposal for:
437 Business Process Model and Notation (BPMN), v2.0

14.3.2. Exclusive Gateway (Exclusive Decision (data-based) and Exclusive
Merge)

Cond1

Default

X1

Xm

Y1

Y3

Cond2 Y2

Figure 14-4 – Merging and Branching Sequence Flow for an Exclusive Gateway

The Exclusive Gateway has pass-through semantics for a set of incoming branches (merging behavior).
Further on, each activation leads to the activation of exactly one out of the set of outgoing branches (branching
behavior).

Table 14-2 – Exclusive Gateway Execution Semantics

Operational Semantics Each Token arriving at any incoming sequence flow activates the
gateway and is routed to exactly one of the outgoing sequence flow.

In order to determine the outgoing sequence flow that receives the
Token, the conditions are evaluated in order. The first condition that
evaluates to true determines the sequence flow the Token is sent to. No
more conditions are henceforth evaluated.

If and only if none of the conditions evaluates to true, the Token is passed
on the default sequence flow.

In case all conditions evaluate to false and a default flow has not been
specified, an exception is thrown.

Exception Issues The exclusive gateway throws an exception in case all conditions
evaluate to false and a default flow has not been specified.

Workflow Patterns Support Exclusive Choice (WCP-4)

Simple Merge (WCP-5)

Multi-Merge (WCP-8)

Proposal for:
Business Process Model and Notation (BPMN), v2.0 438

14.3.3. Inclusive Gateway (Inclusive Decision and Inclusive Merge)

Cond1

Default

X1

Xm

Y1

Y3

Cond2 Y2

Figure 14-5 – Merging and Branching Sequence Flow for an Inclusive Gateway

The Inclusive Gateway synchronizes a certain subset of branches out of the set of concurrent incoming
branches (merging behavior). Further on, each firing leads to the creation of threads on a certain subset out of the
set of outgoing branches (branching behavior).

Table 14-3 – Inclusive Gateway Execution Semantics

Operational Semantics The Inclusive Gateway is activated if

 At least one incoming sequence flow has at least one Token and
 for each empty incoming sequence flow, there is no Token in the

graph anywhere upstream of this sequence flow, i.e., there is no
directed path (formed by Sequence Flow) from a Token to this
sequence flow unless

the path visits the inclusive gateway or

the path visits a node that has a directed path to a non-empty
incoming sequence flow of the inclusive gateway.

Upon execution, a Token is consumed from each incoming sequence
flow that has a Token. A Token will be produced on some of the outgoing
sequence flows.

In order to determine the outgoing sequence flows that receive a Token,
all conditions are evaluated. The evaluation does not have to respect a
certain order.

For every condition, which evaluates to true, a Token must be passed on
the respective sequence flow.

If and only if none of the conditions evaluates to true, the Token is passed
on the default sequence flow.

In case all conditions evaluate to false and a default flow has not been
specified, the inclusive gateway throws an exception.

Proposal for:
439 Business Process Model and Notation (BPMN), v2.0

Exception Issues The inclusive gateway throws an exception in case all conditions
evaluate to false and a default flow has not been specified.

Workflow Patterns Support Multi-Choice (WCP-6)

Structured Synchronizing Merge (WCP-7)

Acyclic Synchronizing Merge (WCP-37)

General Synchronizing Merge (WCP-38)

14.3.4. Event-based Gateway (Exclusive Decision (event-based))

Figure 14-6 – Merging and branching Sequence Flow for an Event-Based Gateway

The Event-Based Gateway has pass-through semantics for a set of incoming branches (merging behavior).
Exactly one of the outgoing branches is activated afterwards (branching behavior), depending on which of
Events of the Gateway configuration is first triggered. The choice of the branch to be taken is deferred until
one of the subsequent Tasks or Events completes. The first to complete causes all other branches to be
withdrawn.

When used at the Process start as a Parallel Event Gateway, only message-based triggers are allowed. The
Message triggers that are part of the Gateway configuration must be part of a Conversation with the same
correlation information. After the first trigger instantiates the Process, the remaining Message triggers will
be a part of the Process instance that is already active (rather than creating new Process instances).

Table 14-4 – Event-Based Gateway Execution Semantics

Exception Issues The event-based gateway cannot throw any exception.

Workflow Patterns Support Deferred Choice (WCP-16)

Proposal for:
Business Process Model and Notation (BPMN), v2.0 440

14.3.5. Complex Gateway (related to Complex Condition and Complex
Merge)

x1

xm

y1

yn

Cond1

Condn

Default

Figure 14-7 – Merging and branching Sequence Flow for a Complex Gateway

The Complex Gateway facilitates the specification of complex synchronization behavior, in particular race
situations. The diverging behavior is similar to the Inclusive Gateway. Each incoming gate of the Complex
Gateway has an attribute activationCount, which can be used in an expression as an integer-valued
variable. This variable represents the number of tokens that are currently on the respective incoming Sequence
Flow. The Complex Gateway has an attribute activationExpression. An
activationExpression is a Boolean Expression that refers to data and to the activationCount
of incoming gates. For example, an activationExpression could be x1+x2+…+xm >= 3 stating that it
needs 3 out of the m incoming gates to have a token in order to proceed. To prevent undesirable oscillation of
activation of the Complex Gateway, ActivationCount variables should only be used in subexpressions
of the form expr >= const where expr is an arithmetic Expression that uses only addition and const is an
Expression whose evaluation remains constant during execution of the Process.

Each outgoing Sequence Flow of the Complex Gateway has a Boolean condition that is evaluated to
determine whether that Sequence Flow receives a token during the execution of the Gateway. Such a
condition may refer to internal state of the Complex Gateway. There are two states: waiting for start
(represented by the runtime attribute waitingForStart = true) and waiting for reset
(waitingForStart=false).

Proposal for:
441 Business Process Model and Notation (BPMN), v2.0

Table 14-5 – Semantics of the Complex Gateway

Operational Semantics The Complex Gateway is in one of the two states: waiting for start or
waiting for reset, initially it is in waiting for start. If it is waiting for start,
then it waits for the activationExpression to become true. The
activationExpression is not evaluated before there is at least
one token on some incoming Sequence Flow. When it becomes true,
a token is consumed from each incoming Sequence Flow that has a
token. To determine which outgoing Sequence Flow receive a token,
all conditions on the outgoing Sequence Flow are evaluated (in any
order). Those and only those which evaluate to true receive a token. If
no condition evaluates to true, and only then, the default Sequence
Flow receives a token. If no default flow is specified an exception is
thrown. The Gateway changes its state to waiting for reset.

The Gateway remembers from which of the incoming Sequence
Flow it consumed tokens in the first phase.

When waiting for reset, the Gateway waits for a token on each of
those incoming Sequence Flow from which it has not yet received a
token in the first phase unless such a token does not come (cf.
inclusive join behavior). More precisely, the Gateway being waiting
for reset, resets when for each incoming Sequence Flow from which
no token was consumed in the first phase, there is either a token on
that Sequence Flow or there is no token in the graph anywhere
upstream of this Sequence Flow, i.e., there is no directed path
(formed by Sequence Flow) from a token to this Sequence Flow
unless

 the path visits the Complex Gateway or
 the path visits a node that has a directed path to a non-empty

incoming Sequence Flow of the Complex Gateway or to an
incoming Sequence Flow from which a token was consumed in
the first phase.

When the Gateway resets, it consumes a token from each incoming
Sequence Flow that has a token and from which it had not yet
consumed a token in the first phase. It then evaluates all conditions on
the outgoing Sequence Flow (in any order) to determine which
Sequence Flow receives a token. Those and only those which
evaluate to true receive a token. If no condition evaluates to true, and
only then, the default Sequence Flow receives a token. The
Gateway changes its state back to the state waiting for start. Note that
the Gateway might not produce any tokens in this phase and no
exception is thrown. Note that the conditions on the outgoing
Sequence Flow may evaluate differently in the two phases, e.g., by
referring to the state of the Gateway (runtime attribute
waitingForStart).

Proposal for:
Business Process Model and Notation (BPMN), v2.0 442

Exception issues The Complex Gateway throws an exception when it is activated in
the state waiting for start, no condition on any outgoing Sequence
Flow evaluates to true and no default Sequence Flow is specified.

Workflow Patterns Support Structured Discriminator (WCP-9)

Blocking Discriminator (WCP-28)

Structured Partial Join (WCP-30)

Blocking Partial Join (WCP-31)

14.4. Events
This section describes the handling of Events.

14.4.1. Start Events
For single Start Events, handling consists of starting a new Process instance each time the Event occurs.
Sequence Flow leaving the Event is then followed as usual.

If the Start Event participates in a Conversation that includes other Start Events, a new Process
instance is only created if none already exists for the specific Conversation (identified through its associated
correlation information) of the Event occurrence.

A Process can also be started via an Event-Based Gateway. In that case, the first matching Event will
create a new instance of the Process, and waiting for the other Events originating from the same decision
stops, following the usual semantics of the Event-Based Exclusive Gateway. Note that this is the only
scenario where a Gateway can exist without an incoming Sequence Flow.

It is possible to have multiple groups of Event-Based Gateways starting a Process, provided they
participate in the same Conversation and hence share the same correlation information. In that case, one
Event out of each group needs to arrive; the first one creates a new Process instance, while the subsequent
ones are routed to the existing instance, which is identified through its correlation information.

14.4.2. Intermediate Events
For Intermediate Events, the handling consists of waiting for the Event to occur. Waiting starts when the
Intermediate Event is reached. Once the Event occurs, it is consumed. Sequence flow leaving the
Event is followed as usual.

14.4.3. Intermediate Boundary Events
For boundary Events, handling first consists of consuming the Event occurrence. If the cancelActivity
attribute is set, the Activity the Event is attached to is then cancelled (in case of a multi-instance, all its
instances are cancelled); if the attribute is not set, the Activity continues execution (only possible for
Message, Signal, Timer and Conditional Events, not for Error Events). Execution then follows the
Sequence Flow connected to the boundary Event.

Proposal for:
443 Business Process Model and Notation (BPMN), v2.0

14.4.4. Event Sub-Processes
Event Sub-Processes allow to handle an Event within the context of a given Sub-Processes or
Process. An Event Sub-Process always begins with a Start Event, followed by Sequence Flow.
Event Sub-Processes are a special kind of Sub-Process: they create a scope and are instantiated like a
Sub-Process, but they are not instantiated by normal control flow but only when the associated Start Event
is triggered. Event Sub-Processes are self-contained and must not be connected to the rest of the
Sequence Flow in the Sub-Processes; also they cannot have attached boundary Events. They run in the
context of the Sub-Process, and thus have access to its context.

An Event Sub-Process cancels execution of the enclosing Sub-Process, if the isInterrupting
attribute of its Start Event is set; for a multi-instance Activity this cancels only the affected instance. If the
isInterrupting attribute is not set (not possible for an Error Event Sub-Processes), execution of the
enclosing Sub-Process continues in parallel to the Event Sub-Process.

An Event Sub-Process can optionally retrigger the Event through which it was triggered, to cause its
continuation outside the boundary of the associated Sub-Process. In that case the Event Sub-Process is
performed when the Event occurs; then control passes to the boundary Event, possibly canceling the
Sub-Process (including running handlers).

Operational semantics

A non-interrupting Event Sub-Process becomes initiated, and thus Enabled and Running, through
the Activity to which it is attached. The non-interrupting Event Handler may only be initiated after the
parent Activity is Running. More than one non-interrupting Event Handler may be initiated and they
may be initiated at different times. There might be multiple instances of the non-interrupting Event
Handler at a time.

An Event Sub-Process completes when all tokens have reached an End Event, like any other
Sub-Process. If the parent Activity enters the state Completing, it remains in that state until all
contained active Event Sub-Processes have completed. While the parent Activity is in that
Completing, no new Event Sub-Processes can be initiated.

14.4.5. Compensation
Compensation is concerned with undoing steps that were already successfully completed, because their results
and possibly side effects are no longer desired and need to be reversed. If an Activity is still active, it cannot be
compensated, but rather needs to be canceled. Cancellation in turn may result in compensation of already
successfully completed portions of an active Activity, in case of a Sub-Process.

Compensation is performed by a compensation handler. A compensation handler can either be a
Compensation Event Sub-Process (for a Sub-Process or Process), or an associated
Compensation Activity (for any Activity). A compensation handler performs the steps necessary to
reverse the effects of an Activity. In case of a Sub-Process, its Compensation Event Sub-Process has
access to Sub-Process data at the time of its completion (“snapshot data”).

Compensation is triggered by a throw Compensation Event, which typically will be raised by an error
handler, as part of cancellation, or recursively by another compensation handler. That Event specifies the
Activity for which compensation is to be performed, either explicitly or implicitly.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 444

Compensation Handler

A compensation handler is a set of Activities that are not connected to other portions of the BPMN model. The
compensation handler starts with a catch Compensation Event. That catch Compensation Event either
is a boundary Event, or, in case of a Compensation Event Sub-Process, the handler’s Start Event.

A compensation handler connected via a boundary Event can only perform “black-box” compensation of the
original Activity. This compensation is modeled with a specialized Compensation Activity.

A Compensation Event Sub-Process is contained within a Process or a Sub-Processes. It can
access data that is part of its parent, snapshot at the point in time when its parent has completed. A compensation
Event Sub-Process can in particular recursively trigger compensation for Activities contained in that its
parent.

It is possible to specify that a Sub-Process can be compensated without having to define the compensation
handler. The Sub-Process attribute compensable, when set, specifies that default compensation is
implicitly defined, which recursively compensates all successfully completed Activities within that
Sub-Process, invoking them in reverse order of their forward execution.

Compensation Triggering

Compensation is triggered using a throw Compensation Event, which can either be an Intermediate or
an End Event. The Activity which needs to be compensated is referenced. If the Activity is clear from the
context, it doesn’t have to be specified and defaults to the current Activity. A typical scenario for that is an
inline error handler of a Sub-Process that cannot recover the error, and as a result would trigger
compensation for that Sub-Process. If no Activity is specified in a “global” context, all completed
Activities in the Process are compensated.

By default, compensation is triggered synchronously, that is, the throw Compensation Event waits for the
completion of the triggered compensation handler. Alternatively, compensation can just be triggered without
waiting for its completion, by setting the throw Compensation Event’s waitForCompletion attribute
to false.

Multiple instances typically exist for Loop or Multi-Instance Sub-Processes. Each of these has its own
instance of its Compensation Event Sub-Process, which has access to the specific snapshot data that was
current at the time of completion of that particular instance. Triggering compensation for the Multi-Instance
Sub-Process individually triggers compensation for all instances within the current scope. If compensation is
specified via a boundary compensation handler, this boundary compensation handler also is invoked once for
each instance of the Multi-Instance Sub-Process in the current scope.

Relationship between Error Handling and Compensation
Compensation employs a “presumed abort principle”, which has a number of consequences. First, only
completed Activities are compensated; compensation of a failed Activity results in an empty operation. Thus,
when an Activity fails, i.e., is left because an error has been thrown, it’s the error handler’s responsibility to
ensure that no further compensation will be necessary once the error handler has completed. Second, if no error
Event Sub-Process is specified for a particular Sub-Process and a particular error, the default behavior is
to automatically call compensation for all contained Activities of that Sub-Process if that error occurs, thus
ensuring the “presumed abort” invariant.

Proposal for:
445 Business Process Model and Notation (BPMN), v2.0

Operational Semantics

A Compensation Event Sub-Process becomes enabled when its parent Activity transitions into
state Completed. At that time, a snapshot of the data associated with the parent Activity is taken and
kept for later usage by the Compensation Event Sub-Process. In case the parent Activity is a
multi-instance or loop, for each instance a separate data snapshot is taken, which is used when its
associated Compensation Event Sub-Process is triggered.

When compensation is triggered for the parent Activity, its Compensation Event Sub-Process
is activated and runs. The original context data of the parent Activity is restored from the data snapshot.
In case the parent Activity is a multi-instance or loop, for each instance the dedicated snapshot is
restored and a dedicated Compensation Event Sub-Process is activated.

An associated Compensation Activity becomes enabled when the Activity it is associated with
transitions into state Completed. When compensation is triggered for that Activity, the associated
Compensation Activity is activated. In case the Activity is a multi-instance or loop, the
Compensation Activity is triggered only once, too, and thus has to compensate the effects of all
instances.

Default compensation ensures that Compensation Activities are performed in reverse order of the
execution of the original Activities, allowing for concurrency when there was no dependency between
the original Activities. Dependencies between original Activities that default compensation must
consider are the following

o A Sequence Flow between Activities A and B results in compensation of B to be performed
before compensation of A.

o A data dependency between Activities A and B, e.g., through an IORules specification in B
referring to data produced by A, results in compensation of B to be performed before compensation
of A.

o If A and B are two Activities that were active as part of an Ad-Hoc Sub-Process, then
compensation of B must be performed before compensation of A if A completed before B started.

o Instances of a loop or sequential multi-instance are compensated in reverse order of their forward
completion. Instances of a parallel multi-instance can be compensated in parallel.

o If a Sub-Process A has a boundary Event connected to Activity B, then compensation of B
must be performed before compensation of A if that particular Event occurred. This also applies to
multi-instances and loops.

14.4.6. End Events

Process level end events

For a “terminate” End Event, the Process is abnormally terminated.

For all other End Events, the behavior associated with the Event type is performed, e.g., the associated
Message is sent for a Message End Event, the associated signal is sent for a Signal End Event, and so
on. The Process instance is then completed, if and only if the following two conditions hold:

All start nodes of the Process have been visited. More precisely, all Start Events have been
triggered, and for all starting Event-Based Gateways, one of the associated Events has been
triggered.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 446

There is no token remaining within the Process instance.

Sub-process level end events

For a “terminate” End Event, the Sub-Process is abnormally terminated. In case of a multi-instance
Activity, only the affected instance is terminated.

For a “cancel” End Event, the Sub-Process is abnormally terminated and the associated transaction is
aborted. Control leaves the Sub-Process through a cancel intermediate boundary Event.

For all other End Events, the behavior associated with the Event type is performed, e.g., the associated
Message is sent for a Message End Event, the associated signal is sent for a signal End Event, and so on.
The Sub-Process instance is then completed, if and only if the following two conditions hold:

All start nodes of the Sub-Process have been visited. More precisely, all Start Events have been
triggered, and for all starting Event-Based Gateways, one of the associated Events has been
triggered.

There is no token remaining within the Sub-Process instance.

Proposal for:
447 Business Process Model and Notation (BPMN), v2.0

15. Mapping BPMN Models to WS-BPEL

Note: The contents of this chapter is required for BPMN BPEL Process Execution Conformance or for BPMN
Complete Conformance . However, this chapter is not required for BPMN Process Modeling Conformance,
BPMN Process Choreography Conformance, or BPMN Process Execution Conformance. For more
information about BPMN conformance types, see page 28.

This chapter covers a mapping of a BPMN model to WS-BPEL that is derived by analyzing the BPMN objects
and the relationships between these objects.

A Business Process Diagram can be made up of a set of (semi-) independent components, which are
shown as separate Pools, each of which represents an orchestration Process. There is not a specific mapping
of the diagram itself, but rather, each of these orchestration Processes maps to an individual WS-BPEL
process.

Not all BPMN orchestration Processes can be mapped to WS-BPEL in a straight-forward way. That is
because BPMN allows the modeler to draw almost arbitrary graphs to model control flow, whereas in WS-BPEL,
there are certain restrictions such as control-flow being either block-structured or not containing cycles. For
example, an unstructured loop cannot directly be represented in WS-BPEL.

To map a BPMN orchestration Process to WS-BPEL it must be sound, that is it must contain neither a
deadlock nor a lack of synchronization. A deadlock is a reachable state of the Process that contains a token on
some Sequence Flow that cannot be removed in any possible future. A lack of synchronization is a reachable
state of the Process where there is more than one token on some Sequence Flow. For further explanation of
these terms, we refer to the literature. To define the structure of BPMN Processes, we introduce the following
concepts and terminology. The Gateways and the Sequence Flow of the BPMN orchestration Process
form a directed graph. A block of the diagram is a connected sub-graph that is connected to the rest of the graph
only through exactly two Sequence Flow: exactly one Sequence Flow entering the block and exactly one
Sequence Flow leaving the block. A block hierarchy for a Process model is a set of blocks of the Process
model in which each pair of blocks is either nested or disjoint and which contains the maximal block (i.e. the
whole Process model) A block that is nested in another block B is also called a subblock of B (cf. Figure 15-1).
Each block of the block hierarchy of a given BPMN orchestration Process has a certain structure (or pattern)
which provides the basis for defining the BPEL mapping.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 448

Figure 15-1 – A BPMN orchestration process and its block hierarchy

The following sections define a syntactical BPEL mapping prescribing the resulting BPEL model at the
syntactical level, and a semantic BPEL mapping prescribing the resulting BPEL model in terms of its observable
behavior. The syntactical BPEL mapping is defined for a subset of BPMN models based on certain patterns of
BPMN blocks, whereas the semantical BPEL mapping (which extends the syntactical mapping) does not
enforce block patterns, allowing for the mapping a larger class of BPMN models without prescribing the exact
syntactical representation in BPEL.

15.1. Basic BPMN-BPEL Mapping
 This section introduces a partial mapping function from BPMN orchestration Process models to WS-BPEL
executable Process models by recursively defining the mapping for elementary BPMN constructs such as
Tasks and Events, and for blocks following the patterns described here. Mapping a BPMN block to
WS-BPEL includes mapping all of its associated attributes. The observable behavior of a WS-BPEL process
resulting from a BPEL mapping is the same as that of the original BPMN orchestration Process.

We use the notation [BPMN construct] to denote the WS-BPEL construct resulting from mapping the BPMN
construct.

Examples are

[ServiceTask] = Invoke Activity

which says that a BPMN Service Task is mapped to a WS-BPEL Invoke Activity, or

Proposal for:
449 Business Process Model and Notation (BPMN), v2.0

which says that the data-based exclusive choice controlled by the two predicates p1 and p2, containing the three
BPMN blocks G1, G2 and G3 is mapped to the WS-BPEL on the right hand side, which recursively uses the
mappings of those predicates and those sub-graphs. Note that we use the “waved rectangle” symbol throughout
this section to denote BPMN blocks.

15.1.1. Process
The following figure describes the mapping of a Process, represented by its defining Collaboration, to
WS-BPEL. The process itself is described by a contained graph G of flow elements) to WS-BPEL. The
Process interacts with Participants Q1…Qn via Conversations C1…Cm:

=

<process name="[P-name]"
targetNamespace="[targetNamespace]"
expressionLanguage="[expressionLanguage]"
suppressJoinFailure="yes"
xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

<partnerLinks>
[{P-Interfaces} UNION {Qi-Interfaces}]

</partnerLinks>
<variables>

[{dataObjects} UNION {properties}]
</variables>
<correlationSets>

[{Ci-CorrelationKeys}]
</correlationSets>
[G]

</process>

P G

Q
1

Q
2

C1

C2

The partner links of the corresponding WS-BPEL process are derived from the set of interfaces associated with
each participant. Each interface of the Participant containing the Process P itself is mapped to a
WS-BPEL partner link with a “myRole” specification, each interface of each other Participant Qi is mapped to
a WS-BPEL partner link with a “partnerRole” specification.

The variables of the corresponding WS-BPEL process are derived from the set “{dataObjects}” of all Data
Objects occurring within G, united with the set “{properties}” of all properties occurring within G, without
Data Objects or properties contained in nested Sub-Processes. See Section “Handling Data” on page 467
for more details of this mapping.

The correlation sets of the corresponding WS-BPEL process are derived from the CorrelationKeys
of the set of Conversations C1…Cn.. See page 451 for more details of this mapping.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 450

15.1.2. Activities

Common Activity Mappings

The following table displays a set of mappings of general BPMN Activity attributes to WS-BPEL activity
attributes.

Table 15-1 – Common Activity Mappings to WS-BPEL

Activity Mapping to WS-BPEL

name The name attribute of a BPMN activity is mapped to the name attribute of a
WS-BPEL activity by removing all characters not allowed in an XML NCName, and
ensuring uniqueness by adding an appropriate suffix. In the subsequent diagrams,
this mapping is represented as [name].

Task Mappings

The following sections contain the mappings of the variations of a Task to WS-BPEL.

Service Task

The following figure shows the mapping of a Service Task to WS-BPEL:

The partner link associated with the WS-BPEL invoke is derived from both the participant Q that the Service
Task is connected to by Message Flow, and from the interface referenced by the operation of the
Service Task.

Receive Task

The following figure shows the mapping of a Receive Task to WS-BPEL:

The partner link associated with the WS-BPEL receive is derived from the interface referenced by the operation
of the Receive Task.

Proposal for:
451 Business Process Model and Notation (BPMN), v2.0

Send Task

The following figure shows the mapping of a Send Task to WS-BPEL:

Q

The partner link associated with the WS-BPEL invoke is derived from both the participant Q that the Send
Task is connected to by Message Flow, and from the interface referenced by the operation of the
Send Task.

Abstract Task

The following figure shows the mapping of an Abstract Task to WS-BPEL:

Service Package

Message

For Messages with a scalar data item definition typed by an XML schema definition, the following figure
shows the mapping to WS-BPEL, using WSDL 1.1:

The top-level child elements of the XML schema defining the structure of the BPMN Message are mapped to
the WSDL’s message’s parts.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 452

Interface and Operation

The following figure shows the mapping of a BPMN interface with its operations to WS-BPEL, using WSDL
1.1:

Conversations and Correlation

For those BPMN nodes sending or receiving Messages (i.e., Message Events, Service, send or Receive
Tasks) that have an associated key-based Correlation Key, the mapping of that key-based
Correlation Key is as follows:

The messageType of the BPEL property alias is appropriately derived from the itemDefinition of the
Message referenced by the BPMN Message key expression. The name of the Message part is derived from
the Message key expression. The Message key expression itself is transformed into an expression relative to
that part.

The mapping of Activities with an associated key-based Correlation Key is extended to reference the
above BPEL correlation set in the corresponding BPEL correlations element. The following figure shows that
mapping in the case of a Service Task with an associated key-based Correlation Key:

Proposal for:
453 Business Process Model and Notation (BPMN), v2.0

The initiate attribute of the BPEL correlation element is set depending on whether or not the associated
Message Flow initiates the associated Conversations, or participates in an already existing
Conversation. If there are multiple CorrelationKeys associated with the Conversation, multiple
correlation elements are used.

Sub-Process Mappings

The following table displays the mapping of an embedded Sub-Process with Adhoc=”False” to a WS-BPEL
scope. (This extends the mappings that are defined for all Activities--see page 450):

The following figure shows the mapping of a BPMN Sub-Process without an Event Sub-Process:

The following figure shows the mapping of a BPMN Sub-Process with an Event Sub-Process. (Event
Sub-Processes could also be added to a top-level Process, in which case their mapping extends
correspondingly.)

Note that in case of multiple Event Sub-Processes, there would be multiple WS-BPEL handlers.

Mapping of Event Sub-Processes

Note that if a Sub-Process contains multiple Event Sub-Processes, all become handlers of the associated
WS-BPEL scope, ordered and grouped as specified by WS-BPEL.

Non-interrupting Message Event Sub-Processes are mapped to WS-BPEL event handlers as follows:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 454

Timer Event Sub-Processes are mapped to WS-BPEL event handlers as follows:

Error Event Sub-Processes are mapped to WS-BPEL fault handlers as follows:

Error Handler

G =

e

<faultHandlers>
<catch faultName="[e-fault]">

[G]
</catch>

</faultHandlers>

A Compensation Event Sub-Process is mapped to a WS-BPEL compensation handler as follows:

Activity Loop Mapping

Standard loops with a testTime attribute “Before” or “After” execution of the Activity map to WS-BPEL while

and repeatUntil activities in a straight-forward manner. When the LoopMaximum attribute is used, additional
activities are used to maintain a loop counter.

Multi-instance Activities map to WS-BPEL forEach activities in a straight-forward manner.

Standard Loops

The mappings for standard loops to WS-BPEL are described in the following.

A standard loop with testTime= “Before” maps to WS-BPEL as follows, where p denotes the loop condition:

Proposal for:
455 Business Process Model and Notation (BPMN), v2.0

A standard loop with testTime= “After” maps as follows, where p denotes the loop condition:

=Task

<repeatUntil>
[Task]
<condition>[not p]</condition>

</repeatUntil>

Dealing with LoopMaximum

When the LoopMaximum attribute is specified for an Activity, the loop requires additional set up for
maintaining a counter.

A standard loop with testTime=“Before” and a LoopMaximum attribute maps to WS-BPEL as follows (again, p
denotes the loopCondition):

(The notation [counter] denotes the unique name of a variable used to hold the counter value; the actual name
is immaterial.)

A standard loop with testTime=“After” and a LoopMaximum attribute maps as follows:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 456

(The notation [counter] denotes the unique name of a variable used to hold the counter value; the actual name
is immaterial.)

Multi-Instance Activities

A BPMN Multi-Instance Task with a multiInstanceFlowCondition of “All” is mapped to
WS-BPEL as follows:

=Task

<variable name="[counter]" type="xsd:integer"/>
...
<forEach counterName="[counter]" parallel="[isSequential? 'no':'yes']">

<startCounterValue>1</startCounterValue>
<finalCounterValue>[condition]</finalCounterValue>
<scope>

[Task]
</scope>

</forEach>

(The notation [counter] denotes the unique name of a variable used to hold the counter value; the actual name
is immaterial.)

15.1.3. Events

Start Event Mappings

The following sections detail the mapping of Start Events to WS-BPEL.

Proposal for:
457 Business Process Model and Notation (BPMN), v2.0

Message Start Events

A Message Start Event is mapped to WS-BPEL as shown in the following figure:

The partner link associated with the WS-BPEL receive is derived from the interface referenced by the operation
of the Message Start Event.

Error Start Events

An Error Start Event can only occur in Event Sub-Processes. This mapping is described on page 453.

Compensation Start Events

A Compensation Start Event can only occur in Event Sub-Processes. This mapping is described page
453.

Intermediate Event Mappings (Non-boundary)

The following sections detail the mapping of intermediate non-boundary Events to WS-BPEL.

Message Intermediate Events (Non-boundary)

A Message Intermediate Event can either be used in normal control flow, similar to a Send or Receive
Task (for throw or catch Message Intermediate Events, respectively), or it can be used in an Event
Gateway. The latter is described in more detail in Section 15.1.4.

The following figure describes the mapping of Message Intermediate Events to WS-BPEL:

The partner link associated with the WS-BPEL receive is derived from the interface referenced by the operation
of the Message Intermediate Event.

Timer Intermediate Events (Non-boundary)

A Timer Intermediate Event can either be used in normal control flow, or it can be used in an Event
Gateway. The latter is described in more detail in Section 15.1.4.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 458

The following figure describes the mapping of a Timer Intermediate Event to WS-BPEL – note that one o
the mappings shown is chosen depending on whether the Timer Event’s TimeCycle or TimeDate
attribute is used:

Compensation Intermediate Events (Non-boundary)

A Compensation Intermediate Event with its waitForCompletion property set to true, that is used
within an Event Sub-Process triggered through an error or through compensation, is mapped to WS-BPEL
as follows:

The first mapping is used if the Compensation Event does not reference an Activity, the second mapping is
used otherwise.

End Event Mappings

The following sections detail the mapping of End Events to WS-BPEL.

None End Events

A “none” End Event marking the end of a Process is mapped to WS-BPEL as shown in the following figure:

Message End Events

A Message Start Event is mapped to WS-BPEL as shown in the following figure:

Proposal for:
459 Business Process Model and Notation (BPMN), v2.0

The partner link associated with the WS-BPEL invoke is derived from both the participant Q that the Message
Intermediate Event is connected to by Message Flow, and from the interface referenced by the
operation of the Message Intermediate Event.

Error End Events

An Error End Event is mapped to WS-BPEL as shown in the following figure:

Compensation End Events

A Compensation End Event with its waitForCompletion property set to true, that is used within an
Event Sub-Process triggered through an error or through compensation, is mapped to WS-BPEL as follows:

The first mapping is used if the Compensation Event does not reference an Activity, the second mapping is
used otherwise.

Terminate End Events

A Terminate End Event is mapped to WS-BPEL as shown in the following figure:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 460

Boundary Intermediate Events

Message Boundary Events

A BPMN Activity with a non-interrupting Message boundary Event is mapped to a WS-BPEL scope with
an event handler as follows:

The partner link associated with the WS-BPEL onEvent is derived from the interface referenced by the operation
of the boundary Message Event.

The same mapping applies to a non-interrupting boundary Timer Event, using a WS-BPEL onAlarm handler
instead.

Error Boundary Events

A BPMN Activity with a boundary Error Event according to the following pattern is mapped as shown:

Proposal for:
461 Business Process Model and Notation (BPMN), v2.0

Note that the case where the error handling path doesn’t join the main control flow again, is still mapped using
this pattern, by applying the following model equivalence:

Compensation Boundary Events

A BPMN Activity with a boundary Compensation Event is similarly mapped as shown:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 462

Multiple Boundary Events, and Boundary Events with Loops

If there are multiple boundary Events for an Activity, their WS-BPEL mappings are super-imposed on the
single WS-BPEL scope wrapping the mapping of the Activity.

When the Activity is a standard loop or a multi-instance and has one or more boundary Events, the WS-BPEL
loop resulting from mapping the BPMN loop is nested inside the WS-BPEL scope resulting from mapping the
BPMN boundary Events.

The following example shows that mapping for a Sub-Process with a nested Event Sub-Process that has
a standard loop with TestTime=“Before”, an boundary Error Intermediate Event, and a boundary
Compensation Intermediate Event.

Proposal for:
463 Business Process Model and Notation (BPMN), v2.0

15.1.4. Gateways and Sequence Flow
The mapping of BPMN Gateways and Sequence Flow is described using BPMN blocks following
particular patterns.

Exclusive (Data-based) Decision Pattern
An exclusive data-based decision is mapped as follows:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 464

While this figure shows three branches, the pattern is generalized to n branches in an obvious manner.

Exclusive (Event-based) Decision Pattern

An Event Gateway is mapped as follows:

While this figure shows three branches with one Message Intermediate Event, one Receive Task and
one Timer Intermediate Event, the pattern is generalized to n branches with any combination of the former
in an obvious manner. The handling of Participants (BPEL partnerLinks), Event (operation) and timer details
is as specified for Message Intermediate Events, Receive Tasks and Timer Intermediate Events,
respectively. The data flow and associated variables (not shown) are handled as for Receive Tasks/Message
Intermediate Events.

Inclusive Decision Pattern
An inclusive decision pattern without an otherwise gate is mapped as follows:

Proposal for:
465 Business Process Model and Notation (BPMN), v2.0

While this figure shows three branches, the pattern is generalized to n branches in an obvious manner.

Note that link names in WS-BPEL must follow the rules of an XML NCName. Thus, the mapping of the BPMN
Sequence Flow name attribute must appropriately canonicalize that name, possibly ensuring uniqueness, e.g.,
by appending a unique suffix. This is capture by the [linkName] notation.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 466

Parallel Pattern
A parallel fork-join pattern is mapped as follows:

G1

G2

G3

=

<flow>
[G1]
[G2]
[G3]

</flow>

Sequence Pattern

A BPMN block consisting of a series of Activities connected via (unconditional) Sequence Flow is mapped
to a WS-BPEL sequence:

Structured Loop Patterns

A BPMN block consisting of a structured loop of the following pattern is mapped to a WS-BPEL while:

A BPMN block consisting of a structured loop of the following pattern is mapped to a WS-BPEL repeatUntil:

Proposal for:
467 Business Process Model and Notation (BPMN), v2.0

=

p

G

<repeatUntil>
[G]
<condition>[not p]</condition>

</repeatUntil>

Handling Loops in Sequence Flow

Loops are created when the flow of the Process moves from a downstream object to an upstream object. There
are two types of loops that are WS-BPEL mappable: while loops and repeat loops.

A while loop has the following structure in BPMN and is mapped as shown:

A repeat loop has the following structure in BPMN and is mapped as shown:

15.1.5. Handling Data

Data Objects

BPMN Data Objects are mapped to WS-BPEL variables. The itemDefinition of the Data Object
determines the XSD type of that variable.

Data Objects occur in the context of a Process or Sub-Process. For the associated WS-BPEL process or
WS-BPEL scope, a variable is added for each Data Object in the corresponding WS-BPEL variables
section, as follows:

Proposal for:
Business Process Model and Notation (BPMN), v2.0 468

Properties

BPMN properties can be contained in a Process, Activity or an Event, here named the “container” of the
property. A BPMN property is mapped to a WS-BPEL variable. Its name is derived from the name of its
container and the name of the property. Note that in the case of different containers with the same name and a
contained property of the same name, the mapping to WS-BPEL ensures the names of the associated WS-BPEL
variables are unique. The itemDefinition of the property determines the XSD type of that variable.

A BPMN Process property is mapped to a WS-BPEL global variable. A BPMN Event property is mapped
to a WS-BPEL variable contained in the WS-BPEL scope representing the immediately enclosing
Sub-Process of the Event (or a global variable in case the Event is an immediate child of the Process). For
a BPMN Activity property, two cases are distinguished: In case of a Sub-Process, the WS-BPEL variable is
contained in the WS-BPEL scope representing the Sub-Process. For all other BPMN Activity properties, the
WS-BPEL variable is contained in the WS-BPEL scope representing the immediately enclosing Sub-Process
of the Activity (or a global variable in case the Activity is an immediate child of the Process).

Input and Output Sets

For a Send Task and a Service Task, the single input set is mapped to a WSDL message defining the input
of the associated WS-BPEL activity. The inputs map to the message parts of the WSDL message. For a
Receive Task and a Service Task, the single output set is mapped to a WSDL message defining the output
of the associated WS-BPEL activity. The outputs map to the message parts of the WSDL message.

The structure of the WSDL message is defined by the itemDefinitions of the data inputs of the input set:

For the data outputs of the output set, the WSDL message looks as follows:

Proposal for:
469 Business Process Model and Notation (BPMN), v2.0

Data Associations

In this section, we assume that the input set of the Service Task has the same structure as its referenced input
Message, and the output set of the Service Task has the same structure as its reference output Message. If
this is not the case, assignments are needed, and the mapping is as described in the next section.

Data associations to and from a Service Task are mapped as follows:

Data associations from a Receive Task are mapped as follows:

Data associations to a Send Task are mapped as follows:

Expressions

BPMN expressions specified using XPath (e.g., a condition expression of a Sequence Flow, or a timer cycle
expression of a Timer Intermediate Event) are used as specified in BPMN, rewriting access to BPMN
context to refer to the mapped BPEL context.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 470

The BPMN XPath functions for accessing context from the perspective of the current Process are mapped to
BPEL XPath functions for context access as shown in the following table. This is possible because the
arguments must be literal strings.

Table 15-2 – Expressions mapping to WS-BPEL

BPMN context access BPEL context access

getDataobject(dataObjectName) $[dataObjectName]

getProcessProperty(propertyName) $[{processName}.propertyName] where the right
processName is statistically derived.

getActivityProperty(activityName, propertyName) $[activityName.propertyName]

getEventProperty(eventName, propertyName) $[eventName.propertyName]

Assignments

For a Service Tasks with assignments, the WS-BPEL mapping results in a sequence of an assign activity, an
invoke activity and another assign activity. The first assign deals with creating the service request Message
from the data inputs of the Task, the second assign deals with creating the data outputs of the Task from the
service response Message.

15.2. Extended BPMN-BPEL Mapping
Additional sound BPMN Process models whose block hierarchy contains blocks that have not been addressed
in the previous section can be mapped to WS-BPEL. For such BPMN Process models, in many cases there is
no preferred single mapping of a particular block, but rather, multiple WS-BPEL patterns are possible to map
that block to. Also, additional BPMN constructs can be mapped by using capabilities not available at the time of
producing this specification, such as the upcoming OASIS BPEL4People standard to map BPMN User Tasks,
or other WS-BPEL extensions.

Rather than describing or even mandating the mapping of such BPMN blocks, this specification allows for a
semantic mapping of a BPMN Process model to an executable WS-BPEL process: The observable behavior of
the target WS-BPEL process MUST match the operational semantics of the mapped BPMN Process. Also, the
mappings described in Section 15.1 SHOULD be used where applicable.

15.2.1. End Events
End Events can be combined with other BPMN objects to complete the merging or joining of the paths of a
WSBPEL structured element (see Figure 7-3).

Proposal for:
471 Business Process Model and Notation (BPMN), v2.0

Figure 15-2 – An example of distributed token recombination

15.2.2. Loop/Switch Combinations From a Gateway
This type of loop is created by a Gateway that has three or more outgoing Sequence Flow. One Sequence
Flow loops back upstream while the others continue downstream (see Figure 15-3). Note that there might be
intervening Activities prior to when the Sequence Flow loops back upstream.

This maps to both a WSBPEL while and a switch. Both activities will be placed within
a sequence, with the while preceding the switch.

For the while:

o The Condition for the Sequence Flow that loops back upstream will map to the
condition of the while.

o All the Activities that span the distance between where the loop starts and where it
ends, will be mapped and placed within the Activity for the while, usually within a
sequence.

For the switch:

o For each additional outgoing Sequence Flow there will be a case for the switch.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 472

Figure 15-3 – An example of a loop from a decision with more than two alternative paths

15.2.3. Interleaved Loops
This is a situation where there at least two loops involved and they are not nested (see Figure 15-4). Multiple
looping situations can map, as described above, if they are in a sequence or are fully nested (e.g., one while
inside another while). However, if the loops overlap in a non-nested fashion, as shown in Figure, then the
structured element while cannot be used to handle the situation. Also, since a flow is acyclic, it cannot handle
the behavior either.

Proposal for:
473 Business Process Model and Notation (BPMN), v2.0

Figure 15-4 – An example of interleaved loops

To handle this type of behavior, parts of the WSBPEL process will have to be separated into one or more
derived processes that are spawned from the main process and will also spawn or call each other (note that
the examples below are using a spawning technique). Through this mechanism, the linear and structured
elements of WSBPEL can provide the same behavior that is shown through a set of cycles in a single BPMN
diagram. To do this:

The looping section of the Process, where the loops first merge back (upstream) into the flow until all
the paths have merged back to Normal Flow, shall be separated from the main WSBPEL process into
a set of derived processes that will spawn each other until all the looping conditions are satisfied.

The section of the process that is removed will be replaced by a (one-way) invoke to spawn the
derived process, followed by a receive to accept the message that the looping sections have
completed and the main process can continue (see Figure 15-5).

The name of the invoke will be in the form of:

o “Spawn_[(loop target)activity.Name]_Derived_Process”
o The name of the receive will be in the form of:
o “[(loop target)activity.Name]_Derived_Process_Completed”

Proposal for:
Business Process Model and Notation (BPMN), v2.0 474

Figure 15-5 – An example of the WSBPEL pattern for substituting for the derived Process

For each location in the Process where a Sequence Flow connects upstream, there will be a separate derived
WSBPEL process.

The name of the derived process will be in the form of:

o “[(loop target)activity.Name]_Derived_Process”

All Gateways in this section will be mapped to switch elements, instead of while elements (see
Figure below).

Each time there is a Sequence Flow that loops back upstream, the Activity for the switch case
will be a (one-way) invoke that will spawn the appropriate derived process, even if the invoke
spawns the same process again.

The name of the invoke will the same as the one describe above.

At the end of the derived process a (one-way) invoke will be used to signal the main process that
all the derived activities have completed and the main process can continue.

The name of the invoke will be in the form of:

o “[(loop target)activity.Name]_Derived_Process_Completed”

Figure 15-6 – An example of a WSBPEL pattern for the derived Process

Proposal for:
475 Business Process Model and Notation (BPMN), v2.0

15.2.4. Infinite Loops
This type of loop is created by a Sequence Flow that loops back without an intervening Gateway to create
alternative paths (see Figure 15-7). While this may be a modeling error most of the time, there may be situations
where this type of loop is desired, especially if it is placed within a larger Activity that will eventually be
interrupted.

This will map to a while activity.

The condition of the while will be set to an expression that will never evaluate to true,
such as condition ”1 = 0.”

All the activities that span the distance between where the loop starts and where it ends, will
be mapped and placed within the activity for the while, usually within a sequence.

Figure 15-7 – An example – An infinite loop

15.2.5. BPMN Elements that Span Multiple WSBPEL Sub-Elements
Figure 15-8 below illustrates how BPMN objects may exist in two separate sub-elements of a WSBPEL
structured element at the same time. Since BPMN allows free form connections of Activities and Sequence
Flow, it is possible that two (or more) Sequence Flow will merge before all the Sequence Flow that map
to a WSBPEL structure element have merged. The sub-elements of a WSBPEL structured elements are also
self-contained and there is no cross sub-element flow. For example, the cases of a switch cannot interact;
that is, they cannot share activities. Thus, one BPMN Activity will need to appear in two (or more) WSBPEL
structured elements. There are two possible mechanisms to deal with the situation:

First, the activities are simply duplicated in all appropriate WSBPEL elements.

Second, the activities that need to be duplicated can be removed from the main Process and placed in a
derived process that is called (invoked) from all locations in the WSBPEL elements as required.
o The name of the derived process will be in the form of:

“[(target)object.Name]_Derived_Process”

Proposal for:
Business Process Model and Notation (BPMN), v2.0 476

Figure 15-8 below displays this issue with an example. In that example, two Sequence Flow merge into the
“Include History of Transactions” Task. However, the Decision that precedes the Task has three (3)
alternatives. Thus, the Decision maps to a WSBPEL switch with three (3) cases. The three cases are not
closed until the “Include Standard Text” Task, downstream. This means that the “Include History of
Transactions” Task will actually appear in two (2) of the three (3) cases of the switch.

Note – the use of a WSBPEL flow will be able to handle the behavior without duplicating activities, but a
flow will not always be available for use in these situations, particularly if a WSBPEL pick is required.

Figure 15-8 – An example – Activity that spans two paths of a WSBPEL structured element

Proposal for:
477 Business Process Model and Notation (BPMN), v2.0

16. Exchange Formats

16.1. Interchanging Incomplete Models
In practice, it is common for models to be interchanged before they are complete. This occurs frequently when
doing iterative modeling, where one user (such as a subject matter expert or business person) first defines a
high-level model, and then passes it on to another user to be completed and refined.

Such "incomplete" models are ones in which all of the required attributes have not yet been filled in, or the
cardinality lowerbound of attributes and associations has not been satisfied.

XMI allows for the interchange of such incomplete models. In BPMN, we extend this capability to interchange
of XML files based on the BPMN XSD. In such XML files, implementers are expected to support this
interchange by:

Disregarding missing attributes that are marked as 'required' in the XSD.

Reducing the lower bound of elements with 'minOccurs' greater than 0.

16.2. XSD
The BPMN 2.0 XSD for the interchange of semantic information can be found in OMG Document
bmi/2009-05-05

The BPMN 2.0 XSD for the interchange of diagram information can be found in OMG Document
bmi/2009-05-06

References within the BPMN XSD

All BPMN elements contain IDs and within the BPMN XSD, references to elements are expressed via these IDs.
The XSD IDREF type is the traditional mechanism for referencing by IDs, however it can only reference an
element within the same file. The BPMN XSD supports referencing by ID, across files, by utilizing QNames. A
QName consists of two parts: an optional namespace prefix and a local part. When used to reference a BPMN
element, the local part is expected to be the ID of the element.

For example, consider the following Process

 <process name="Patient Handling" id="Patient_Handling_Process_ID1"> ... </process>

When this Process is referenced from another file, the reference would take the following form:

 processRef="process_ns:Patient_Handling_Process_ID1"

where "process_ns" is the namespace prefix associated with the process namespace upon import, and
"Patient_Handling_Process_ID1" is the value of the id attribute for the Process.

The BPMN XSD utilizes IDREFs wherever possible and resorts to QName only when references may span files.
In both situations however, the reference is still based on IDs.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 478

16.3. XMI
The BPMN 2.0 XMI for the interchange of semantic information can be found in OMG Document
bmi/2009-05-04

The BPMN 2.0 XMI for the interchange of diagram information can be found in OMG Document
bmi/2009-05-06

16.4. XSLT Transformation between XSD and XMI
The BPMN 2.0 XSLT for the transformation between XSD and XMI can be found in OMG Document
bmi/2009-05-07

Proposal for:
479 Business Process Model and Notation (BPMN), v2.0

Annex A
(Informative)

Responses to RFP Requirements
The following tables provide a cross-reference between the requirements as stated in the Request for Proposals
and the corresponding responses provided by this submission.

Mandatory Requirements

Table A-1 – Mandatory Requirements

Requirement Resolution

Notation, Metamodel and Interchange Format

Submissions shall define a single specification,
entitled BPMN 2.0, that defines the notation,
metamodel and interchange format. This
specification will supersede BPDM 1.0 and BPMN
1.2.

This submission is predicated on the principal that
BPMN requires a metamodel and interchange format
whose constructs are clearly recognizable as BPMN
elements. This requires that the correspondence of
metamodel constructs to notional elements be as
intuitive as possible. This submission’s proposed
BPMN 2.0 metamodel, therefore, is different than
BPDM 1.0.

Extension of BPMN Notation

Submissions shall define an extension of BPMN
notation to address BPDM concepts.

The intent is to provide notation to address BPDM
concepts.

Single, Consistent Language

Submissions shall specify changes that are required
to reconcile BPMN and BPDM to a single, consistent
language.

Reconciliation of this submission’s proposed
metamodel with BPDM could be achieved via a
metamodel-to-metamodel mapping; that is, via a
mapping between the proposed metamodel and
BPDM. Such a metamodel-to-metamodel mapping
could supersede but be informed by BPDM 1.0’s
mapping to BPMN, which is a metamodel-to-notation
mapping.

Model and Diagram Interchange

Submissions shall provide the ability to use XMI to
exchange business process models and their
diagram layouts among process modeling tools.

TBD

Enhanced Notation

Submissions shall define enhancements in BPMN’s
ability to model orchestrations and choreographies
as stand-alone or integrated models.

TBD

Proposal for:
Business Process Model and Notation (BPMN), v2.0 480

Disposition of Outstanding Issues

Submissions shall determine dispositions of
outstanding issues not resolved by the respective
finalization task forces for BPMN 1.2 and BPDM 1.0.
The RFP response shall explain the reason that any
outstanding issues are not addressed

TBD

MOF Compliance

The resulting metamodel shall be MOF-compliant.

TBD

Optional Requirements

Table A-2 – Optional Requirements

Requirement Resolution

6.6.1. Additional Normative or Non-Normative
Mappings

Proposals may provide additional mappings to
recognized process definition languages, such as
UML, SPEM, XPDL, ebBP, and WS-CDL

TBD

6.6.2. Additional perspectives

Proposals may support the display and interchange
of different perspectives on a model that allow a user
to focus on specific concerns. The proposed
perspectives shall be based on submitter experience
with user needs.

TBD

Proposal for:
481 Business Process Model and Notation (BPMN), v2.0

Issues to be Discussed

Table A-3 – Issues to be Discussed

Issue to Discussed Resolution

6.7.1. Relationships with related OMG specification
activities

Proposals shall discuss how the specifications relate
to the specification development efforts currently
under way as noted in Section 6.4.3

TBD

6.7.2. Consistency checks

Proposals shall discuss how the specification
supports checking and validating process models for
consistency.

TBD

6.7.3. Terminology

Submissions shall clarify the language and terms
used in relation to models, diagrams, views and
perspectives.

TBD

Changes from BPMN V1.2
There have been notational and technical changes to the BPMN specification.

The major notational changes include:

The addition of a Choreography diagram

The addition of a Conversation diagram

Non-interrupting Events for a Process

Event Sub-Processes for a Process

The major technical changes include:

A formal metamodel as shown through the class diagram figures

Interchange formats for semantic model interchange in both XMI and XSD

Interchange formats for diagram interchange in both XMI and XSD

XSLT transformations between the XMI and XSD formats

Proposal for:
Business Process Model and Notation (BPMN), v2.0 482

Annex B

(Non-Normative)

Diagram Interchange
This non-normative appendix explains the mechanism that was used to create BPMN 2.0's normative diagram
interchange specification.4 The mechanism is a generic approach to diagram interchange that can be applied to
multiple languages, and that in this particular case was applied to BPMN 2.0. The mechanism has been
submitted as a response to the OMG's Diagram Definition RFP. It is the intention of the BPMN 2.0 submitters
that the BPMN 2.0 FTF will adjust BPMN 2.0's normative diagram interchange specification to align it with
the outcome of the OMG's Diagram Definition specification process, and it is our intention that at that time the
FTF will remove this appendix from the BPMN 2.0 specification.

Overview

The goal of the Diagram Interchange (DI) metamodel is to provide a way for BPMN to persist and interchange
diagrams. Having common interchange format benefits tool interoperability, which is an ever increasing demand
by end users. The DI metamodel, similar to the BPMN semantic metamodel, is defined as a MOF-based
metamodel and hence its instances are serialized and interchanged with XMI.

Furthermore, a lot of the design decisions that characterize DI are motivated and influenced by experiences
gained by working with similar technologies in the industry. Some of the major concerns in the industry for the
adoption of any specification, but more critically for such a core one as DI, is its complexity, maintainability and
scalability.

With regards to complexity concern, there are two major principles driving the design of DI. The first one is
having a simple yet solid core, while allowing for variability using extensions. Obviously, there is no single
diagram definition that suits the requirements of all possible domains and tools. However, it is certainly possible
to define a minimal core that captures the main design pattern and make it extensible to address more specific
requirements. Some typical extension mechanisms for metamodels include inheritance and redefinition.
However, if not done very carefully (which is often the case), these extensions can easily lead to non-conforming
extensions creeping in that would hurt the interchange and break the potential generality of diagramming tools.
In addition, this would cause every domain or tool to have its own extended diagram metamodel and
consequently XMI schema hindering reuse and interchange. For those reasons, the DI metamodel is kept closed
for extension by inheritance. Instead, the metamodel focuses on defining a core design pattern for diagram
persistence that is minimally constrained and allows for adding domain or tool specific extensions and/or
constraints by referencing instances of another language called Diagram Definition (discussed in Chapter 13, as
shown in Figure 16-1.

The second principle of managing complexity is the separation between the business data and its diagram data,
or more idiomatically between the model and its view. The business data of BPMN is represented by its abstract
syntax metamodel, where the diagram data needs to be captured in a separate metamodel (DI) that references the
former as its context, as shown in Figure 16-1. There are several advantages to this design including: the ability

4 The normative BPMN 2.0 diagram interchange specification has two parts. One part is Chapter 13 of this document. The other part is
OMG document <omg document #>, which contains the diagram interchange schema

Proposal for:
483 Business Process Model and Notation (BPMN), v2.0

of both metamodels to evolve independently, the ability of BPMN elements to have multiple alternate notations,
the ability of a BPMN element to be depicted more than once using the same notation and the ability of a
notation to be defined using multiple diagram elements. This flexibility leads to more efficient and less bloated
metamodel design for BPMN’s diagram interchange.

Figure 16-1 – The relationship between DI, DD and a BPMN’s abstract-syntax metamodels

Regarding the maintainability concern, the fact that the DI metamodel is small and closed coupled with the built
in separation of concern between the diagram interchange and its definition imply that the diagram interchange
schema is less susceptible to change. This allows, for example, small extensions to be done to the diagram
definition without affecting the diagram interchange, which can dramatically reduce the maintenance cost for
tools. It also allows several unrelated extensions to be made without affecting their ability to coexist again
reducing maintenance costs.

As for the scalability concern, the metamodel design focuses on eliminating redundancy as well as opting for
alternatives that have more potential to scale better in realistic user setting. The scalability dimensions of
importance here are memory footprint and change deltas. The details of the metamodel are given in the
remainder of this chapter and wherever alternatives exist, a justification for the chosen alternative is given.

Metamodel Description

The underlying pattern of the DI metamodel is based on graph theory. The basic abstraction in DI is called a
View, which describes an attributed graph element. A view owns a collection of name/value pairs representing
its appearance attributes or styles. A View is further specialized into several kinds that correspond to the
different components of a graph. One kind of view is Diagram, corresponding to the graph itself, which is the
containment root for all other views in the diagram. The other kinds are Node and Connector. A Node
corresponds to a graph node ad represents a child view that is contained by another view. A Connector
corresponds to a graph connector and represents a relationship between two views (a source and a target). DI’s
view hierarchy is shown in Figure 16-2.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 484

Figure 16-2 – Diagram Interchange (DI) Metamodel

As mentioned in the previous section, the DI metamodel is related to the abstract syntax metamodel and to the
DD metamodel. The relationship to the abstract syntax metamodel is manifested in the view having an optional
reference to MOF-based context object (which could be BPMN elements or others). When a view has a
reference to a context object it is said to “visualize” this object. The relationship to the DD metamodel is
manifested in the view having references to one or more view definitions. A view definition classifies a view,
defines its proper form and specifies rules for its validation. These rules include definitions for the type of
context object, the allowed styles and the allowed children of the view, in addition to arbitrary constraints. The
first definition is the main definition that characterizes the view. The other optional definitions can be added by
domain extensions and/or tool implementations to extend the definition of the view.

Class Description

View
A view is the main abstraction in the DI metamodel. It is also the building block of a diagram. It represents a unit
of diagrammatic notation. A view may be purely notational, in which case it conveys information that is not in
any other model. A view may also represent, by itself or with other views, the graphical notation of a context
object from a MOF-based abstract syntax model (like BPMN models). View is an abstract metaclass that is
further sub classed into three concrete kinds: Diagram, Node and Connector.

In addition to referencing a context object, a view contains a collection of styles (name/value pairs) representing
its appearance properties (e.g. colors, line attributes, layout constraints...etc). It also contains a collection of
nested child views, which add to its notation. A view also has two collections of references to source and target
connectors. All these features give a view the flexibility to meet the syntactical requirement of a large set of
domains, while still conforming to a common design pattern.

However, for a particular view instance, there must be a definition of its expected valid syntax. That is why a
view references one or more view definitions that classify the view and specify its valid syntax. The first

Proposal for:
485 Business Process Model and Notation (BPMN), v2.0

definition is the main one that defines the view. The other optional definitions allow for extending the valid
syntax for domain and/or tool specific purposes. The conformance algorithm of a view to its view definitions is
given as follows: (for more details about a view definition, see Section 13.2):

A view’s context object has to conform to the context type specified by all its view definitions together.

Each style owned by a view has to correspond to exactly one style definition contained by one of the
view’s definitions. The correspondence is achieved when the name of a style matches the name of a style
definition. Also the value of a style has to conform to the primitive type specified in its style definition.

Each nested child view has to correspond to exactly one child definition contained by one of the view’s
definitions. The correspondence is achieved when the role of a child matches the name of a child
definition. The number of child views playing this role has to be compatible with the multiplicity
specified by that child definition.

All constraints contained by all view definitions referenced by a view have to be satisfied together on the
view.

Furthermore, with regard to styles, DI specifies that a style can either be specified directly on the view or
inherited from a parent view (if the style is defined as inherited in one of the style definitions owned by the
view’s definitions). Therefore, the style value is calculated as follows:

the view’s owned style value

otherwise, the parent view’s style value (if the view has a parent and the style is inherited)

otherwise, the style’s default value from the style definition

otherwise, the style’s type’s natural default value

Properties

Table 16-4 – View attributes and model associations

Attribute Name Description/Usage

definition: dd::ViewDefinition [1..*] References a list of 1 or more references to DD view definitions
that define the syntax of a view. At least one definition is required
but other definitions are possible to allow tools to extend the valid
syntax.

context: core::Object [0..1] References an optional MOF-based object representing the
context of the view

child: Node [0..*] Contains a list of (nested) child nodes. The opposite end is
Node::parent. The association defines the composite pattern for
views.

sourceConnector: Connector [0..*] References a list of outgoing connectors from the view. A source
connector represents a relationship, in which the view is playing
the source role. The opposite end is Connector::source.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 486

targetConnector: Connector [0..*] References a list of incoming connectors to the view. A target
connector represents a relationship, in which the view is playing
the target role. The opposite end is Connector::target.

styles: Style [0..*] Contains a collection of styles (name/value pairs) providing
override values for the view’s appearance properties.

Constraints

A view cannot have more than one style instance with the same name.

A view has to conform to all its view definitions

Operations

The query getDiagram() returns the view’s diagram by walking the view’s containment chain up to a
diagram

The query getStyleValue(name: String) gets the value of the style with the given name by applying the
style calculation algorithm given above.

Diagram
A diagram is a special kind of view that has a name and designates the root of containment for all views in one
diagram. A diagram directly contains all top level nodes, through the inherited ‘child’ association. It also directly
contains all connectors in the same diagram regardless of the nesting level of their source and target views. This
simplifies connector containment as it does not need to change in response to reconnections to different sources
or targets.

Generalizations

View

Properties

Table 16-5 – Diagram attributes and model associations

Attribute Name Description/Usage

name: String The name of the diagram

connector: Connector [0..*] Contains a list of connectors in the diagram. Each connector’s
source and target views have to be nested in the same diagram.

Constraints

A diagram can only be defined by DiagramDefinitions.

Proposal for:
487 Business Process Model and Notation (BPMN), v2.0

Node
A node is a special kind of view that can be nested (playing a child role) in some other view. It also represents a
bounded area in the diagram that can be laid out (positioned and/or sized). The order of a node in its parent’s
child collection may or may not have an impact of how the node gets laid out. Nodes can represent notational
idioms or play notational roles that are described in various graphical specifications. For example, they can
represent “shapes” on diagrams, “compartments” on shapes, “labels” on connectors...etc.

Generalizations

View

Properties

Table 16-6 – Node attributes and model associations

Attribute Name Description/Usage

role: String The role played by this node as a child in its parent.

parent: View References the node’s parent view that contains this node.

Constraints

A node can only be defined by NodeDefinitions.

The node’s role must correspond to the name of exactly one of the child definitions contained by the
view definitions defining the node’s parent view.

Connector
A connector is a kind of view that connects two other views: a source view and a target view. A connector is
rendered as a line going from the source to the target view. The line may be divided into segments by specifying
bend points along its route. Bend points constrain the routing by forcing the connector’s line to pass through
them. A connector may own a collection of label nodes, through its inherited ‘child’ property. Labels are laid out
relative to connector’s line.

Generalizations

View

Properties

Table 16-7 – Connector attributes and model associations

Attribute Name Description/Usage

Proposal for:
Business Process Model and Notation (BPMN), v2.0 488

bendpoint: Bendpoint [0..*] Contains a list of bendpoints for the connector. Each bendpoint
specify an offset from the connector’s source and target
anchoring points.

source: View References the connector’s source view.

target: View References the connector’s source view.

diagram: Diagram References the connector’s diagram that owns the connector.

Constraints

A connector can only be defined by ConnectorDefinitions.

The connector’s source view has to be nested in the same diagram as the connector.

The connector’s target view has to be nested in the same diagram as the connector.

A connector cannot reference itself as a source or a target view.

Bendpoint
A bend point is a data type, which represents a point that a connector has to pass through in its route. A bend
point is described by 2 offsets from the connector’s source and target anchor points, as shown in Figure 16-3.
Describing a bendpoint this way preserves its relative position when the connector’s source and/or target change
bounds.

Figure 16-3 – Various points of a Connector

Proposal for:
489 Business Process Model and Notation (BPMN), v2.0

Properties

Table 16-8 – Bendpoint attributes and model associations

Attribute Name Description/Usage

sourceX: Integer The bendpoint’s offset from the source anchor along the x-axis.

sourceY: Integer The bendpoint’s offset from the source anchor along the y-axis.

targetX: Integer The bendpoint’s offset from the target anchor along the x-axis.

targetY: Integer The bendpoint’s offset from the target anchor along the y-axis.

Style
A style is a data type consisting of a string name/value pair. It represents an appearance property for a view such
as colors, line styles, layout constraints, drawing options...etc. The set of possible styles for a given view is given
by the view’s definition. Each style is defined by its name, type and default value. Instances of the style datatype
represent a particular instance of a style with a given value.

Although the style’s type may be an arbitrary data type, the style’s value is always encoded as a string. For
example if the style’s type is a Boolean, the possible values would be the string literal “true” or “false”.

Properties

Table 16-9 – Style attributes and model associations

Attribute Name Description/Usage

name: String The style’s name string.

value: String The style’s value encoded as a string.

Constraints

The style’s string value is compatible with the style’s defined type.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 490

Diagram Definition

Overview

The previous chapter presented DI, a metamodel to create and persist diagrams. DI defines a schema for
diagrams that is both flexible and domain independent. However, in order to interchange diagrams between
domain specific tools, like BPMN tools, there must be a domain specific definition describing valid diagrams of
that domain.

There are two approaches to having a domain specific diagram definition. One approach is to extend DI through
MOF inheritance or package merge semantics to end up with a domain-specific DI. Although this approach
benefits from having one diagram metamodel to use for each domain, it suffers from several practical drawbacks.
First, it makes it more difficult to create or leverage general-purpose diagramming toolkits as it forces dealing
with different possibly inconsistent diagram metamodels. Second, it reduces the potential of defining
cross-domain hybrid diagrams which could undermine future integration efforts between domains. Third, it
forces the resulting metamodel to have some parallel to the domain’s abstract syntax metamodel resulting in a
larger interchange schema that is also more susceptible to changes to the abstract syntax metamodel, increasing
the maintenance cost.

The other approach to having a domain-specific diagram definition is to define it with a separate Diagram
Definition (DD) language. The metamodel for DD is used to create M1 instances (model libraries representing
diagram definitions) that are referenced by diagrams (DI instances). This architecture is adopted by this
specification as it allows for several advantages. First, having a domain-independent DI means the interchange
schema remains small and more stable (unaffected by changes to the abstract syntax), reducing maintenance
costs. Second, having domain independent DI/DD metamodels allows for creating and/or leveraging
general-purpose diagramming toolkits to define DSL modeling tools with, compressing time to market. Third,
having a consistent DI/DD metamodels across domains eases the integration effort between specifications
and/or tools, creating synergies and increasing business value. Fourth, separating DI and DD allows better
separation of concerns. While DI is used to create and persist diagrams, DD is used to define the valid diagram
syntax. This increases the flexibility as it allows diagram definitions to not be restricted by MOF/schema
metamodel semantics. The relationship between these various metamodel is shown in Figure 16-1, above.

The main use case for associating diagrams with their definitions, expressed as DD instances, is diagram syntax
validation. The DD metamodel defines and constrains various aspects of diagrams including composition rules,
semantic references, and allowed styles. The other possible use cases for diagram definition are to help automate
diagram creation with proper syntax and to help query and identify various parts of diagrams in a consistent way,
which helps the genericity of diagramming tools.

DD instances are called diagram definition libraries as they are defined at the M1 level. The DD library for each
standard domain, like BPMN, becomes part of the specification of that domain. Such a library is published with
the specification and implemented by tool vendors. (The DD library for BPMN 2.0 is defined on page 398 of
this document.) Hence, the standard DD libraries referenced from user diagrams do not need to be interchanged.
On the other hand, if user diagrams reference non-standard (domain extension or tool specific) DD libraries and
wish to interchange with other tools, those definition libraries need to also be available and recognized by those
tools; otherwise, those definitions and their data would be ignored. In any case, the diagram data is still readable
as it conforms to the same non-changing DI schema.

Proposal for:
491 Business Process Model and Notation (BPMN), v2.0

Metamodel Description

The DD metamodel, shown in Figure 16-4, provide definitions and constraints for the artifacts in the DI
metamodel. That is why there is an obvious resemblance between the designs of both metamodels. At the core of
the DD metamodel, there is the concept of a view definition. A view definition specifies various aspects of how
a view should conform including the type and multiplicity of child views, the definition of the allowed styles, the
type of the allowed context reference and other arbitrary constraints. A view definition is further sub classed by
node definition, connector definition and diagram definition to match the different kinds of views in DI. View
definitions are owned by a hierarchy of nested packages.

Figure 16-4 – Diagram Definition (DD) Metamodel

Class Descriptions

NamedElement
A named element is an element with a unique name within its siblings of the same type that are contained by the
same container element if any. NamedElement is an abstract metaclass.

Properties

Table 16-10 – NamedElement attributes

Attribute Name Description/Usage

name: String The name of the NamedElement

Proposal for:
Business Process Model and Notation (BPMN), v2.0 492

Constraints

The name of the element has to be unique within its siblings of the same type contained by the same
container.

Package
A package is the root of containment in a DD model library that contains all view definitions in the library. It
also represents a namespace for the library by having a namespace URI and a namespace prefix attributes, in
addition to the name attribute inherited from NamedElement. The namespace URI uniquely identifies the
package when referenced by other instance models. The namespace prefix is typically used as an alias to the URI
to reduce its verboseness.

Generalizations

NamedElement

Properties

Table 16-11 – Package model associations

Attribute Name Description/Usage

viewDefinition: ViewDefinition [0..*] Contains a list of view definitions in the DD instance library.

ViewDefinition
A view definition is the main abstraction in the DD metamodel. It is also the building block of a DD library. A
view definition specifies the syntax rules for a view in DI. Various rules can be specified including the type and
multiplicity of child views that can be composed in a view, the styles that can annotate a view, the type of the
object that can be the context of a view, in addition to arbitrary constraints on a view. A view definition is
abstract and s further sub classed by three concrete subclasses: diagram definition, node definition and connector
definition.

The allowed context type of a view is specified by a reference to the allowed context metaclass on the view
definition. When no context type is specified, a view cannot reference any context object. This is the case for
purely notational views or views whose context is implied by other related views (ex. by the parent view for
nodes or the source and target views for connectors). When the context type is specified, a view must reference a
context object that conforms to (is instance of) this context type. For example, if a view definition references the
type UML State, views conforming to this definition must reference a UML state object as a context.

The allowed styles of a view are specified by a collection of style definitions owned by the view definition. A
conforming view can only be annotated by styles that conform to those style definitions. The conformance here
is established when a style has the same name as well as a conforming value to one of the style definitions.

The allowed children of a view are specified by a collection of child definitions owned by the view definition.
Each child definition specifies the allowed multiplicity (lower and upper bound) as well as the allowed type of a
child. The type of a child definition is always a node definition. A conforming view owns children that conform
to those child definitions. Child conformance is established when the child is defined by the child definition’s

Proposal for:
493 Business Process Model and Notation (BPMN), v2.0

type (or one of its subtypes) and respect its multiplicity (the number of children conforming to that child
definition complies with its multiplicity).

A view definition can also specify arbitrary constraints on a view. Each constraint has a Boolean expression,
expressed in some query language, in the context of the corresponding view’s metaclass. A constraint can check
any aspect of a view including its context object, its style values and its relationships to other views. A
conforming view satisfies all of its definition’s constraints.

In addition, view definitions can be defined as abstract or concrete and can be organized into inheritance
hierarchies. Abstract definitions cannot be used to define views, while concrete definitions can be. To participate
in an inheritance hierarchy, a view definition references another definition as its super definition. Only single
inheritance is allowed for view definitions. The semantics of inheritance in this context is as follows:

A sub view definition inherits a reference to a context type from its super definition chain. However, a
sub view definition can refine the inherited context by specifying its own reference to a type that is either
the same as or a subtype of the inherited context type.

A sub view definition inherits the child definitions of its super definition chain. A sub definition can also
provide its own child definitions that either add to or refine the inherited child definitions. If a new child
definition has the same name as one of the inherited child definition, it is a refinement; otherwise it is an
addition. A refining child definition specifies its own multiplicity and type, which is the same as or a
subtype of the refined definition’s type.

A sub view definition inherits the style definitions of its super definition chain. A sub definition can also
provide its own style definitions that are additions to the inherited ones. New style definitions must have
different names than the inherited definitions.

A sub view definition inherits the constraints of its super definition chain. A sub definition can also
provide its own constraints that are additions to the inherited ones. New constraints must have different
names than the inherited constraints.

Generalizations

NamedElement

Properties

Table 16-12 – ViewDefinition attributes and model associations

Attribute Name Description/Usage

abstract: Boolean [0..1] A Boolean value that specifies whether the view definition is
abstract. The default is ‘false’ meaning non-abstract (or concrete).

package: Package References the package that contains this view definition.

superDefinition: ViewDefinition [0..1] References an optional super (more general) view definition of this
definition.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 494

contextType: core::Class [0..1] References an optional MOF-based metaclass representing the
context type of this view definition. Views that conform to this view
definition would reference a context object that is an instance of
this metaclass.

childDefinition: NodeDefinition [0..*] Contains a list of child definitions of this view definition. Child
definitions define valid children of views conforming to this view
definition.

styleDefinition: StyleDefinition [0..*] Contains a list of style definitions of this view definition. Style
definitions define valid styles of views conforming to this view
definition.

constraint: Constraint [0..*] Contains a list of constraints of this view definition. These
constraints must be satisfied by views defined by this view
definition.

Constraints

View definition inheritance hierarchies must be directed and acyclic. A view definition cannot be both a
transitively super and transitively sub definition of the same definition.

A view definition’s context type must either be the same as or a subtype of an inherited context type.

A view definition must have a unique name in its containing package.

DiagramDefinition
A node definition is a concrete kind of view definition that defines the syntax rules of DI nodes.

Generalizations

ViewDefinition

Constraints

The super definition of a diagram definition must be of type diagram definition as well.

NodeDefinition
A diagram definition is a concrete kind of view definition that defines the syntax rules of DI diagrams.

Generalizations

ViewDefinition

Constraints

The super definition of a node definition must be of type node definition as well.

Proposal for:
495 Business Process Model and Notation (BPMN), v2.0

ConnectorDefinition
A connector definition is a concrete kind of view definition that defines the syntax rules of DI connectors. A
connector definition references a source view definition and a target view definition. Those definitions define
the valid source and target of a connector that conforms to this connector definition.

Generalizations

ViewDefinition

Properties

Table 16-13 – NamedElement model associations

Attribute Name Description/Usage

sourceDefinition: ViewDefinition References a view definition that defines the valid source of a
connector conforming to this connector definition.

targetDefinition: ViewDefinition References a view definition that defines the valid target of a
connector conforming to this connector definition.

ChildDefinition
A child definition specifies the conformance rules for child views that are contained by other views. Child
definitions are owned by the view definitions of those containing views. In particular, a child definition specifies
a name, inherited from NamedElement, representing a role played by conforming child views. It also specifies
the valid multiplicity and type definition of those child views.

Generalizations

NamedElement

Proposal for:
Business Process Model and Notation (BPMN), v2.0 496

Properties

Table 16-14 – ChildDefinition attributes and model associations

Attribute Name Description/Usage

lowerBound: Integer [0..1] The lower multiplicity of child views defined by this child definition.

upperBound: Integer [0..1] The upper multiplicity of child views defined by this child definition.

typeDefinition: NodeDefinition References a node definition that defines the child view.

parentDefinition: ViewDefinition References a view definition that contains this child definition.

Constraints

A child definition must have a unique name within its containing view definition.

StyleDefinition
A style definition is contained by a view definition. It specifies the conformance rules of a style that can annotate
views that conform to that view definition. In particular, a style definition specifies a name, which needs to
match a style’s name to establish the correspondence between them. A style definition also specifies the type that
a style value needs to conform to. This type is one of the primitive types (i.e. not structured type). A default value
can also be specified.

Additionally, a style definition specifies whether a style is inherited or not. An inherited style allows views that
are not annotated themselves with this style to “inherit” the style from the closest parent that is annotated with
this style in their parent chain.

Proposal for:
497 Business Process Model and Notation (BPMN), v2.0

Properties

Table 16-15 – StyleDefinition attributes and model associations

Attribute Name Description/Usage

default: String [0..1] An optional default value of the style.

inherited: Boolean[0..1] Specifies whether the style is inherited or not. The default is ‘false’,
i.e. not inherited.

type: core::PrimitiveType References the MOF-based primitive type of this style

viewDefinition: ViewDefinition References a view definition that contains this style definition.

Constraint
A constraint represents an arbitrary condition expressed in some query language that must be satisfied by views
conforming to the view definition that contains this constraint. The context type of a constraint corresponds to
the view metaclass implied by the view definition that owns the constraint.

Generalizations

NamedElement

Properties

Table 16-16 – Constraint attributes and model associations

Attribute Name Description/Usage

condition: String A condition that is specified in the context of a view metaclass that
corresponds to the view definition that owns this constraint. For
example, if the constraint is owned by a node definition, the
condition’s context would be the metaclass Node from DI.

language: String [0..1] The query language used to specify the condition. It is optional
with a default of ‘OCL’.

viewDefinition: ViewDefinition References a view definition that contains this constraint.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 498

Annex C

(Informative)

Glossary

[The Glossary has been taken from the BPMN 1.1 specification and needs to be updated.]

A
Activity: An activity is a generic term for work that company or

organization performs via business processes. An
activity can be atomic or non-atomic (compound). The
types of activities that are a part of a Process Model are:
Process, Sub-Process, and Task.

AND-Join: (from the WfMC Glossary5) An AND-Join is a point in the
Process where two or more parallel executing activities
converge into a single common thread of Sequence Flow.
See “Join.”

AND-Split: (from the WfMC Glossary2) An AND-Split is a point in the
Process where a single thread of Sequence Flow splits
into two or more threads which are executed in parallel
within the Process, allowing multiple activities to be
executed simultaneously. See “Fork.”

Artifact: An Artifact is a graphical object that provides supporting
information about the Process or elements within the
Process. However, it does not directly affect the flow of
the Process. BPMN has standardized the shape of a
Data Object. Other examples of Artifacts include critical
success factors and milestones.

Association: An Association is a dotted graphical line that is used to
associate information and Artifacts with Flow Objects.
Text and graphical non-Flow Objects can be associated
with the Flow Objects and Flow.

Atomic Activity: An atomic activity is an activity not broken down to a finer
level of Process Model detail. It is a leaf in the
tree-structure hierarchy of Process activities. Graphically
it will appear as a Task in BPMN.

5The underlined terms in this definition were changed from the original definition. “Process” is used in place of
“workflow.” “Sequence Flow” is used in place of “control.”

Proposal for:
499 Business Process Model and Notation (BPMN), v2.0

B
Business Analyst: A Business Analyst is an individual within an

organization who defines, manages, or monitors
Business Processes. They are usually distinguished
from the IT specialists or programmers who implement
the Business Process within a BPMS.

Business Process: TBD.

Business Process Management: Business Process Management (BPM) encompasses
the discovery, design, and deployment of business
processes. In addition, BPM includes the executive,
administrative, and supervisory control of those
processes6.

BPM System: The technology that enables BPM.

C
Choreography: Choreography is an ordered sequence of B2B message

exchanges.

Collaboration: Collaboration describes interactions between two or
more PartnerEntities or PartnerRoles.

Collaboration Process: A Collaboration Process depicts the interactions
between two or more business entities.

Collapsed Sub-Process: A Collapsed Sub-Process is a Sub-Process that hides its
flow details. The Collapsed Sub-Process object uses a
marker to distinguish it as a Sub-Process, rather than a
Task. The marker is a small square with a plus sign (+)
inside.

Compensation Flow: Compensation Flow is defines the set of activities that
are performed during the roll-back of a transaction to
compensate for activities that were performed during the
Normal Flow of the Process.

 Compensation can also be called from a Compensate End or Intermediate Event.

Compound Activity: A compound activity is an activity that has detail that is
defined as a flow of other activities. It is a branch (or
trunk) in the tree-structure hierarchy of Process activities.
Graphically, it will appear as a Process or Sub-Process
in BPMN.

6From “Business Process Management: the Third Wave,” by Howard Smith and Peter Fingar, pg 4. 2003, Meghan-Kiffer
Press. ISBN 0-929652-33-9

Proposal for:
Business Process Model and Notation (BPMN), v2.0 500

Controlled Flow: Flow that proceeds from one Flow Object to another, via
a Sequence Flow link, but is subject to either conditions
or dependencies from other flow as defined by a
Gateway.

 Typically, this is seen as a Sequence flow between two activities, with a conditional indicator
(mini-diamond) or a Sequence Flow connected to a
Gateway.

D
Decision: Decisions are locations within a business process where

the Sequence Flow can take two or more alternative
paths. This is basically the “fork in the road” for a process.
For a given performance (or instance) of the process,
only one of the forks can be taken. A Decision is a type of
Gateway. See “Or-Split.”

E
End Event: As the name implies, the End Event indicates where a

process will end. In terms of Sequence Flow, the End
Event ends the flow of the Process, and thus, will not
have any outgoing Sequence Flow. An End Event can
have a specific Result that will appear as a marker within
the center of the End Event shape. End Event Results
are Message, Error, Compensation, Link, and Multiple.
The End Event shares the same basic shape of the Start
Event and Intermediate Event, a circle, but is drawn with
a thick single line

Event Context: An Event Context is the set of activities that can be
interrupted by an exception (Intermediate Event).

This can be one activity or a group of activities in an expanded Sub-Process.

Exception: An Exception is an event that occurs during the
performance of the process that causes Normal Flow of
the process to be diverted exclusively from Normal Flow.
Exceptions can be generated by a time out, fault,
message, etc.

Exception Flow: Exception Flow is a set of Sequence Flow that originates
from an Intermediate Event that is attached to the
boundary of an activity. The Process will not traverse this
flow unless an Exception occurs during the performance
of that activity (through an Intermediate Event).

Expanded Sub-Process: An Expanded Sub-Process is a Sub-Process that
exposes its flow detail within the context of its Parent
Process. It will maintain its rounded rectangle shape, but

Proposal for:
501 Business Process Model and Notation (BPMN), v2.0

will be enlarged to a size sufficient to display the Flow
Objects within.

F
Flow: A Flow is a graphical line connecting two objects in a

BPMN diagram. There are two types of Flow: Sequence
Flow and Message Flow, each with their own line style.
Flow is also used in a generic sense (and lowercase) to
describe how Tokens will traverse Sequence Flow from
the Start Event to an End Event.

Flow Object: A Flow Object is one of the set of following graphical
objects: Events, Activities, and Gateways.

Fork: A fork is a point in the Process where a single flow is
divided into two or more Flow. It is a mechanism that will
allow activities to be performed concurrently, rather than
sequentially. BPMN uses multiple outgoing Sequence
Flow or an Parallel Gateway to perform a Fork. See
“AND-Split.”

I
Intermediate Event: An Intermediate Event is an event that occurs after a

Process has been started. It will affect the flow of the
process, but will not start or (directly) terminate the
process. An Intermediate Event will show where
messages or delays are expected within the Process,
disrupt the Normal Flow through exception handling, or
show the extra flow required for compensating a
transaction. The Intermediate Event shares the same
basic shape of the Start Event and End Event, a circle,
but is drawn with a thin double line.

J
Join: A Join is a point in the Process where two or more

parallel Sequence Flow are combined into one
Sequence Flow. BPMN uses an Parallel Gateway to
perform a Join. See “AND-Join.”

L
Lane: An Lane is a sub-partition within a Pool and will extend

the entire length of the Pool, either vertically or
horizontally. Lanes are used to organize and categorize
activities within a Pool. The meaning of the Lanes is up to
the modeler.

M
Merge: A Merge is a point in the process where two or more

alternative Sequence Flow are combined into one

Proposal for:
Business Process Model and Notation (BPMN), v2.0 502

Sequence Flow. BPMN uses multiple incoming
Sequence Flow or an Exclusive Gateway to perform a
Merge. See “OR-Join.”

Message: A Message is the object that is transmitted through a
Message Flow. The Message will have an identity that
can be used for alternative branching of a Process
through the Event-Based Exclusive Gateway.

Message Flow: A Message Flow is a dashed line that is used to show the
flow of messages between two entities that are prepared
to send and receive them. In BPMN, two separate Pools
in the Diagram will represent the two entities.

Normal Flow: Normal Flow is the flow that originates from a Start Event
and continues through activities via alternative and
parallel paths until it ends at an End Event.

O
OR-Join: (from the WfMC Glossary7) An OR-Join is a point in the

Process where two or more alternative activity(s)
Process branches re-converge to a single common
activity as the next step within the Process. (As no
parallel activity execution has occurred at the join point,
no synchronization is required.) See “Merge.”

OR-Split: (from the WfMC Glossary1) An OR-Split is a point in the
Process where a single thread of Sequence Flow makes
a decision upon which branch to take when encountered
with multiple alternative Process branches. See
“Decision.”

P
Parent Process: A Parent Process is the Process that holds a

Sub-Process within its boundaries.

Participant: A Participant is a Partner Entity (e.g., a company,
company division, or a customer) or a Partner Role (e.g.,
a buyer or a seller), which controls or is responsible for a
business process. If Pools are used, then a Participant
would be represented by a Pool.

Pool: A Pool represents a Participant in a Process. It also acts
as a “swimlane” and a graphical container for partitioning
a set of activities from other Pools, usually in the context
of B2B situations. It is a square-cornered rectangle that

7The underlined terms in this definition were changed from the original definition. “Process” is used in place of
“workflow.” “Sequence Flow” is used in place of “control.”

Proposal for:
503 Business Process Model and Notation (BPMN), v2.0

is drawn with a solid single line. A Pool acts as the
container for the Sequence Flow between activities. The
Sequence Flow can cross the boundaries between
Lanes of a Pool, but cannot cross the boundaries of a
Pool. The interaction between Pools, e.g., in a B2B
context, is shown through Message Flow.

Private Process: A private Process is internal to a specific organization
and is the type of process that has been generally called
a workflow or BPM Process. There are two (2) types of
private Processes: executable and non-executable. A
single executable private Process will map to a single
BPEL document.

Process: A Process is any activity performed within a company or
organization. In BPMN a Process is depicted as a
network of Flow Objects, which are a set of other
activities and the controls that sequence them.

Public Process: A Public Process represents the interactions between a
private Business Process and another Process or
Participant.

R
Result: A Result is consequence of reaching an End Event.

Results can be of different types, including: Message,
Error, Compensation, Link, and Multiple.

S
Sequence Flow: A Sequence Flow is a solid graphical line that is used to

show the order that activities will be performed in a
Process. Each Flow has only one source and only one
target.

Start Event: A Start Event indicates where a particular Process will
start. In terms of Sequence Flow, the Start Event starts
the flow of the Process, and thus, will not have any
incoming Sequence Flow. A Start Event can have a
Trigger that indicates how the Process starts: Message,
Timer, Rule, Link, or Multiple. The Start Event shares the
same basic shape of the Intermediate Event and End
Event, a circle, but is drawn with a single thin line

Sub-Process: A Sub-Process is Process that is included within another
Process. The Sub-Process can be in a collapsed view
that hides its details. A Sub-Process can be in an
expanded view that shows its details within the view of
the Process in which it is contained. A Sub-Process
shares the same shape as the Task, which is a rectangle
that has rounded corners.

Proposal for:
Business Process Model and Notation (BPMN), v2.0 504

Swimlane: A Swimlane is a graphical container for partitioning a set
of activities from other activities. BPMN has two different
types of Swimlanes. See “Pool” and “Lane.”

Task: A Task is an atomic activity that is included within a
Process. A Task is used when the work in the Process is
not broken down to a finer level of Process Model detail.
Generally, an end-user and/or an application are used to
perform the Task when it is executed. A Task object
shares the same shape as the Sub-Process, which is a
rectangle that has rounded corners.

Token: A Token is a descriptive construct used to describe how
the flow of a process will proceed at runtime. By tracking
how the Token traverses the Flow Objects, gets diverted
through alternative paths, and gets split into parallel
paths, the normal Sequence Flow should be completely
definable. A Token will have a unique identity that
can be used to separate multiple Tokens that may exist
because of concurrent process instances or the splitting
of the Token for parallel processing within a single
process instance.

Transaction: A Transaction is a set of coordinated activities carried out
by independent, loosely-coupled systems in accordance
with a contractually defined business relationship. This
coordination leads to an agreed, consistent, and
verifiable outcome across all participants.

Trigger: A Trigger is a mechanism that signals the start of a
business process. Triggers are associated with a Start
Events and Intermediate Events and can be of the type:
Message, Timer, Rule, Link, and Multiple.

U
Uncontrolled Flow: Flow that proceeds, unrestricted, from one Flow Object

to another, via a Sequence Flow link, without any
dependencies on another flow or any conditional
expressions. Typically, this is seen as a Sequence flow
between two activities, without a conditional indicator
(mini-diamond) or any intervening Gateway.

	Table of Contents
	Table of Figures
	Table of Tables
	Introduction
	Submitting Organizations
	Supporting Organizations
	Submission Contacts
	Acknowledgements
	Status of the Document
	IPR and Patents
	Typographical Conventions
	Proof of Concept
	Responses to RFP Requirements
	Guide to the Submission

	1. Scope
	2. Conformance
	2.1. Process Modeling Conformance
	2.1.1. BPMN Process Types
	2.1.2. BPMN Process Elements
	2.1.3. Visual Appearance
	2.1.4. Structural Conformance
	2.1.5. Process Semantics
	2.1.6. Attributes and Model Associations
	2.1.7. Extended and Optional Elements
	2.1.8. Visual Interchange

	2.2. Process Execution Conformance
	2.2.1. Execution Semantics
	2.2.2. Import of Process Diagrams

	2.3. BPEL Process Execution Conformance
	2.4. Choreography Modeling Conformance
	2.4.1. BPMN Choreography Types
	2.4.2. BPMN Choreography elements
	2.4.3. Visual Appearance
	2.4.4. Choreography Semantics
	2.4.5. Visual Interchange

	2.5. Summary of BPMN Conformance Types

	3. Normative References
	3.1. Normative
	3.2. Non-Normative

	4. Terms and Definitions
	5. Symbols
	6. Additional Information
	6.1. Conventions
	6.2. Typographical and Linguistic Conventions and Style
	6.3. Abbreviations
	6.4. Structure of this Document

	7. Overview
	7.1. BPMN Scope
	7.1.1. Uses of BPMN
	Private (Internal) Business Processes
	Public Processes
	Collaborations
	Choreographies
	Conversations
	Diagram Point of View
	Understanding the Behavior of Diagrams

	7.2. BPMN Elements
	7.2.1. Basic BPMN Modeling Elements
	7.2.2. Extended BPMN Modeling Elements

	7.3. BPMN Diagram Types
	7.4. Use of Text, Color, Size, and Lines in a Diagram
	7.5. Flow Object Connection Rules
	7.5.1. Sequence Flow Connections Rules
	7.5.2. Message Flow Connection Rules

	7.6. BPMN Extensibility
	7.7. BPMN Example

	8. BPMN Core Structure
	8.1. Infrastructure
	8.1.1. Definitions
	8.1.2. Import
	8.1.3. Infrastructure Package XML Schemas

	8.2. Foundation
	8.2.1. Base Element
	8.2.2. Documentation
	8.2.3. Extensibility
	Extension
	ExtensionDefinition
	ExtensionAttributeDefinition
	ExtensionAttributeValue
	Extensibility XML Schemas
	XML Example

	8.2.4. External Relationships
	8.2.5. Root Element
	8.2.6. Foundation Package XML Schemas

	8.3. Common Elements
	8.3.1. Artifacts
	Common Artifact Definitions
	Artifact Sequence Flow Connections
	Artifact Message Flow Connections
	Association
	Group
	Text Annotation
	XML Schema for Artifacts

	8.3.2. Callable Element
	8.3.3. Correlation
	CorrelationKey
	Key-based Correlation
	Context-based Correlation
	XML Schema for Correlation

	8.3.4. Conversation Association
	8.3.5. Error
	8.3.6. Events
	8.3.7. Expressions
	Expression
	Formal Expression

	8.3.8. Flow Element
	8.3.9. Flow Elements Container
	8.3.10. Gateways
	8.3.11. Interaction Specification
	8.3.12. Item Definition
	8.3.13. Message
	8.3.14. Message Flow
	Message Flow Node
	Message Flow Associations

	8.3.15. Participants
	PartnerEntity
	PartnerRole
	Participant Multiplicity
	ParticipantAssociation

	8.3.16. Resources
	8.3.17. Sequence Flow
	Flow Node

	8.3.18. Common Package XML Schemas

	8.4. Services
	8.4.1. Interface
	8.4.2. EndPoint
	8.4.3. Operation
	8.4.4. Service Package XML Schemas

	9. Collaboration
	9.1. Basic Collaboration Concepts
	9.1.1. Use of BPMN Common Elements

	9.2. Pool and Participant
	9.2.1. Lanes

	9.3. Collaboration
	9.4. Choreography within Collaboration
	9.5. Collaboration Package XML Schemas

	10. Process
	10.1. Basic Process Concepts
	10.1.1. Types of BPMN Processes
	Private (Internal) Business Processes
	Public Processes

	10.1.2. Use of BPMN Common Elements

	10.2. Activities
	10.2.1. Resource Assignment
	10.2.2. Performer
	10.2.3. Tasks
	Types of Tasks

	10.2.4. Human Interactions
	Tasks with Human involvement
	XML Schema for Human Interactions
	Examples

	10.2.5. Sub-Processes
	Embedded Sub-Process (Sub-Process)
	Reusable Sub-Process (Call Activity)
	Event Sub-Process
	Transaction
	Ad-Hoc Sub-Process

	10.2.6. Call Activity
	10.2.7. Global Task
	Types of Global Task

	10.2.8. Loop Characteristics
	Standard Loop Characteristics
	Multi-Instance Characteristics

	10.2.9. XML Schema for Activities

	10.3. Items and Data
	10.3.1. Data Modeling
	Item-Aware Elements
	Data Objects
	Data Inputs and Outputs
	Data Associations

	10.3.2. Execution Semantics for Data
	10.3.3. Usage of Data in XPath Expressions
	Access to BPMN Data Objects
	Access to BPMN Data Input and Data Output
	Access to BPMN Properties
	For BPMN Instance Attributes

	10.3.4. XML Schema for Data

	10.4. Events
	10.4.1. Concepts
	Data Modeling and Events
	Common Catch Event attributes
	Common Throw Event Attributes
	Start Event Triggers
	Attributes for Start Events
	Sequence Flow Connections
	Message Flow Connections

	10.4.3. End Event
	End Event Results
	Sequence Flow Connections
	Message Flow Connections

	10.4.4. Intermediate Event
	Intermediate Event Triggers
	Attributes for Boundary Events
	Activity Boundary Connections
	Sequence Flow Connections
	Message Flow Connections

	10.4.5. Event Definitions
	Cancel Event
	Compensation Event
	Conditional Event
	Error Event
	Escalation Event Definition
	Link Event Definition
	Message Event Definition
	Multiple Event
	None Event
	Parallel Multiple Event
	Signal Event
	Terminate Event
	Timer Event

	10.4.6. Handling Events
	Handling Start Events
	Handling Events within normal Sequence Flow (Intermediate Events)
	Handling Events attached to an Activity (Intermediate boundary Events and Event Sub-Processes)
	Handling End Events

	10.4.7. Scopes
	10.4.8. Events Package XML Schemas

	10.5. Gateways
	10.5.1. Sequence Flow Considerations
	10.5.2. Exclusive Gateway
	10.5.3. Inclusive Gateway
	10.5.4. Parallel Gateway
	10.5.5. Complex Gateway
	10.5.6. Event-Based Gateway
	10.5.7. Gateway Package XML Schemas

	10.6. Compensation
	10.6.1. Compensation Handler
	10.6.2. Compensation Triggering
	10.6.3. Relationship between Error Handling and Compensation

	10.7. Lanes
	10.8. Process Instances, Unmodeled Activities, and Public Processes
	10.9. Auditing
	10.10. Monitoring
	10.11. Process within Collaboration
	10.12. Process Package XML Schemas

	11. Conversation
	11.1. Conversation Container
	11.2. Conversation Node
	11.3. Communication
	11.4. Sub-Conversation
	11.5. Call Conversation
	11.6. Global Communication
	11.7. Communication Link
	11.8. Conversation Package XML Schemas

	12. Choreography
	12.1. Basic Choreography Concepts
	12.2. Data
	12.3. Use of BPMN Common Elements
	12.3.1. Sequence Flow
	12.3.2. Artifacts
	12.3.3. Correlations

	12.4. Choreography Activities
	12.4.1. Choreography Task
	12.4.2. Choreography Sub-Process
	The Parent Choreography Sub-Process (Expanded)

	12.4.3. Call Choreography Activity
	12.4.4. Global Choreography Task
	12.4.5. Looping Activities
	12.4.6. The Sequencing of Activities

	12.5. Events
	12.5.1. Start Events
	12.5.2. Intermediate Events
	12.5.3. End Events

	12.6. Gateways
	12.6.1. Exclusive Gateway
	12.6.2. Event-Based Gateway
	12.6.3. Inclusive Gateway
	12.6.4. Parallel Gateway
	12.6.5. Complex Gateway
	12.6.6. Chaining Gateways

	12.7. Choreography within Collaboration
	12.7. Choreography within Collaboration
	Participants
	Swimlanes
	Choreography Task in Combined View
	Choreography Sub-Process in Combined View

	12.8. XML Schema for Choreography

	13. BPMN Notation and Diagrams
	13.1. Diagram Interchange
	13.2. BPMN Diagram Definition Library
	13.2.1. BPMN Diagram Definitions
	BPMNDiagram
	ProcessDiagram
	CollaborationDiagram
	ChoreographyDiagram
	ConversationDiagram

	13.2.2. BPMN Node Definition
	Super Definition
	Style Definitions

	13.2.3. BPMN Compartment Definitions
	BPMNCompartment
	PoolCompartment
	LaneCompartment
	ChoreographyCompartment

	13.2.4. BPMN Connectors
	BPMNConnector
	SequenceFlowConnector
	DataAssociationConnector
	MessageFlowConnector
	AssociationConnector
	ConversationLinkConnector
	ActivityShape
	GatewayShape
	EventShape
	DataObjectShape
	DataStoreShape
	DataInputShape
	DataOutputShape
	MessageShape
	ChoreographyActivityShape
	GroupShape
	CalledSubProcessShape
	CommunicationShape
	SubConversationShape
	CallConversationShape

	14. BPMN Execution Semantics
	14.1. Process Instantiation and Termination
	14.2. Activities
	14.2.1. Sequence Flow Considerations
	14.2.2. Activity
	14.2.3. Task
	14.2.4. Sub-Process/Call Activity
	14.2.5. Ad-Hoc Sub-Process
	14.2.6. Loop Activity
	14.2.7. Multiple Instances Activity

	14.3. Gateways
	14.3.1. Parallel Gateway (Fork and Join)
	14.3.2. Exclusive Gateway (Exclusive Decision (data-based) and Exclusive Merge)
	14.3.3. Inclusive Gateway (Inclusive Decision and Inclusive Merge)
	14.3.4. Event-based Gateway (Exclusive Decision (event-based))
	14.3.5. Complex Gateway (related to Complex Condition and Complex Merge)

	14.4. Events
	14.4.1. Start Events
	14.4.2. Intermediate Events
	14.4.3. Intermediate Boundary Events
	14.4.4. Event Sub-Processes
	Operational semantics

	14.4.5. Compensation
	Compensation Handler
	Compensation Triggering
	Relationship between Error Handling and Compensation
	Operational Semantics

	14.4.6. End Events

	15. Mapping BPMN Models to WS-BPEL
	15.1. Basic BPMN-BPEL Mapping
	15.1.1. Process
	15.1.2. Activities
	Common Activity Mappings
	Task Mappings
	Service Package
	Conversations and Correlation
	Sub-Process Mappings
	Activity Loop Mapping

	15.1.3. Events
	Start Event Mappings
	Intermediate Event Mappings (Non-boundary)
	End Event Mappings
	Boundary Intermediate Events

	15.1.4. Gateways and Sequence Flow
	Exclusive (Data-based) Decision Pattern
	Exclusive (Event-based) Decision Pattern
	Inclusive Decision Pattern
	Parallel Pattern
	Sequence Pattern
	Structured Loop Patterns
	Handling Loops in Sequence Flow

	15.1.5. Handling Data
	Data Objects
	Properties
	Input and Output Sets
	Data Associations
	Expressions
	Assignments

	15.2. Extended BPMN-BPEL Mapping
	15.2.1. End Events
	15.2.2. Loop/Switch Combinations From a Gateway
	15.2.3. Interleaved Loops
	15.2.4. Infinite Loops
	15.2.5. BPMN Elements that Span Multiple WSBPEL Sub-Elements

	16. Exchange Formats
	16.1. Interchanging Incomplete Models
	16.1. Interchanging Incomplete Models
	References within the BPMN XSD

	16.3. XMI
	16.4. XSLT Transformation between XSD and XMI

	Annex A
	Responses to RFP Requirements
	Mandatory Requirements
	Optional Requirements
	Issues to be Discussed

	Changes from BPMN V1.2

	Annex B
	Diagram Interchange
	Overview
	Metamodel Description
	Class Description
	View
	Diagram
	Node
	Connector
	Bendpoint
	Style

	Diagram Definition
	Overview
	Metamodel Description
	Class Descriptions
	NamedElement
	Package
	ViewDefinition
	DiagramDefinition
	NodeDefinition
	ConnectorDefinition
	ChildDefinition
	StyleDefinition
	Constraint

	Annex C
	Glossary

