
ALF Roles Viewpoint

This document represents Aldon’s viewpoint of Roles within ALF. Aldon is a change
management vendor that will enable their product to ALF.

Implementation Assumptions
Companies seeking to integrate their development tools into a cohesive product that
supports all parts of the development lifecycle will likely adopt ALF. These tools will be
selected from those vendors that have enabled to ALF, and will be licensed seperately,
and at different times. The tools will not all be from the same vendor, but rather those
selected as best for the company’s needs.

The web services server will run on the company’s intranet, and be accessable from the
outside through the VPN. Thus one level of security is who is authorized to use the
intranet. Tool integration, users and the roles they have, will be administered by the
organization. ALF should run on any platform in use at the company.

Users and Roles
User credentials are for the purpose of identifying and authenticating a user of the
system. A role is for the purpose of authorizing the user to perform various actions
within a tool. A user may have many roles assigned, each specifying different
capabilities. At any one time, a user is acting in only one role. This is done to prevent
mistakes that could occur when a person has the authority to delete a Release in an
Administration role, but not in the normal developer role.

Each tool in ALF could have its own notion of what the valid roles are. In some cases
they may not even be using any role-based authorization. A couple of examples:
Microsoft Project, and Eclipse itself. These tools don’t necessarily have any idea of who
the user is, let alone what role that user is acting in. And what you can do with them is
anything the tool lets you do.

One thing that is necessary is that the integration between the tools be as seamless as
possible. One thing that might be a big negative is for an event to be fired from one tool
kicking off a service flow, and then have the tool handling the service flow reject it
because the user didn’t have the correct role when the event was created. The event is
then lost, and the recovery flow has to now deal with the error condition, and somebody
may have to manually handle it.

A Sample use case
A discrepancy report in the bug tracking system has been reviewed and a decision made
to include it as a requirement for the next release. User Sam is operating in a bug

tracking “Approver” role when the event for ALF is activated to create an entry in the
Requirements Management system. Does Sam have to have an “ALF user” role to make
sure the service flow can run? What if he doesn’t? Should the tool check the roles before
it creates the event? Worse yet, Sam does not have a “Requirements Manager” role in
the Requirements Management system. This causes the Requirements Management
system to reject the service flow, and the new requirement has the potential of getting
lost.

It seems like there has to be something common among the roles the tools use in ALF
that prevents this scenario from happening. A possiblity mentioned was having each tool
in ALF accept the ALF role and override its internal role system, or to use the ALF role
and assign the correct permissions to it that allow the action to take place.

A Proposal
ALF should have a roles and the security module that is general enough so that a role can
serve any product that is registered in the framework. This module should allow an
administrator to register tools and objects to which permissions are to be attached;
organize those objects in a tree; define users and roles; define actions; associate actions,
objects and roles; and query for a roles permission to do an action on an object. Roles are
managed in trees and support permission inheritance.

Of course this implies extra work on a tool vendors part that wants to integrate their tool
to ALF. They would have to use the ALF permissions model instead of their own. That
might make it a lot tougher to get agreement.

ALF also needs a common authentication module used by all the tools. This could be
any number of tools that implement a common service provider interface. But at a
minimum, it should provide and example implementation in release 1.

Within the context of an enterprise that is integrating their lifecycle development tools,
this makes sense. When you look at the similar toolsets from IBM/Rational and
Microsoft, their tools integrate in a seamless manner. And they use a common approach
to authorization and authentication. The one thing lacking in their approach is the ability
for a customer to select tools from a different vendor that may be a better solution for
them.

