/******************************************************************************* * Copyright (c) 2000, 2001, 2002 International Business Machines Corp. and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Common Public License v0.5 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/cpl-v05.html * * Contributors: * IBM Corporation - initial API and implementation ******************************************************************************/ package org.eclipse.jdt.internal.compiler.lookup; import org.eclipse.jdt.core.compiler.CharOperation; import org.eclipse.jdt.internal.compiler.ast.AbstractMethodDeclaration; import org.eclipse.jdt.internal.compiler.ast.Argument; import org.eclipse.jdt.internal.compiler.ast.AstNode; import org.eclipse.jdt.internal.compiler.ast.ConstructorDeclaration; import org.eclipse.jdt.internal.compiler.ast.TypeDeclaration; import org.eclipse.jdt.internal.compiler.codegen.CodeStream; import org.eclipse.jdt.internal.compiler.impl.CompilerOptions; import org.eclipse.jdt.internal.compiler.impl.Constant; import org.eclipse.jdt.internal.compiler.problem.ProblemReporter; public class BlockScope extends Scope { // Local variable management public LocalVariableBinding[] locals; public int localIndex; // position for next variable public int startIndex; // start position in this scope - for ordering scopes vs. variables public int offset; // for variable allocation throughout scopes public int maxOffset; // for variable allocation throughout scopes // finally scopes must be shifted behind respective try&catch scope(s) so as to avoid // collisions of secret variables (return address, save value). public BlockScope[] shiftScopes; public final static VariableBinding[] EmulationPathToImplicitThis = {}; public final static VariableBinding[] EmulationPathToImplicitThisInConstructorCall = {}; public Scope[] subscopes = new Scope[1]; // need access from code assist public int scopeIndex = 0; // need access from code assist protected BlockScope(int kind, Scope parent) { super(kind, parent); } public BlockScope(BlockScope parent) { this(parent, true); } public BlockScope(BlockScope parent, boolean addToParentScope) { this(BLOCK_SCOPE, parent); locals = new LocalVariableBinding[5]; if (addToParentScope) parent.addSubscope(this); this.startIndex = parent.localIndex; } public BlockScope(BlockScope parent, int variableCount) { this(BLOCK_SCOPE, parent); locals = new LocalVariableBinding[variableCount]; parent.addSubscope(this); this.startIndex = parent.localIndex; } /* Create the class scope & binding for the anonymous type. */ public final void addAnonymousType( TypeDeclaration anonymousType, ReferenceBinding superBinding) { ClassScope anonymousClassScope = new ClassScope(this, anonymousType); anonymousClassScope.buildAnonymousTypeBinding( enclosingSourceType(), superBinding); } /* Create the class scope & binding for the local type. */ public final void addLocalType(TypeDeclaration localType) { // check that the localType does not conflict with an enclosing type ReferenceBinding type = enclosingSourceType(); do { if (CharOperation.equals(type.sourceName, localType.name)) { problemReporter().hidingEnclosingType(localType); return; } type = type.enclosingType(); } while (type != null); // check that the localType does not conflict with another sibling local type Scope scope = this; do { if (((BlockScope) scope).findLocalType(localType.name) != null) { problemReporter().duplicateNestedType(localType); return; } } while ((scope = scope.parent) instanceof BlockScope); ClassScope localTypeScope = new ClassScope(this, localType); localTypeScope.buildLocalTypeBinding(enclosingSourceType()); addSubscope(localTypeScope); } /* Insert a local variable into a given scope, updating its position * and checking there are not too many locals or arguments allocated. */ public final void addLocalVariable(LocalVariableBinding binding) { checkAndSetModifiersForVariable(binding); // insert local in scope if (localIndex == locals.length) System.arraycopy( locals, 0, (locals = new LocalVariableBinding[localIndex * 2]), 0, localIndex); locals[localIndex++] = binding; // update local variable binding binding.declaringScope = this; binding.id = this.outerMostMethodScope().analysisIndex++; // share the outermost method scope analysisIndex } public void addSubscope(Scope childScope) { if (scopeIndex == subscopes.length) System.arraycopy( subscopes, 0, (subscopes = new Scope[scopeIndex * 2]), 0, scopeIndex); subscopes[scopeIndex++] = childScope; } /* Answer true if the receiver is suitable for assigning final blank fields. * * i.e. is inside an initializer, a constructor or a clinit */ public final boolean allowBlankFinalFieldAssignment(FieldBinding binding) { if (enclosingSourceType() != binding.declaringClass) return false; MethodScope methodScope = methodScope(); if (methodScope.isStatic != binding.isStatic()) return false; return methodScope.isInsideInitializer() // inside initializer || ((AbstractMethodDeclaration) methodScope.referenceContext) .isInitializationMethod(); // inside constructor or clinit } String basicToString(int tab) { String newLine = "\n"; //$NON-NLS-1$ for (int i = tab; --i >= 0;) newLine += "\t"; //$NON-NLS-1$ String s = newLine + "--- Block Scope ---"; //$NON-NLS-1$ newLine += "\t"; //$NON-NLS-1$ s += newLine + "locals:"; //$NON-NLS-1$ for (int i = 0; i < localIndex; i++) s += newLine + "\t" + locals[i].toString(); //$NON-NLS-1$ s += newLine + "startIndex = " + startIndex; //$NON-NLS-1$ return s; } private void checkAndSetModifiersForVariable(LocalVariableBinding varBinding) { int modifiers = varBinding.modifiers; if ((modifiers & AccAlternateModifierProblem) != 0 && varBinding.declaration != null){ problemReporter().duplicateModifierForVariable(varBinding.declaration, this instanceof MethodScope); } int realModifiers = modifiers & AccJustFlag; int unexpectedModifiers = ~AccFinal; if ((realModifiers & unexpectedModifiers) != 0 && varBinding.declaration != null){ problemReporter().illegalModifierForVariable(varBinding.declaration, this instanceof MethodScope); } varBinding.modifiers = modifiers; } /* Compute variable positions in scopes given an initial position offset * ignoring unused local variables. * * No argument is expected here (ilocal is the first non-argument local of the outermost scope) * Arguments are managed by the MethodScope method */ void computeLocalVariablePositions(int ilocal, int initOffset, CodeStream codeStream) { this.offset = initOffset; this.maxOffset = initOffset; // local variable init int maxLocals = this.localIndex; boolean hasMoreVariables = ilocal < maxLocals; // scope init int iscope = 0, maxScopes = this.scopeIndex; boolean hasMoreScopes = maxScopes > 0; // iterate scopes and variables in parallel while (hasMoreVariables || hasMoreScopes) { if (hasMoreScopes && (!hasMoreVariables || (subscopes[iscope].startIndex() <= ilocal))) { // consider subscope first if (subscopes[iscope] instanceof BlockScope) { BlockScope subscope = (BlockScope) subscopes[iscope]; int subOffset = subscope.shiftScopes == null ? this.offset : subscope.maxShiftedOffset(); subscope.computeLocalVariablePositions(0, subOffset, codeStream); if (subscope.maxOffset > this.maxOffset) this.maxOffset = subscope.maxOffset; } hasMoreScopes = ++iscope < maxScopes; } else { // consider variable first LocalVariableBinding local = locals[ilocal]; // if no local at all, will be locals[ilocal]==null // check if variable is actually used, and may force it to be preserved boolean generateCurrentLocalVar = (local.useFlag == LocalVariableBinding.USED && (local.constant == Constant.NotAConstant)); // do not report fake used variable if (local.useFlag == LocalVariableBinding.UNUSED && (local.declaration != null) // unused (and non secret) local && ((local.declaration.bits & AstNode.IsLocalDeclarationReachableMASK) != 0)) { // declaration is reachable if (!(local.declaration instanceof Argument)) // do not report unused catch arguments this.problemReporter().unusedLocalVariable(local.declaration); } // could be optimized out, but does need to preserve unread variables ? if (!generateCurrentLocalVar) { if (local.declaration != null && environment().options.preserveAllLocalVariables) { generateCurrentLocalVar = true; // force it to be preserved in the generated code local.useFlag = LocalVariableBinding.USED; } } // allocate variable if (generateCurrentLocalVar) { if (local.declaration != null) { codeStream.record(local); // record user-defined local variables for attribute generation } // assign variable position local.resolvedPosition = this.offset; if ((local.type == LongBinding) || (local.type == DoubleBinding)) { this.offset += 2; } else { this.offset++; } if (this.offset > 0xFFFF) { // no more than 65535 words of locals this.problemReporter().noMoreAvailableSpaceForLocal( local, local.declaration == null ? (AstNode)this.methodScope().referenceContext : local.declaration); } } else { local.resolvedPosition = -1; // not generated } hasMoreVariables = ++ilocal < maxLocals; } } if (this.offset > this.maxOffset) this.maxOffset = this.offset; } /* Answer true if the variable name already exists within the receiver's scope. */ public final LocalVariableBinding duplicateName(char[] name) { for (int i = 0; i < localIndex; i++) if (CharOperation.equals(name, locals[i].name)) return locals[i]; if (this instanceof MethodScope) return null; else return ((BlockScope) parent).duplicateName(name); } /* * Record the suitable binding denoting a synthetic field or constructor argument, * mapping to the actual outer local variable in the scope context. * Note that this may not need any effect, in case the outer local variable does not * need to be emulated and can directly be used as is (using its back pointer to its * declaring scope). */ public void emulateOuterAccess(LocalVariableBinding outerLocalVariable) { MethodScope currentMethodScope; if ((currentMethodScope = this.methodScope()) != outerLocalVariable.declaringScope.methodScope()) { NestedTypeBinding currentType = (NestedTypeBinding) this.enclosingSourceType(); //do nothing for member types, pre emulation was performed already if (!currentType.isLocalType()) { return; } // must also add a synthetic field if we're not inside a constructor if (!currentMethodScope.isInsideInitializerOrConstructor()) { currentType.addSyntheticArgumentAndField(outerLocalVariable); } else { currentType.addSyntheticArgument(outerLocalVariable); } } } /* * Record the suitable binding denoting a synthetic field or constructor argument, * mapping to a given actual enclosing instance type in the scope context. * Skip it if the enclosingType is actually the current scope's enclosing type. */ public void emulateOuterAccess( ReferenceBinding targetEnclosingType, boolean useDirectReference, AstNode reference) { ReferenceBinding currentType = enclosingSourceType(); if (currentType.isNestedType() && currentType != targetEnclosingType){ if (useDirectReference) { // the target enclosing type is not in scope, we directly refer it // must also add a synthetic field if we're not inside a constructor NestedTypeBinding currentNestedType = (NestedTypeBinding) currentType; if (methodScope().isInsideInitializerOrConstructor()) currentNestedType.addSyntheticArgument(targetEnclosingType); else currentNestedType.addSyntheticArgumentAndField(targetEnclosingType); } else { // indirect reference sequence int depth = 0; // saturate all the way up until reaching compatible enclosing type while (currentType.isLocalType()){ NestedTypeBinding currentNestedType = (NestedTypeBinding) currentType; currentType = currentNestedType.enclosingType; if (depth == 0){ if (methodScope().isInsideInitializerOrConstructor()) { // must also add a synthetic field if we're not inside a constructor currentNestedType.addSyntheticArgument(currentType); } else { currentNestedType.addSyntheticArgumentAndField(currentType); } } else if (currentNestedType == targetEnclosingType) { break; } else { currentNestedType.addSyntheticArgumentAndField(currentType); } depth++; } } } } /* Note that it must never produce a direct access to the targetEnclosingType, * but instead a field sequence (this$2.this$1.this$0) so as to handle such a test case: * * class XX { * void foo() { * class A { * class B { * class C { * boolean foo() { * return (Object) A.this == (Object) B.this; * } * } * } * } * new A().new B().new C(); * } * } * where we only want to deal with ONE enclosing instance for C (could not figure out an A for C) */ public final ReferenceBinding findLocalType(char[] name) { for (int i = 0, length = scopeIndex; i < length; i++) { if (subscopes[i] instanceof ClassScope) { SourceTypeBinding sourceType = ((ClassScope) subscopes[i]).referenceContext.binding; if (CharOperation.equals(sourceType.sourceName(), name)) return sourceType; } } return null; } public LocalVariableBinding findVariable(char[] variable) { int variableLength = variable.length; for (int i = 0, length = locals.length; i < length; i++) { LocalVariableBinding local = locals[i]; if (local == null) return null; if (local.name.length == variableLength && CharOperation.prefixEquals(local.name, variable)) return local; } return null; } /* API * flag is a mask of the following values VARIABLE (= FIELD or LOCAL), TYPE. * Only bindings corresponding to the mask will be answered. * * if the VARIABLE mask is set then * If the first name provided is a field (or local) then the field (or local) is answered * Otherwise, package names and type names are consumed until a field is found. * In this case, the field is answered. * * if the TYPE mask is set, * package names and type names are consumed until the end of the input. * Only if all of the input is consumed is the type answered * * All other conditions are errors, and a problem binding is returned. * * NOTE: If a problem binding is returned, senders should extract the compound name * from the binding & not assume the problem applies to the entire compoundName. * * The VARIABLE mask has precedence over the TYPE mask. * * InvocationSite implements * isSuperAccess(); this is used to determine if the discovered field is visible. * setFieldIndex(int); this is used to record the number of names that were consumed. * * For example, getBinding({"foo","y","q", VARIABLE, site) will answer * the binding for the field or local named "foo" (or an error binding if none exists). * In addition, setFieldIndex(1) will be sent to the invocation site. * If a type named "foo" exists, it will not be detected (and an error binding will be answered) * * IMPORTANT NOTE: This method is written under the assumption that compoundName is longer than length 1. */ public Binding getBinding(char[][] compoundName, int mask, InvocationSite invocationSite) { Binding binding = getBinding(compoundName[0], mask | TYPE | PACKAGE, invocationSite); invocationSite.setFieldIndex(1); if (binding instanceof VariableBinding) return binding; compilationUnitScope().recordSimpleReference(compoundName[0]); if (!binding.isValidBinding()) return binding; int length = compoundName.length; int currentIndex = 1; foundType : if (binding instanceof PackageBinding) { PackageBinding packageBinding = (PackageBinding) binding; while (currentIndex < length) { compilationUnitScope().recordReference(packageBinding.compoundName, compoundName[currentIndex]); binding = packageBinding.getTypeOrPackage(compoundName[currentIndex++]); invocationSite.setFieldIndex(currentIndex); if (binding == null) { if (currentIndex == length) // must be a type if its the last name, otherwise we have no idea if its a package or type return new ProblemReferenceBinding( CharOperation.subarray(compoundName, 0, currentIndex), NotFound); else return new ProblemBinding( CharOperation.subarray(compoundName, 0, currentIndex), NotFound); } if (binding instanceof ReferenceBinding) { if (!binding.isValidBinding()) return new ProblemReferenceBinding( CharOperation.subarray(compoundName, 0, currentIndex), binding.problemId()); if (!((ReferenceBinding) binding).canBeSeenBy(this)) return new ProblemReferenceBinding( CharOperation.subarray(compoundName, 0, currentIndex), binding, NotVisible); break foundType; } packageBinding = (PackageBinding) binding; } // It is illegal to request a PACKAGE from this method. return new ProblemReferenceBinding( CharOperation.subarray(compoundName, 0, currentIndex), NotFound); } // know binding is now a ReferenceBinding while (currentIndex < length) { ReferenceBinding typeBinding = (ReferenceBinding) binding; char[] nextName = compoundName[currentIndex++]; invocationSite.setFieldIndex(currentIndex); invocationSite.setActualReceiverType(typeBinding); if ((binding = findField(typeBinding, nextName, invocationSite)) != null) { if (!binding.isValidBinding()) return new ProblemFieldBinding( ((FieldBinding) binding).declaringClass, CharOperation.subarray(compoundName, 0, currentIndex), binding.problemId()); break; // binding is now a field } if ((binding = findMemberType(nextName, typeBinding)) == null) return new ProblemBinding( CharOperation.subarray(compoundName, 0, currentIndex), typeBinding, NotFound); if (!binding.isValidBinding()) return new ProblemReferenceBinding( CharOperation.subarray(compoundName, 0, currentIndex), binding.problemId()); } if ((mask & FIELD) != 0 && (binding instanceof FieldBinding)) { // was looking for a field and found a field FieldBinding field = (FieldBinding) binding; if (!field.isStatic()) return new ProblemFieldBinding( field.declaringClass, CharOperation.subarray(compoundName, 0, currentIndex), NonStaticReferenceInStaticContext); return binding; } if ((mask & TYPE) != 0 && (binding instanceof ReferenceBinding)) { // was looking for a type and found a type return binding; } // handle the case when a field or type was asked for but we resolved the compoundName to a type or field return new ProblemBinding( CharOperation.subarray(compoundName, 0, currentIndex), NotFound); } // Added for code assist... NOT Public API public final Binding getBinding( char[][] compoundName, InvocationSite invocationSite) { int currentIndex = 0; int length = compoundName.length; Binding binding = getBinding( compoundName[currentIndex++], VARIABLE | TYPE | PACKAGE, invocationSite); if (!binding.isValidBinding()) return binding; foundType : if (binding instanceof PackageBinding) { while (currentIndex < length) { PackageBinding packageBinding = (PackageBinding) binding; binding = packageBinding.getTypeOrPackage(compoundName[currentIndex++]); if (binding == null) { if (currentIndex == length) // must be a type if its the last name, otherwise we have no idea if its a package or type return new ProblemReferenceBinding( CharOperation.subarray(compoundName, 0, currentIndex), NotFound); else return new ProblemBinding( CharOperation.subarray(compoundName, 0, currentIndex), NotFound); } if (binding instanceof ReferenceBinding) { if (!binding.isValidBinding()) return new ProblemReferenceBinding( CharOperation.subarray(compoundName, 0, currentIndex), binding.problemId()); if (!((ReferenceBinding) binding).canBeSeenBy(this)) return new ProblemReferenceBinding( CharOperation.subarray(compoundName, 0, currentIndex), binding, NotVisible); break foundType; } } return binding; } foundField : if (binding instanceof ReferenceBinding) { while (currentIndex < length) { ReferenceBinding typeBinding = (ReferenceBinding) binding; char[] nextName = compoundName[currentIndex++]; if ((binding = findField(typeBinding, nextName, invocationSite)) != null) { if (!binding.isValidBinding()) return new ProblemFieldBinding( ((FieldBinding) binding).declaringClass, CharOperation.subarray(compoundName, 0, currentIndex), binding.problemId()); if (!((FieldBinding) binding).isStatic()) return new ProblemFieldBinding( ((FieldBinding) binding).declaringClass, CharOperation.subarray(compoundName, 0, currentIndex), NonStaticReferenceInStaticContext); break foundField; // binding is now a field } if ((binding = findMemberType(nextName, typeBinding)) == null) return new ProblemBinding( CharOperation.subarray(compoundName, 0, currentIndex), typeBinding, NotFound); if (!binding.isValidBinding()) return new ProblemReferenceBinding( CharOperation.subarray(compoundName, 0, currentIndex), binding.problemId()); } return binding; } VariableBinding variableBinding = (VariableBinding) binding; while (currentIndex < length) { TypeBinding typeBinding = variableBinding.type; if (typeBinding == null) return new ProblemFieldBinding( null, CharOperation.subarray(compoundName, 0, currentIndex + 1), NotFound); variableBinding = findField(typeBinding, compoundName[currentIndex++], invocationSite); if (variableBinding == null) return new ProblemFieldBinding( null, CharOperation.subarray(compoundName, 0, currentIndex), NotFound); if (!variableBinding.isValidBinding()) return variableBinding; } return variableBinding; } /* API * * Answer the binding that corresponds to the argument name. * flag is a mask of the following values VARIABLE (= FIELD or LOCAL), TYPE, PACKAGE. * Only bindings corresponding to the mask can be answered. * * For example, getBinding("foo", VARIABLE, site) will answer * the binding for the field or local named "foo" (or an error binding if none exists). * If a type named "foo" exists, it will not be detected (and an error binding will be answered) * * The VARIABLE mask has precedence over the TYPE mask. * * If the VARIABLE mask is not set, neither fields nor locals will be looked for. * * InvocationSite implements: * isSuperAccess(); this is used to determine if the discovered field is visible. * * Limitations: cannot request FIELD independently of LOCAL, or vice versa */ public Binding getBinding(char[] name, int mask, InvocationSite invocationSite) { Binding binding = null; FieldBinding problemField = null; if ((mask & VARIABLE) != 0) { if (this.kind == BLOCK_SCOPE || this.kind == METHOD_SCOPE) { LocalVariableBinding variableBinding = findVariable(name); // looks in this scope only if (variableBinding != null) return variableBinding; } boolean insideStaticContext = false; boolean insideConstructorCall = false; if (this.kind == METHOD_SCOPE) { MethodScope methodScope = (MethodScope) this; insideStaticContext |= methodScope.isStatic; insideConstructorCall |= methodScope.isConstructorCall; } FieldBinding foundField = null; // can be a problem field which is answered if a valid field is not found ProblemFieldBinding foundInsideProblem = null; // inside Constructor call or inside static context Scope scope = parent; int depth = 0; int foundDepth = 0; ReferenceBinding foundActualReceiverType = null; done : while (true) { // done when a COMPILATION_UNIT_SCOPE is found switch (scope.kind) { case METHOD_SCOPE : MethodScope methodScope = (MethodScope) scope; insideStaticContext |= methodScope.isStatic; insideConstructorCall |= methodScope.isConstructorCall; // Fall through... could duplicate the code below to save a cast - questionable optimization case BLOCK_SCOPE : LocalVariableBinding variableBinding = ((BlockScope) scope).findVariable(name); // looks in this scope only if (variableBinding != null) { if (foundField != null && foundField.isValidBinding()) return new ProblemFieldBinding( foundField.declaringClass, name, InheritedNameHidesEnclosingName); if (depth > 0) invocationSite.setDepth(depth); return variableBinding; } break; case CLASS_SCOPE : ClassScope classScope = (ClassScope) scope; SourceTypeBinding enclosingType = classScope.referenceContext.binding; FieldBinding fieldBinding = classScope.findField(enclosingType, name, invocationSite); // Use next line instead if willing to enable protected access accross inner types // FieldBinding fieldBinding = findField(enclosingType, name, invocationSite); if (fieldBinding != null) { // skip it if we did not find anything if (fieldBinding.problemId() == Ambiguous) { if (foundField == null || foundField.problemId() == NotVisible) // supercedes any potential InheritedNameHidesEnclosingName problem return fieldBinding; else // make the user qualify the field, likely wants the first inherited field (javac generates an ambiguous error instead) return new ProblemFieldBinding( fieldBinding.declaringClass, name, InheritedNameHidesEnclosingName); } ProblemFieldBinding insideProblem = null; if (fieldBinding.isValidBinding()) { if (!fieldBinding.isStatic()) { if (insideConstructorCall) { insideProblem = new ProblemFieldBinding( fieldBinding.declaringClass, name, NonStaticReferenceInConstructorInvocation); } else if (insideStaticContext) { insideProblem = new ProblemFieldBinding( fieldBinding.declaringClass, name, NonStaticReferenceInStaticContext); } } if (enclosingType == fieldBinding.declaringClass || environment().options.complianceLevel >= CompilerOptions.JDK1_4){ // found a valid field in the 'immediate' scope (ie. not inherited) // OR in 1.4 mode (inherited shadows enclosing) if (foundField == null) { if (depth > 0){ invocationSite.setDepth(depth); invocationSite.setActualReceiverType(enclosingType); } // return the fieldBinding if it is not declared in a superclass of the scope's binding (i.e. "inherited") return insideProblem == null ? fieldBinding : insideProblem; } if (foundField.isValidBinding()) // if a valid field was found, complain when another is found in an 'immediate' enclosing type (ie. not inherited) if (foundField.declaringClass != fieldBinding.declaringClass) // ie. have we found the same field - do not trust field identity yet return new ProblemFieldBinding( fieldBinding.declaringClass, name, InheritedNameHidesEnclosingName); } } if (foundField == null || (foundField.problemId() == NotVisible && fieldBinding.problemId() != NotVisible)) { // only remember the fieldBinding if its the first one found or the previous one was not visible & fieldBinding is... foundDepth = depth; foundActualReceiverType = enclosingType; foundInsideProblem = insideProblem; foundField = fieldBinding; } } depth++; insideStaticContext |= enclosingType.isStatic(); // 1EX5I8Z - accessing outer fields within a constructor call is permitted // in order to do so, we change the flag as we exit from the type, not the method // itself, because the class scope is used to retrieve the fields. MethodScope enclosingMethodScope = scope.methodScope(); insideConstructorCall = enclosingMethodScope == null ? false : enclosingMethodScope.isConstructorCall; break; case COMPILATION_UNIT_SCOPE : break done; } scope = scope.parent; } if (foundInsideProblem != null){ return foundInsideProblem; } if (foundField != null) { if (foundField.isValidBinding()){ if (foundDepth > 0){ invocationSite.setDepth(foundDepth); invocationSite.setActualReceiverType(foundActualReceiverType); } return foundField; } problemField = foundField; } } // We did not find a local or instance variable. if ((mask & TYPE) != 0) { if ((binding = getBaseType(name)) != null) return binding; binding = getTypeOrPackage(name, (mask & PACKAGE) == 0 ? TYPE : TYPE | PACKAGE); if (binding.isValidBinding() || mask == TYPE) return binding; // answer the problem type binding if we are only looking for a type } else if ((mask & PACKAGE) != 0) { compilationUnitScope().recordSimpleReference(name); if ((binding = environment().getTopLevelPackage(name)) != null) return binding; } if (problemField != null) return problemField; else return new ProblemBinding(name, enclosingSourceType(), NotFound); } /* * This retrieves the argument that maps to an enclosing instance of the suitable type, * if not found then answers nil -- do not create one * * #implicitThis : the implicit this will be ok * #((arg) this$n) : available as a constructor arg * #((arg) this$n access$m... access$p) : available as as a constructor arg + a sequence of synthetic accessors to synthetic fields * #((fieldDescr) this$n access#m... access$p) : available as a first synthetic field + a sequence of synthetic accessors to synthetic fields * nil : not found * */ public Object[] getCompatibleEmulationPath(ReferenceBinding targetEnclosingType) { MethodScope currentMethodScope = this.methodScope(); SourceTypeBinding sourceType = currentMethodScope.enclosingSourceType(); // identity check if (!currentMethodScope.isStatic && (sourceType == targetEnclosingType || targetEnclosingType.isSuperclassOf(sourceType))) { return EmulationPathToImplicitThis; // implicit this is good enough } if (!sourceType.isNestedType() || sourceType.isStatic()) { // no emulation from within non-inner types return null; } boolean insideConstructor = currentMethodScope.isInsideInitializerOrConstructor(); // use synthetic constructor arguments if possible if (insideConstructor) { SyntheticArgumentBinding syntheticArg; if ((syntheticArg = ((NestedTypeBinding) sourceType).getSyntheticArgument(targetEnclosingType, this, false)) != null) { return new Object[] { syntheticArg }; } } // use a direct synthetic field then if (!currentMethodScope.isStatic) { FieldBinding syntheticField; if ((syntheticField = sourceType.getSyntheticField(targetEnclosingType, this, false)) != null) { return new Object[] { syntheticField }; } // could be reached through a sequence of enclosing instance link (nested members) Object[] path = new Object[2]; // probably at least 2 of them ReferenceBinding currentType = sourceType.enclosingType(); if (insideConstructor) { path[0] = ((NestedTypeBinding) sourceType).getSyntheticArgument((SourceTypeBinding) currentType, this, false); } else { path[0] = sourceType.getSyntheticField((SourceTypeBinding) currentType, this, false); } if (path[0] != null) { // keep accumulating int count = 1; ReferenceBinding currentEnclosingType; while ((currentEnclosingType = currentType.enclosingType()) != null) { //done? if (currentType == targetEnclosingType || targetEnclosingType.isSuperclassOf(currentType)) break; syntheticField = ((NestedTypeBinding) currentType).getSyntheticField((SourceTypeBinding) currentEnclosingType, this, false); if (syntheticField == null) break; // append inside the path if (count == path.length) { System.arraycopy(path, 0, (path = new Object[count + 1]), 0, count); } // private access emulation is necessary since synthetic field is private path[count++] = ((SourceTypeBinding) syntheticField.declaringClass).addSyntheticMethod(syntheticField, true); currentType = currentEnclosingType; } if (currentType == targetEnclosingType || targetEnclosingType.isSuperclassOf(currentType)) { return path; } } } return null; } /* API * * Answer the constructor binding that corresponds to receiverType, argumentTypes. * * InvocationSite implements * isSuperAccess(); this is used to determine if the discovered constructor is visible. * * If no visible constructor is discovered, an error binding is answered. */ public MethodBinding getConstructor( ReferenceBinding receiverType, TypeBinding[] argumentTypes, InvocationSite invocationSite) { compilationUnitScope().recordTypeReference(receiverType); compilationUnitScope().recordTypeReferences(argumentTypes); MethodBinding methodBinding = receiverType.getExactConstructor(argumentTypes); if (methodBinding != null) if (methodBinding.canBeSeenBy(invocationSite, this)) return methodBinding; MethodBinding[] methods = receiverType.getMethods(ConstructorDeclaration.ConstantPoolName); if (methods == NoMethods) return new ProblemMethodBinding( ConstructorDeclaration.ConstantPoolName, argumentTypes, NotFound); MethodBinding[] compatible = new MethodBinding[methods.length]; int compatibleIndex = 0; for (int i = 0, length = methods.length; i < length; i++) if (areParametersAssignable(methods[i].parameters, argumentTypes)) compatible[compatibleIndex++] = methods[i]; if (compatibleIndex == 0) return new ProblemMethodBinding( ConstructorDeclaration.ConstantPoolName, argumentTypes, NotFound); // need a more descriptive error... cannot convert from X to Y MethodBinding[] visible = new MethodBinding[compatibleIndex]; int visibleIndex = 0; for (int i = 0; i < compatibleIndex; i++) { MethodBinding method = compatible[i]; if (method.canBeSeenBy(invocationSite, this)) visible[visibleIndex++] = method; } if (visibleIndex == 1) return visible[0]; if (visibleIndex == 0) return new ProblemMethodBinding( ConstructorDeclaration.ConstantPoolName, argumentTypes, NotVisible); return mostSpecificClassMethodBinding(visible, visibleIndex); } /* * This retrieves the argument that maps to an enclosing instance of the suitable type, * if not found then answers nil -- do not create one * * #implicitThis : the implicit this will be ok * #((arg) this$n) : available as a constructor arg * #((arg) this$n ... this$p) : available as as a constructor arg + a sequence of fields * #((fieldDescr) this$n ... this$p) : available as a sequence of fields * nil : not found * * Note that this algorithm should answer the shortest possible sequence when * shortcuts are available: * this$0 . this$0 . this$0 * instead of * this$2 . this$1 . this$0 . this$1 . this$0 * thus the code generation will be more compact and runtime faster */ public VariableBinding[] getEmulationPath(LocalVariableBinding outerLocalVariable) { MethodScope currentMethodScope = this.methodScope(); SourceTypeBinding sourceType = currentMethodScope.enclosingSourceType(); // identity check if (currentMethodScope == outerLocalVariable.declaringScope.methodScope()) { return new VariableBinding[] { outerLocalVariable }; // implicit this is good enough } // use synthetic constructor arguments if possible if (currentMethodScope.isInsideInitializerOrConstructor() && (sourceType.isNestedType())) { SyntheticArgumentBinding syntheticArg; if ((syntheticArg = ((NestedTypeBinding) sourceType).getSyntheticArgument(outerLocalVariable)) != null) { return new VariableBinding[] { syntheticArg }; } } // use a synthetic field then if (!currentMethodScope.isStatic) { FieldBinding syntheticField; if ((syntheticField = sourceType.getSyntheticField(outerLocalVariable)) != null) { return new VariableBinding[] { syntheticField }; } } return null; } /* * This retrieves the argument that maps to an enclosing instance of the suitable type, * if not found then answers nil -- do not create one * * #implicitThis : the implicit this will be ok * #((arg) this$n) : available as a constructor arg * #((arg) this$n access$m... access$p) : available as as a constructor arg + a sequence of synthetic accessors to synthetic fields * #((fieldDescr) this$n access#m... access$p) : available as a first synthetic field + a sequence of synthetic accessors to synthetic fields * nil : not found * * EXACT MATCH VERSION - no type compatibility is performed */ public Object[] getExactEmulationPath(ReferenceBinding targetEnclosingType) { MethodScope currentMethodScope = this.methodScope(); SourceTypeBinding sourceType = currentMethodScope.enclosingSourceType(); // identity check if (!currentMethodScope.isStatic && (sourceType == targetEnclosingType)) { if (currentMethodScope.isConstructorCall) { return EmulationPathToImplicitThisInConstructorCall; } return EmulationPathToImplicitThis; // implicit this is good enough } if (!sourceType.isNestedType() || sourceType.isStatic()) { // no emulation from within non-inner types return null; } boolean insideConstructor = currentMethodScope.isInsideInitializerOrConstructor(); // use synthetic constructor arguments if possible if (insideConstructor) { SyntheticArgumentBinding syntheticArg; if ((syntheticArg = ((NestedTypeBinding) sourceType).getSyntheticArgument(targetEnclosingType, this, true)) != null) { return new Object[] { syntheticArg }; } } // use a direct synthetic field then if (!currentMethodScope.isStatic) { FieldBinding syntheticField; if ((syntheticField = sourceType.getSyntheticField(targetEnclosingType, this, true)) != null) { return new Object[] { syntheticField }; } // could be reached through a sequence of enclosing instance link (nested members) Object[] path = new Object[2]; // probably at least 2 of them ReferenceBinding currentType = sourceType.enclosingType(); if (insideConstructor) { path[0] = ((NestedTypeBinding) sourceType).getSyntheticArgument((SourceTypeBinding) currentType, this, true); } else { path[0] = sourceType.getSyntheticField((SourceTypeBinding) currentType, this, true); } if (path[0] != null) { // keep accumulating int count = 1; ReferenceBinding currentEnclosingType; while ((currentEnclosingType = currentType.enclosingType()) != null) { if (currentMethodScope != null) { currentMethodScope = currentMethodScope.enclosingMethodScope(); if (currentMethodScope != null && currentMethodScope.isConstructorCall){ return new Object[] { new ProblemFieldBinding()//currentEnclosingType, new char[0], 0) }; break; } } //done? if (currentType == targetEnclosingType) break; syntheticField = ((NestedTypeBinding) currentType).getSyntheticField( (SourceTypeBinding) currentEnclosingType, this, true); if (syntheticField == null) break; // append inside the path if (count == path.length) { System.arraycopy(path, 0, (path = new Object[count + 1]), 0, count); } // private access emulation is necessary since synthetic field is private path[count++] = ((SourceTypeBinding) syntheticField.declaringClass).addSyntheticMethod(syntheticField, true); currentType = currentEnclosingType; } if (currentType == targetEnclosingType) { return path; } } } return null; } /* API * * Answer the field binding that corresponds to fieldName. * Start the lookup at the receiverType. * InvocationSite implements * isSuperAccess(); this is used to determine if the discovered field is visible. * Only fields defined by the receiverType or its supertypes are answered; * a field of an enclosing type will not be found using this API. * * If no visible field is discovered, an error binding is answered. */ public FieldBinding getField( TypeBinding receiverType, char[] fieldName, InvocationSite invocationSite) { FieldBinding field = findField(receiverType, fieldName, invocationSite); if (field == null) return new ProblemFieldBinding( receiverType instanceof ReferenceBinding ? (ReferenceBinding) receiverType : null, fieldName, NotFound); else return field; } /* API * * Answer the method binding that corresponds to selector, argumentTypes. * Start the lookup at the enclosing type of the receiver. * InvocationSite implements * isSuperAccess(); this is used to determine if the discovered method is visible. * setDepth(int); this is used to record the depth of the discovered method * relative to the enclosing type of the receiver. (If the method is defined * in the enclosing type of the receiver, the depth is 0; in the next enclosing * type, the depth is 1; and so on * * If no visible method is discovered, an error binding is answered. */ public MethodBinding getImplicitMethod( char[] selector, TypeBinding[] argumentTypes, InvocationSite invocationSite) { boolean insideStaticContext = false; boolean insideConstructorCall = false; MethodBinding foundMethod = null; ProblemMethodBinding foundFuzzyProblem = null; // the weird method lookup case (matches method name in scope, then arg types, then visibility) ProblemMethodBinding foundInsideProblem = null; // inside Constructor call or inside static context Scope scope = this; int depth = 0; done : while (true) { // done when a COMPILATION_UNIT_SCOPE is found switch (scope.kind) { case METHOD_SCOPE : MethodScope methodScope = (MethodScope) scope; insideStaticContext |= methodScope.isStatic; insideConstructorCall |= methodScope.isConstructorCall; break; case CLASS_SCOPE : ClassScope classScope = (ClassScope) scope; SourceTypeBinding receiverType = classScope.referenceContext.binding; boolean isExactMatch = true; // retrieve an exact visible match (if possible) MethodBinding methodBinding = (foundMethod == null) ? classScope.findExactMethod( receiverType, selector, argumentTypes, invocationSite) : classScope.findExactMethod( receiverType, foundMethod.selector, foundMethod.parameters, invocationSite); // ? findExactMethod(receiverType, selector, argumentTypes, invocationSite) // : findExactMethod(receiverType, foundMethod.selector, foundMethod.parameters, invocationSite); if (methodBinding == null) { // answers closest approximation, may not check argumentTypes or visibility isExactMatch = false; methodBinding = classScope.findMethod(receiverType, selector, argumentTypes, invocationSite); // methodBinding = findMethod(receiverType, selector, argumentTypes, invocationSite); } if (methodBinding != null) { // skip it if we did not find anything if (methodBinding.problemId() == Ambiguous) { if (foundMethod == null || foundMethod.problemId() == NotVisible) // supercedes any potential InheritedNameHidesEnclosingName problem return methodBinding; else // make the user qualify the method, likely wants the first inherited method (javac generates an ambiguous error instead) return new ProblemMethodBinding( selector, argumentTypes, InheritedNameHidesEnclosingName); } ProblemMethodBinding fuzzyProblem = null; ProblemMethodBinding insideProblem = null; if (methodBinding.isValidBinding()) { if (!isExactMatch) { if (!areParametersAssignable(methodBinding.parameters, argumentTypes)) { if (foundMethod == null || foundMethod.problemId() == NotVisible){ // inherited mismatch is reported directly, not looking at enclosing matches return new ProblemMethodBinding(methodBinding, selector, argumentTypes, NotFound); } // make the user qualify the method, likely wants the first inherited method (javac generates an ambiguous error instead) fuzzyProblem = new ProblemMethodBinding(selector, argumentTypes, InheritedNameHidesEnclosingName); } else if (!methodBinding.canBeSeenBy(receiverType, invocationSite, classScope)) { // using instead of for visibility check does grant all access to innerclass fuzzyProblem = new ProblemMethodBinding( selector, argumentTypes, methodBinding.declaringClass, NotVisible); } } if (fuzzyProblem == null && !methodBinding.isStatic()) { if (insideConstructorCall) { insideProblem = new ProblemMethodBinding( methodBinding.selector, methodBinding.parameters, NonStaticReferenceInConstructorInvocation); } else if (insideStaticContext) { insideProblem = new ProblemMethodBinding( methodBinding.selector, methodBinding.parameters, NonStaticReferenceInStaticContext); } } if (receiverType == methodBinding.declaringClass || (receiverType.getMethods(selector)) != NoMethods || ((fuzzyProblem == null || fuzzyProblem.problemId() != NotVisible) && environment().options.complianceLevel >= CompilerOptions.JDK1_4)){ // found a valid method in the 'immediate' scope (ie. not inherited) // OR the receiverType implemented a method with the correct name // OR in 1.4 mode (inherited visible shadows enclosing) if (foundMethod == null) { if (depth > 0){ invocationSite.setDepth(depth); invocationSite.setActualReceiverType(receiverType); } // return the methodBinding if it is not declared in a superclass of the scope's binding (i.e. "inherited") if (fuzzyProblem != null) return fuzzyProblem; if (insideProblem != null) return insideProblem; return methodBinding; } // if a method was found, complain when another is found in an 'immediate' enclosing type (ie. not inherited) // NOTE: Unlike fields, a non visible method hides a visible method if (foundMethod.declaringClass != methodBinding.declaringClass) // ie. have we found the same method - do not trust field identity yet return new ProblemMethodBinding( methodBinding.selector, methodBinding.parameters, InheritedNameHidesEnclosingName); } } if (foundMethod == null || (foundMethod.problemId() == NotVisible && methodBinding.problemId() != NotVisible)) { // only remember the methodBinding if its the first one found or the previous one was not visible & methodBinding is... // remember that private methods are visible if defined directly by an enclosing class if (depth > 0){ invocationSite.setDepth(depth); invocationSite.setActualReceiverType(receiverType); } foundFuzzyProblem = fuzzyProblem; foundInsideProblem = insideProblem; if (fuzzyProblem == null) foundMethod = methodBinding; // only keep it if no error was found } } depth++; insideStaticContext |= receiverType.isStatic(); // 1EX5I8Z - accessing outer fields within a constructor call is permitted // in order to do so, we change the flag as we exit from the type, not the method // itself, because the class scope is used to retrieve the fields. MethodScope enclosingMethodScope = scope.methodScope(); insideConstructorCall = enclosingMethodScope == null ? false : enclosingMethodScope.isConstructorCall; break; case COMPILATION_UNIT_SCOPE : break done; } scope = scope.parent; } if (foundFuzzyProblem != null) return foundFuzzyProblem; if (foundInsideProblem != null) return foundInsideProblem; if (foundMethod != null) return foundMethod; return new ProblemMethodBinding(selector, argumentTypes, NotFound); } /* API * * Answer the method binding that corresponds to selector, argumentTypes. * Start the lookup at the receiverType. * InvocationSite implements * isSuperAccess(); this is used to determine if the discovered method is visible. * * Only methods defined by the receiverType or its supertypes are answered; * use getImplicitMethod() to discover methods of enclosing types. * * If no visible method is discovered, an error binding is answered. */ public MethodBinding getMethod( TypeBinding receiverType, char[] selector, TypeBinding[] argumentTypes, InvocationSite invocationSite) { if (receiverType.isArrayType()) return findMethodForArray( (ArrayBinding) receiverType, selector, argumentTypes, invocationSite); if (receiverType.isBaseType()) return new ProblemMethodBinding(selector, argumentTypes, NotFound); ReferenceBinding currentType = (ReferenceBinding) receiverType; if (!currentType.canBeSeenBy(this)) return new ProblemMethodBinding(selector, argumentTypes, ReceiverTypeNotVisible); // retrieve an exact visible match (if possible) MethodBinding methodBinding = findExactMethod(currentType, selector, argumentTypes, invocationSite); if (methodBinding != null) return methodBinding; // answers closest approximation, may not check argumentTypes or visibility methodBinding = findMethod(currentType, selector, argumentTypes, invocationSite); if (methodBinding == null) return new ProblemMethodBinding(selector, argumentTypes, NotFound); if (methodBinding.isValidBinding()) { if (!areParametersAssignable(methodBinding.parameters, argumentTypes)) return new ProblemMethodBinding( methodBinding, selector, argumentTypes, NotFound); if (!methodBinding.canBeSeenBy(currentType, invocationSite, this)) return new ProblemMethodBinding( selector, argumentTypes, methodBinding.declaringClass, NotVisible); } return methodBinding; } public int maxShiftedOffset() { int max = -1; if (this.shiftScopes != null){ for (int i = 0, length = this.shiftScopes.length; i < length; i++){ int subMaxOffset = this.shiftScopes[i].maxOffset; if (subMaxOffset > max) max = subMaxOffset; } } return max; } /* Answer the problem reporter to use for raising new problems. * * Note that as a side-effect, this updates the current reference context * (unit, type or method) in case the problem handler decides it is necessary * to abort. */ public ProblemReporter problemReporter() { return outerMostMethodScope().problemReporter(); } /* * Code responsible to request some more emulation work inside the invocation type, so as to supply * correct synthetic arguments to any allocation of the target type. */ public void propagateInnerEmulation( ReferenceBinding targetType, boolean isEnclosingInstanceSupplied, boolean useDirectReference, AstNode reference) { // perform some emulation work in case there is some and we are inside a local type only // propage emulation of the enclosing instances ReferenceBinding[] syntheticArgumentTypes; if ((syntheticArgumentTypes = targetType.syntheticEnclosingInstanceTypes()) != null) { for (int i = 0, max = syntheticArgumentTypes.length; i < max; i++) { ReferenceBinding syntheticArgType = syntheticArgumentTypes[i]; // need to filter out the one that could match a supplied enclosing instance if (!(isEnclosingInstanceSupplied && (syntheticArgType == targetType.enclosingType()))) { this.emulateOuterAccess(syntheticArgType, useDirectReference, reference); } } } SyntheticArgumentBinding[] syntheticArguments; if ((syntheticArguments = targetType.syntheticOuterLocalVariables()) != null) { for (int i = 0, max = syntheticArguments.length; i < max; i++) { SyntheticArgumentBinding syntheticArg = syntheticArguments[i]; // need to filter out the one that could match a supplied enclosing instance if (!(isEnclosingInstanceSupplied && (syntheticArg.type == targetType.enclosingType()))) { this.emulateOuterAccess(syntheticArg.actualOuterLocalVariable); } } } } /* Answer the reference type of this scope. * * i.e. the nearest enclosing type of this scope. */ public TypeDeclaration referenceType() { return methodScope().referenceType(); } // start position in this scope - for ordering scopes vs. variables int startIndex() { return startIndex; } public String toString() { return toString(0); } public String toString(int tab) { String s = basicToString(tab); for (int i = 0; i < scopeIndex; i++) if (subscopes[i] instanceof BlockScope) s += ((BlockScope) subscopes[i]).toString(tab + 1) + "\n"; //$NON-NLS-1$ return s; } }