
1

Identifying Renaming Opportunities by
Expanding Conducted Rename Refactorings

Hui Liu, Qiurong Liu, Yang Liu, Zhouding Wang

Abstract—To facilitate software refactoring, a number of approaches and tools have been proposed to suggest where refactorings
should be conducted. However, identification of such refactoring opportunities is usually difficult because it often involves difficult
semantic analysis and it is often influenced by many factors besides source code. For example, whether a software entity should
be renamed depends on the meaning of its original name (natural language understanding), the semantics of the entity (source
code semantics), experience and preference of developers, and culture of companies. As a result, it is difficult to identify renaming
opportunities. To this end, in this paper we propose an approach to identify renaming opportunities by expanding conducted renamings.
Once a rename refactoring is conducted manually or with tool support, the proposed approach recommends to rename closely related
software entities whose names are similar to that of the renamed entity. The rationale is that if an engineer makes a mistake in
naming a software entity it is likely for her to make the same mistake in naming similar and closely related software entities. The main
advantage of the proposed approach is that it does not involve difficult semantic analysis of source code or complex natural language
understanding. Another advantage of this approach is that it is less influenced by subjective factors, e.g., experience and preference of
software engineers. The proposed approach has been evaluated on four open-source applications. Our evaluation results show that the
proposed approach is accurate in recommending entities to be renamed (average precision 82%) and in recommending new names
for such entities (average precision 93%). Evaluation results also suggest that a substantial percentage (varying from 20% to 23%) of
rename refactorings are expansible.

Index Terms—Software Refactoring, Rename, Code Smells, Refactoring Opportunity, Identification.

F

1 INTRODUCTION

1.1 Software Refactoring
Software refactoring is a good means to improve soft-
ware quality by restructuring the internal structure of
software applications [1], [2]. Most of the modern IDEs,
e.g., Eclipse, IntelliJ IDEA and Visual Studio, provide tool
support for software refactoring. For example, Eclipse has
a top-level menu item specially designed for software
refactoring. It provides entries for dozens of software
refactorings that are automated or semi-automated by
Eclipse. Tool support is crucial for the success of software
refactoring [3], [4], [5].

One of the key issues in software refactoring is to
identify refactoring opportunities [1]. A refactoring op-
portunity is composed of three parts: source code that
should be restructured, its restructuring plan (how to
restructure the source code), and the motivation for such
a refactoring (the cost and benefit). Only if refactoring
opportunities have been identified, refactorings can be
conducted.

However, manually identifying refactoring opportuni-
ties can be tedious and time-consuming, especially when
such refactoring opportunities involve more than one file
or package [1], [6]. Consequently, a number of algorithms

• H. Liu, Q. Liu, Y. Liu, and Z. Wang are with the School of Computer
Science and Technology, Beijing Institute of Technology, Beijing 100081,
China
E-mail: {liuhui08, liuqiurong}@bit.edu.cn, liuyangzj@126.com, zhoud-
ingw@163.com

and tools have been proposed to identify refactoring
opportunities automatically or semi-automatically [7],
[8], [1], [9].

1.2 Rename Refactoring and Tool Support

Among a dozen of well known refactorings, rename
is the most popular one [10]. A survey conducted by
Arnaoudova et al. [11] suggests that 39 percent of the
developers involved in the survey apply rename refac-
torings from a few times per week to almost every day.
According to the experiment results reported by Murphy
et al. [10], all developers involved in their experiment
have conducted rename refactorings whereas less than
60% of them have conducted the second popular refac-
toring move (moving software entities, such as methods,
fields, and classes). One of the reasons why rename
refactoring is so popular is that names of software
entities are an important source for program compre-
hension [12]. According to the lexical analysis conducted
by Deissenboeck and Pizka [13], one third of tokens in
source code is identifiers, and such identifiers account
for more than two thirds of the source code in terms
of characters. The importance of high quality names in
improving program readability and maintainability has
been validated and acknowledged [14], [15].

As introduced in the preceding section, automated or
semi-automated tools are needed to facilitate the identi-
fication of refactoring opportunities. The same is true for
rename refactoring. However, automatically identifying

2

which entities should be renamed is not easy [6]. To
determine whether a software entity should be renamed,
automated approaches should determine 1) the meaning
of the entity name; 2) the semantics of the entity; 3) expe-
rience and preference of the developer; 4) culture of the
company where the software is developed. However, it is
difficult to collect such information. First, it is challeng-
ing to understand the meaning of entity names because
natural language understanding is difficult. Second, it
is challenging to determine the semantics of software
entities because semantic analysis of source code is diffi-
cult as well. Third, subjective factors like experience and
preference of developers are difficult to collect, quantify
or analyze. As a conclusion, it is difficult and inaccurate
to identify renaming opportunities based on difficult
semantic analysis of source code and difficult natural
language understanding without considering subjective
information of users.

Modern IDEs provide little support for identification
of renaming opportunities. They provide strong auto-
mated tool support (refactoring engines) for conduction
of rename refactorings [8]. However, these refactoring
engines cannot work until renaming opportunities have
been identified and refactoring solutions (new names of
related entities) have been figured out.

To this end, in this paper we propose an approach
to identify renaming opportunities by expanding con-
ducted rename refactorings. Once a rename refactoring
is conducted manually or with tool support, the pro-
posed approach recommends to rename closely related
software entities whose names are similar to that of the
renamed entity. The rationale is that if an engineer makes
a mistake in naming a software entity it is likely for her
to make the same mistake in naming similar and closely
related software entities.

The main advantage of the proposed approach is that
it does not involve complex natural language under-
standing or difficult semantic analysis of source code.
Another advantage is that it is less influenced by subjec-
tive factors, e.g., experience and preference of software
engineers, because the identified renaming opportunities
share the same context with the expanded rename refac-
toring.

This paper offers the following contributions:
• First, we propose a new way to identify renaming

opportunities. To the best of our knowledge, it is
the first one to identify refactoring opportunities by
expanding a conducted refactoring.

• Second, the proposed approach has been imple-
mented and validated on four open-source appli-
cations. Our evaluation results show that the pro-
posed approach is accurate. 82% of recommended
renaming opportunities have been actually per-
formed later on; 93% of recommended solutions
(i.e., new names) for such renaming opportunities
were identical to those actually adopted later on.
Our evaluation also shows that 21% of rename refac-
torings were successfully expanded by the proposed

approach, and on average an expandable renaming
led to two true renaming opportunities.

The rest of the paper is structured as follows. Sec-
tion 2 illustrates why and how the proposed approach
can identify renaming opportunities with a motivating
example. Section 3 proposes the approach to identify re-
naming opportunities by expanding a conducted rename
refactoring. Section 4 presents an evaluation of the pro-
posed approach on open-source applications. Section 3.6
discusses related issues. Section 5 presents a short review
of related research. Section 6 provides conclusions and
potential future work.

2 MOTIVATING EXAMPLE

An example from the well-known open-source applica-
tion Weka1 is presented in Fig. 1. Source code of class
PreprocessPanel (version 3-3-4) is presented in Fig. 1
where irrelevant source code is omitted (notated as
’//...’).

According to the name of method setBaseInstances (on
Line 6), we know that the main task of this method is
to set local field m BaseInstances. The first statement of
this method ’m BaseInstances = inst’ (Line 7 in Fig. 1) ac-
complishes this task. After that, the method initializes in-
stances in different panels (m BaseInstPanel, m AttPanel,
and m AttSummaryPanel) with m BaseInstances by calling
method setInstances on these panels (Lines 9-11). Method
setInstances looks as follows:

publ ic void s e t I n s t a n c e s (I n s t a n c e s i n s t) {
m Instances = i n s t ;

/ / . . .
}

The developer realized that fields initialized with
the same value (the parameter inst of method
setBaseInstances) are named differently in different
classes: ’m BaseInstances’ in class PreprocessPanel but
’m Instances’ in other classes. Consequently, to make
these names consistent [13], [16] she might rename
the field m BaseInstances of class PreprocessPanel to
’m Instances’ by removing the term ’Base’ from it. We
have discovered this rename refactoring by checking the
evolution history of the class.

However, renaming the field alone was insufficient.
First of all, the name of a set method had better be
consistent with the name of the field it accesses. Con-
sequently, once the field m BaseInstances is renamed to
’m Instances’, the corresponding set method setBaseIn-
stances had better be renamed to ’setInstances’.

Second, a set of related set methods on Lines 14-
43, e.g., setBaseInstancesFromURL, had better be renamed
as well. The main tasks of these methods are to set
the field m BaseInstances. They set this field by calling
setBaseInstances. Consequently, when setBaseInstances is
renamed to ’setInstances’ as discussed in the preceding
paragraph, these methods had better be renamed from

1. http://www.cs.waikato.ac.nz/ml/weka/

3

1 /∗ vers ion 3−3−4 ∗/
2 package weka . gui . explorer ;
3 publ ic c l a s s PreprocessPanel extends JPanel {
4 protec ted I n s t a n c e s m BaseInstances ;
5 / / . . .
6 publ ic void s e t B a s e I n s t a n c e s (I n s t a n c e s i n s t) {
7 m BaseInstances = i n s t ;
8 // . . .
9 m BaseInstPanel . s e t I n s t a n c e s (m BaseInstances) ;

10 m AttPanel . s e t I n s t a n c e s (m BaseInstances) ;
11 m AttSummaryPanel . s e t I n s t a n c e s (m BaseInstances) ;
12 // . . .
13 }
14 publ ic void setBaseInstancesFromFileQ () {
15 // . . .
16 se tBase Ins tancesFromFi le (s e l e c t e d) ;
17 // . . .
18 }
19 publ ic void setBaseInstancesFromDBQ () {
20 // . . .
21 setBaseInstancesFromDB (InstQ) ;
22 // . . .
23 }
24 publ ic void setBaseInstancesFromURLQ () {
25 // . . .
26 setBaseInstancesFromURL (u r l) ;
27 // . . .
28 }
29 publ ic void se tBase Ins tancesFromFi le (f i n a l F i l e f) {
30 // . . .
31 s e t B a s e I n s t a n c e s (new I n s t a n c e s (r)) ;
32 // . . .
33 }
34 publ ic void setBaseInstancesFromDB (f i n a l InstanceQuery iq) {
35 // . . .
36 s e t B a s e I n s t a n c e s (new I n s t a n c e s (i)) ;
37 // . . .
38 }
39 publ ic void setBaseInstancesFromURL (f i n a l URL u) {
40 // . . .
41 s e t B a s e I n s t a n c e s (new I n s t a n c e s (r)) ;
42 // . . .
43 }
44 / / . . .
45 }

Fig. 1. Motivating Example from Open-Source Application Weka

setBaseInstancesFrom* to ’setInstancesFrom*’ (removing the
term ’Base’) to keep them consistent with the field it
accesses and sibling methods they call.

As a result, she should conduct eight rename refactor-
ings (all of them have been discovered in Weka 3-3-5),
and all of these refactorings are caused by the same rea-
son: an inappropriately named field. However, when the
first rename refactoring is conducted, existing refactoring
tools cannot recommend other renaming opportunities.
Consequently, the developer has to manually identify
all of such fields and methods to rename. However,
manual identification is tedious and time-consuming
because the class contains more than 900 lines of source
code and the involved software entities are declared
in different locations. As a result, manual identification
might miss some renaming opportunities and thus result

in incomplete renaming.

The proposed approach analyzes the first rename
refactoring, i.e., renaming field m BaseInstances to
’m Instances’, and learns that the refactoring is to remove
term ’Base’. It collects closely related software entities
(methods that access this field) whose name contains
the deleted term ’Base’ and its sibling term ’Instances’.
Among all such entities, it recommends method setBase-
Instances to be renamed because its name is more similar
to ’m BaseInstances’ than names of other entities. When
the recommended renaming opportunity is accepted,
the proposed approach continues to recommend until
its recommendation is rejected or no entity could be
recommended. For the example presented in Fig. 1, all of
the seven renaming opportunities can be recommended
successfully in this way.

4

Software Engineer

Search Engine RecommenderRe
Renaming

Analyzer
Se

Softftwa

Renami
ine RecommenderRe

Monitor

re Engineer

R
e
fa
ct
o
ri
n
g

Refactoring

Engine

ming

Fig. 2. Overview of the Approach

Details on how the proposed approach works for the
motivating example are presented in Section 3 where
this example is used to illustrate how the proposed
approach recommends renaming opportunities, and how
new names are generated.

3 APPROACH

3.1 Overview
An overview of the proposed approach is presented
in Fig. 2. As suggested by the figure, the proposed
approach works as follows:

1) The software engineer applies a rename refactoring
r1 on software entity e, and changes its name from
oldName to newName. She might do it manually or
semi-automatically with refactoring tools.

2) A monitor running in the background captures the
rename refactoring r1.

3) A renaming analyzer analyzes r1, and generates an
edit script that transforms oldName into newName.

4) A search engine searches for software entities that
are closely related to e. If names of such entities are
similar to oldName, such entities are considered as
potential renaming opportunities.

5) Among all potential renaming opportunities, the
recommender selects the one whose name is the
most similar to oldName.

6) The software engineer manually checks the rec-
ommended renaming opportunity. If it is rejected,
recommendation triggered by r1 stops. Otherwise,
a refactoring engine (which is usually embedded
in IDEs) conducts the corresponding rename refac-
toring r2, and new renaming opportunities would
be recommended based on both r1 and r2. The
recommendation continues until a recommended
opportunity is rejected or no opportunities can be
recommended. A rejected opportunity stops the rec-
ommendation because it suggests that the approach
might not work for the given refactoring.

Refactoring engines are distributed with modern IDEs.
Monitors are also available [6], [17] and conducted

rename refactorings could be identified with existing
algorithms [18], [11], [19], [20], [21] that are introduced
in Section 5.3. Consequently, the proposed approach
focuses on renaming analyzer, search engine, and rec-
ommender only. Details of these parts are introduced in
the following sections.

3.2 Analysis of Rename Refactorings

A rename refactoring that changes the name of software
entity e from oldName to newName is represented as:

r1 =< e, oldName, newName > (1)

oldName is composed of a sequence of terms:

oldName =< a1, a2, . . . , an > (2)

oldName is decomposed into a sequence of terms delim-
ited by underscores and capital letters assuming that the
name follows the popular camel case or snake case nam-
ing convention. Alternative approaches to decompose
identifier names that do not follows these conventions
are discussed in Section 3.6.1.

By comparing oldName against newName, we can get
the smallest set of deletions, insertions, and replacements
that transforms oldName into newName.

A deletion command is represented as

d(i,k) =< i, k > (3)

suggesting that the sequence of terms ai . . . ak is re-
moved from oldName.

A replacement command is represented as

rp(i,k) =< i, k, bj , bj+1, . . . , bj+t > (4)

suggesting ai . . . ak is replaced with a sequence of terms
bjbj+1 . . . , bj+t.

An insertion command is represented as

sci =< i, bj , bj+1, . . . , bj+q > (5)

suggesting a sequence of terms bjbj+1 . . . , bj+t is inserted
immediately after ai. If the sequence is inserted at the
beginning of a name, i = 0.

For the motivating example presented in Section 2,
the captured rename refactoring is to rename field
m BaseInstances to ’m Instances’. Consequently, the
only edition command is to delete the term ’Base’ (the
third term of m BaseInstances =
<′ m′,′ ′,′ Base′,′ Instances′ >):

d(3,3) =< 3, 3 > (6)

Tokenisation of identifier names usually takes ’ ’ as
a separator character and thus removes such characters
in resulting tokens (terms) [22]. However, it is possible
that software engineers rename a software entity by
adding or removing ’ ’ only. Consequently, the proposed
approach keeps these characters to capture such small
changes.

5

3.3 Searching for Related Entities
Entities that are related to e in at least one of the
following ways are considered as closely related entities:

• Inclusion
Entities that are directly included by e and elements
that directly include e. For example, if e is a class, all
methods and fields within this class are considered
as closely related entities.

• Sibling
Siblings of e. For example, if e is a method, all meth-
ods and fields within the same class are considered
as closely related entities.

• Reference
All entities that are referred by e and entities that
refer to e. For example, if e is a method, all methods
that are invoked within this method and all methods
that invoke e are taken as closely related entities.

• Inheritance
If e is a class, its superclass and subclasses are taken
as closely related entities.

All such closely related entities are collected into a set
that is notated as res (related entities).

For the motivating example presented in Section 2, the
renamed entity is the field m BaseInstances. Its closely
related entities include:

• Its enclosing class: PreprocessPanel;
• Its siblings: all fields and methods of class Prepro-

cessPanel (except for m BaseInstances itself);
• Methods that directly access this field: methods

setBaseInstances, getFilters, and setWorkingInstances-
FromFilters of class PreprocessPanel.

3.4 Recommendation
3.4.1 Preconditions
An element (software entity) e′ in res whose name
is cName is considered for recommendation only if it
meets all of the following conditions:

• For every deletion command d(i,k) that is derived
from the renaming analysis in Section 3.2, cName
should contain either ai−1 · · · ak or ai · · · ak+1. In
other words, cName should contain the sequence
of deleted terms (ai · · · ak) and at least one of its
sibling terms (context).

• For every replacement command rp(i,k) derived
from the renaming analysis in Section 3.2, cName
should contain the sequence of replaced terms
(ai · · · ak) and one of its sibling terms. Consequently,
cName must contain either ai−1 · · · ak or ai · · · ak+1.

• For every insertion command sci derived from the
renaming analysis in Section 3.2, cName should con-
tain aiai+1. In other words, cName should contain
both of the direct neighbors of the inserted terms.

Entities that fail to meet any of the preconditions listed
above are removed from res.

The name of entity e′ should contain both deleted
(or replaced) terms and their sibling terms because such

sibling terms can help to improve accuracy of the rec-
ommendation. According to our software development
experience, a deletion or replacement command in re-
name refactorings often removes or replaces a single
term. However, this single term is usually not enough
to capture the refactoring context. Consequently, we con-
catenate this term with at least one of its sibling terms to
represent the refactoring context. An insertion command
does not replace or remove any terms. Consequently, we
use both ai and ai+1 to present the insertion point for
insertion command sci.

For the motivating example presented in Section 2, the
only edition command is d(3,3). For this command, aj is
the term ’Base’, aj−1aj =

′ Base′, and ajaj+1 =
′BaseInstance′. Among all the related entities found in
Section 3.3, the following entities meet all preconditions
that are listed and discussed in preceding paragraphs:

• Method setBaseInstances of class PreprocessPanel;
• Method setBaseInstancesFromFileQ of class Preprocess-

Panel;
• Method setBaseInstancesFromDBQ of class Preprocess-

Panel;
• Method setBaseInstancesFromURLQ of class Prepro-

cessPanel;
• Method setBaseInstancesFromFile of class Preprocess-

Panel;
• Method setBaseInstancesFromDB of class Preprocess-

Panel;
• Method setBaseInstancesFromURL of class Preprocess-

Panel;
Other related software entities that fail to meet the
preconditions are excluded for further consideration.

3.4.2 Segmentation

The original name (oldName = a1 · · · an) of the renamed
entity e and the name (cName = c1 · · · cm) of entity e′

from res are segmented into subsequences to facilitate
the computation of their similarity.

For every deletion command d(i,k) that is derived from
the renaming analysis in Section 3.2, k is a segmentation
point for oldName suggesting that the string should
be segmented at the position of k. Its corresponding
segmentation point for cName is p where cp+i−k−1 · · · cp
is identical to ai−1 · · · ak or cp+i−k · · · cp+1 is identical to
ai · · · ak+1. These two segmentation points together with
the length of the deleted terms are called a segmentation
pair < k, p, k − i+ 1 >.

For every replacement command rp(i,k) that is de-
rived from the renaming analysis in Section 3.2, k is
a segmentation point for oldName. Its corresponding
segmentation point for cName is p where cp+i−k−1 · · · cp
is identical to ai−1 · · · ak or cp+i−k · · · cp+1 is identical to
ai · · · ak+1. These two segmentation points together with
the length of the replaced terms are called a segmenta-
tion pair < k, p, k − i+ 1 >.

For every insertion command sc(i) that is derived from
the renaming analysis in Section 3.2, i is a segmentation

6

point for oldName. Its corresponding segmentation point
for cName is p where cpcp+1 is identical to aiai+1. Its
corresponding segmentation pair is < i, p, 0 > where 0
suggests that no term has been deleted by the command.

Segmentation pairs for all of the commands are repre-
sented as a sequence:

sps =< sp1, sp2, . . . , spv > (7)
spi =< pi, qi, leni > (8)

pi < pi+1 (9)

Where v is the number of edition commands and spi
is the ith segmentation pair. In sps, all segmentation
pairs are sorted in ascending order according to their
first elements (pi).

These segmentation pairs segment oldName and
cName into v + 1 subsequences, respectively:

sgi(oldName) = a(pi−1+1) · · · api (10)
sgi(cName) = c(qi−1+1) · · · cqi (11)

where sgi(oldName) is the ith subsequence of oldName,
sgi(cName) is the ith subsequence of cName, and p0 =
q0 = 0.

For an edition command, there might exist more than
one segmentation pair. For example, for deletion com-
mand d(i,k), if ai−1 · · · ak appears twice in cName, there
are two segmentation pairs for this command. However,
for a single command, only one segmentation pair can be
inserted into a segmentation pair sequence (sps). Since
selecting different segmentation pairs for the command
may result in different similarity between oldName and
cName as computed in the next section (Section 3.4.3),
we select the one that maximizes the similarity.

For the motivating example presented in Section 2,
we take the method setBaseInstances to illustrate how
identifier names are segmented. In this example, the only
edition command is d(3, 3). Consequently, both oldName
and cName should be segmented into two subsequences:

oldName =<′ m′,′ ′,′ Base′,′ Instances′ > (12)
cName =<′ set′,′ Base′,′ Instances′ > (13)

sps =< sp1 > (14)
sp1 =< 3, 2, 1 > (15)

sg1(oldName) =′ m Base′ (16)
sg2(oldName) =′ Instances′ (17)

sg1(cName) =′ setBase′ (18)
sg2(cName) =′ Instances′ (19)

3.4.3 Similarity and Recommendation

Similarity between oldName =< a1, a2, . . . , an > and
cName =< c1, c2, . . . , cm >is computed as follows:

sim(oldName, cName) =
1

v + 1
×

∑
i∈[1,v+1]

S(sgi(oldName), sgi(cName)) (20)

where sgi(oldName) is the ith subsequence of oldName,
sgi(cName) is the ith subsequence of cName, and v
is the number of edition commands (the same as that
in Equation 7). S(sgi(oldName), sgi(cName)) is the text
similarity between two sequences of terms:

S(seq1, seq2) =
2× |seq1 ∩ seq2|
|seq1|+ |seq2|

(21)

|seq1 ∩ seq2| is the number of terms appearing in both
seq1 and seq2.

Among all entities in res, the one e′ with the greatest
similarity with oldName is recommended.

For entity (method setBaseInstances) in the motivating
example presented in Section 2, the similarity is com-
puted as follows:

oldName = <′ m′,′ ′,′ Base′,′ Instances′ > (22)
cName = <′ set′,′ Base′,′ Instances′ > (23)

sim(oldName,cName) =

1

2
× [S(sg1(oldName), sg1(cName)

+ S(sg2(oldName), sg2(cName)]

=
1

2
× [S(′m Base′,′ setBase′)

+ S(′Instances′,′ Instances′)]

=
1

2
× [

2× 1

3 + 2
+

2× 1

1 + 1
]

=0.7 (24)

3.4.4 Generation of New Names
To generate the new name for recommended entity e′,
we generate a set of edition commands to transform its
original name cName to its recommended new name.
We get such edition commands by adjusting positions
of edition commands that have transformed oldName
to newName:

• For each deletion command d(i,k) that is derived
from the renaming analysis in Section 3.2, we gen-
erate a deletion command cd(p−k+i,p) where
< k, p, k − i > is the corresponding segmentation
pair defined in Section 3.4.2.

• For each replacement command rp(i,k) =
< i, k, bj , bj+1, . . . , bj+t > that is derived from the
renaming analysis in Section 3.2, we generate a
replacement command crp(p−k+i,p) =
< p−k+i, p, bj , bj+1, . . . , bj+t > where < k, p, k−i >
is the corresponding segmentation pair.

• For each insertion command sci =
< i, bj , bj+1, . . . , bj+q > that is derived from the
renaming analysis in Section 3.2, we generate an
insertion command cscp =< p, bj , bj+1, . . . , bj+q >
where < i, p, 0 > is the corresponding segmentation
pair.

After all such edit commands are conducted on
cName, the resulting string is the recommended new
name for the entity e′.

7

For the motivating example presented in Section 2,
method setBaseInstances is recommended for renaming.
In this example, there is only one edition command
d(3,3) that has been conducted on oldName. For this
deletion command d3, its corresponding segmentation
pair is < 3, 2, 1 >. Consequently, the deletion command
on cName should be d(2,2), i.e., removing the second
term from cName. Applying such command on cName
results in the recommended new name: setInstances. The
recommended name is identical to that appearing in
Weka 3-3-5, suggesting that the recommendation is cor-
rect.

3.5 Further Recommendation

In Sections 3.2-3.4, the proposed approach recommends
a renaming opportunity based on a conducted rename
refactoring r1. If the initial recommendation is accepted,
and software engineers carry out the recommended re-
name refactoring r2, the proposed approach tries to rec-
ommend new renaming opportunities based on both r1
and r2. The recommendation triggered by r1 stops if and
only if the proposed approach fails to recommend any
renaming opportunity or a recommended opportunity is
rejected.

Suppose that based on refactoring r1, a sequence
of refactorings acceptR =< r2, r3, · · · , rk > has been
recommended and conducted. The proposed approach
searches for related entities as follows:

res = res(r1) ∪ res(r2) · · · ∪ res(rk) (25)

where res(ri) is a set of software entities collected ac-
cording to refactoring ri. The collection of res(ri) is the
same as that introduced in Section 3.3.

For every entity e′′ from res, the similarity between
its name eName and the original names involved in
r1, r2, r3, · · · , rk is calculated as follows:

sim(eName) =
1

k
×

∑
i∈[1,k]

sim(namei, eName) (26)

where namei is the original name of the entity renamed
by refactoring ri, and sim(namei, eName) is the text
similarity between two identifier names that is defined
in Equation 20.

Among all entities in res, the one with the greatest
similarity is recommended. Its new name is generated
based on r1 in the same way as introduced in Sec-
tion 3.4.4.

For the motivating example presented in Section 2,
once the recommended rename refactoring on method
setBaseInstances has been conducted, the proposed ap-
proach should try to recommend new renaming op-
portunities according to rename refactorings on both
setBaseInstances and m BaseInstances. We take method
setBaseInstancesFromFile as an example to illustrate how
to compute its similarity with more than one conducted

rename refactorings:

eName =′ setBaseInstancesFromFile′ (27)
name1 =′m BaseInstances′ (28)
name2 =′setBaseInstances′ (29)

sim(name1, eName) =
1

2
× (

2× 1

5
+

2× 1

4
) = 0.45 (30)

sim(name2, eName) =
1

2
× (

2× 2

4
+

2× 1

4
) = 0.75 (31)

sim(eName) =
1

2
×

∑
i∈[1,2]

sim(namei, eName)

=
1

2
× (0.45 + 0.75) = 0.6 (32)

3.6 Limitations

3.6.1 Decomposition of Identifier Names

The proposed approach assumes that identifier names
follow the popular camel case or snake case naming
convention. As a result, it decomposes such names ac-
cording to capital letters and underscores. The decom-
position is simple and effective while identifier names
follow such naming conventions.

However, if identifier names do not follow such nam-
ing conventions, the proposed approach might not work.
In this case, more complicate and smarter approaches
should be used. For example, INTT: Identifier Name To-
kenisation Tool2 proposed by Butler et al.[22] can decom-
pose identifier names into meaningful terms even if these
names do not follow camel case naming convention.

3.6.2 Synonym Database

The proposed approach computes text similarity be-
tween two strings by counting the common terms ap-
pearing in both strings. However, it does not take
synonyms into consideration. For example, comparing
strings ’get’ and ’retrieve’, the proposed approach gen-
erates the similarity of zero although these terms are
synonyms.

On one side, synonym databases, e.g., WordNet3, might
help to improve the computation of text similarity. On
the other side, synonym analysis might complicate the
proposed approach and make it hard to understand or
implement. The reason why synonym analysis in source
code is complex is that terms usually have different
meaning in different contexts and thus whether two
terms are synonymous depends on their contexts. How-
ever, context analysis for terms in short identifier names
is difficult.

4 EVALUATION

The proposed approach has been implemented and eval-
uated on four open-source applications.

2. http://oro.open.ac.uk/28352/
3. http://wordnet.princeton.edu/

8

4.1 Research Questions
The evaluation investigates the following research ques-
tions:

• RQ1: How often are renaming opportunities recom-
mended by the proposed approach accepted?

• RQ2: How often are new names generated by the
proposed approach accepted?

• RQ3: How often can a rename refactoring be ex-
panded to discover more renaming opportunities?

RQ1 and RQ2 concern the precision of the proposed
approach in recommending renaming opportunities and
in recommending new names for entities to be renamed.
These research questions are important because the pro-
posed approach would be useless if it overwhelms de-
velopers with a large number of false positives (resulting
from low precision). RQ3 concerns how often developers
need the proposed approach if it is accurate. Only if a
non-trivial percentage of rename refactorings can be ex-
panded, the proposed approach can be used frequently
and thus create value. Otherwise, the approach might
be rarely used. As a conclusion, investigating these
questions would reveal whether the proposed approach
is really useful.

4.2 Subject Applications
An overview of the subject applications is presented in
Table 1.

Weka4 is an open-source application developed by the
machine learning group at the University of Waikato.
It implements in Java a set of well-known machine
learning algorithms. 70 versions of this application (from
3.0 to 3.7.11) have been involved in the evaluation. The
size of the application varies from 38,890 to 272,212 LOC.
Source code of this application was downloaded from its
SVN server (https://svn.cms.waikato.ac.nz/svn/weka).

Hibernate5 is an open-source application developed by
Red Hat6. The purpose of this project is to provide an
easy way to achieve persistence in Java. 113 versions
of this application (from v30alpha to 4.3.6.Final) have
been involved in the evaluation. The size of the appli-
cation varies from 51,276 to 200,874 LOC. Source code
of this application was downloaded from SourceForge
(http://sourceforge.net/projects/hibernate).

Derby7 is an Apache DB subproject sponsored by
Apache Software Foundation8. It is an open-source rela-
tional database implemented entirely in Java. 23 versions
of this application (from 10.0.2.1 to 10.10.2.0) have been
involved in the evaluation. The size of the application
varies from 258,295 to 626,560 LOC. Source code of
this application was downloaded from its SVN server
(http://svn.apache.org/repos/asf/db/derby/).

Camel9 is an open-source integration framework based

4. http://www.cs.waikato.ac.nz/ml/weka/
5. http://hibernate.org/
6. http://www.redhat.com/en
7. http://db.apache.org/derby/
8. http://www.apache.org/
9. http://camel.apache.org/

For each renaming rsi in RS

Based on rhs the approach recommends

renaming
If

If exist

Renaming opportunity e is accepted and

r is moved from RS to t rhs

If e has been removed
rn is inconclusive

While true

End of While

End of For

break
End of If

End of If

End of If

else

If xName=newName

Recommended name newName is accepted

newName is rejected

End of If

else
Renaming opportunity e is rejected

For each application appj

Collect rename refactorings (RS) from appj

End of For

and

break

continue

from RSRemove

Fig. 3. Process of the Evaluation

on enterprise integration patterns. The application was
implemented in Java, and 34 versions of this appli-
cation (from 1.0.0 to 2.11.0) have been involved in
the evaluation. The application is large and complex.
Consequently, in this evaluation we only analyzed
the basic module Camel-core. The size of the mod-
ule varies from 9,125 to 84,041 LOC. Source code of
this application was downloaded from its SVN server
(http://svn.apache.org/repos/asf/camel/tags/).

These subject applications were selected because of
the following reasons. First, all of them are open-source
applications whose source code is publicly available.
Second, all of them are well-known and popular. Third,
these applications were developed by different develop-
ers. Finally, these applications have long evolution his-
tory, and thus it is likely that a great number of rename
refactorings have been conducted on these applications.

4.3 Process

Rename refactorings (notated as RS) that had been
conducted on subject applications were discovered by
three participants with semi-automated tool support.
The three participants were master level students who
majored in computer science. They were familiar with
software refactoring, and all of them had participated in

9

TABLE 1
Subject Applications

Subject Application Domain No. of Versions Size (varies from version to version)
Weka Machine Learning 70 38,890 ∼ 272,212 LOC

Hibernate Persistence 113 51,276 ∼ 200,874 LOC
Derby Database 23 258,295 ∼ 626,560 LOC
Camel Integration framework 34 9,125 ∼ 84,041 LOC

at least one refactoring-related project before the evalua-
tion. Tools used by them to discover rename refactorings
include RefactoringCrawler [20], REF-FINDER [23] and
Eclipse, all of which are publicly available. Although
tools that were specially designed to detect rename
refactorings, i.e., renaming detector [18] and REPENT [11],
have been introduced, they are not publicly available.
Consequently, general-purpose refactoring detectors, i.e.,
RefactoringCrawler and REF-FINDER, were used instead
in the evaluation. More information about existing ap-
proaches and tools that can be used to identify rename
refactorings is presented in Section 5.1.

For each of the potential rename refactorings identified
by RefactoringCrawler or REF-FINDER, all of the three
participants manually checked related files together. By
comparing related entities in different versions, they
were asked to decide whether it was a real rename
refactoring or not. For example, if RefactoringCrawler
suggested that method m1 in version v1 was renamed
to m2 in version v2, they were asked to compare the
two methods m1 and m2, and decide whether m2 should
be viewed as a renamed version of m1 (instead of a
newly introduced method), which is well known as
origin analysis [24]. They were also asked to decide
whether multiple closely related renaming refactorings
should be combined as a single refactoring. For example,
if a method was renamed, all of its overriding and
overridden methods must be renamed in the same way.
Although RefactoringCrawler and REF-FINDER would
report a potential rename refactoring for each of the
renamed methods, they had better be taken as a single
rename refactoring. The same is true for the renaming of
classes and their constructors. In case of diverging deci-
sions on a potential rename refactoring, the three partic-
ipants were requested to discuss (or vote if needed).

The process of the automated evaluation based on the
discovered rename refactorings is presented in Fig. 3.
First, the proposed approach recommended renaming
opportunities by expanding each rename refactoring in
RS. If the approach recommended software entity e to
be renamed, and there is a rename refactoring r in RS
that renamed e (to xName), the recommended renaming
opportunity was accepted. If it recommended software
entity e to be renamed but e was removed from the next
version, the recommendation was inconclusive and thus
it was ignored. If it recommended software entity e and
the name of this entity did not change, the recommended
renaming opportunity was rejected.

If a renaming opportunity was accepted, the recom-

mended new name was accepted if and only if this name
was identical to xName. In other words, a recommended
new name was accepted if and only if the recommended
rename refactoring was identical to one of the refactor-
ings that had been actually conducted on the application.

The recommendation triggered by rsi continued as
stated in Section 3.5 if the previous recommendation
was accepted or ignored. It stopped when its previous
recommendation was rejected or no recommendation
could be generated.

4.4 Measurements

To answer research question RQ1, we calculated the
precision of the proposed approach in recommending
renaming opportunities as follows:

Popp =
number of accepted opportunities

number of recommended opportunities
(33)

To answer research question RQ2, we calculated the
precision of the proposed approach in recommending
new names for accepted renaming opportunities as fol-
lows:

Pname =
number of accepted names

number of accepted opportunities
(34)

To answer research question RQ3, we measured what
percentage of rename refactorings can be expanded:

Rexp =
Nexpanded

Ntried
(35)

Where Ntried is the number of rename refactorings that
the proposed approach tried to expand, and Nexpanded is
the number of refactorings that the proposed approach
expanded successfully. A special case is that based on a
rename refactoring (r1), the proposed approach success-
fully recommended more than one rename refactoring
(e.g., r2, r3, . . . , rk). In this case, r1 is a tried and ex-
panded refactoring (i.e., it was counted in both Ntried

and Nexpanded) whereas the recommended refactorings
(r2, r3, . . . , rk) were neither tried refactorings nor ex-
panded ones (i.e., they were not counted in Ntried or
Nexpanded). As a result, Ntried is always smaller than
the number of rename refactorings discovered in subject
applications (N1).

Whenever a software entity is renamed, the proposed
approach recommends to rename closely related entities
whose identifier names are similar or identical to that
of the renamed entity. We define the following metrics

10

TABLE 2
Evaluation Results

Hibernate Weka Derby Camel Total
Discovered Rename
Refactorings (N1)

105 74 43 73 295

Recommended Oppor-
tunities (N2)

29 31 13 32 105

Accepted Opportunities
(N3)

23 26 11 26 86

Rejected Opportunities 6 4 1 6 17
Inconclusive Opportu-
nities

0 1 1 0 2

Popp = N3/N2 79% 84% 85% 81% 82%
Accepted New Names
(N4)

20 25 9 26 80

Pname = N4/N3 87% 96% 82% 100% 93%
Accepted Out-of-File
Recommendation (N5)

5 0 3 3 11

Rout = N5/N3 22% 0% 27% 12% 13%
Expanded Refactorings
(N6)

16 10 7 10 43

Tried Refactorings (N7) 82 47 31 47 207
Rexp = N6/N7 20% 21% 23% 21% 21%
Ridentical 9% 0% 27% 27% 14%

to measure how often the recommended entity and the
originally renamed entity have the same identifier name:

Ridentical =
Nidentical

number of accepted rename refactorings
(36)

where Nidentical is the number of recommended (and
then accepted) entities that have the exact same name
as the originally renamed entity.

We also counted the number (Nout) of accepted renam-
ing opportunities that appeared out of the file where
their corresponding expanded renaming refactorings
were conducted. We call such renaming opportunities
accepted out-of-file recommendation. In other words, if an
accepted renaming opportunity ropp was recommended
based on conducted refactoring r1 and they distributed
in different files, ropp is counted in Nout. We also calcu-
lated the ratio of Nout to the total number of accepted
opportunities:

Rout =
Nout

number of accepted rename refactorings
(37)

4.5 Results and Analysis
Evaluation results are presented in Table 2. From the
table, we made the following observations:

• The proposed approach was accurate in rec-
ommending renaming opportunities. Its precision
(Popp) was 79%, 84%, 85%, and 81% on Hiberate,
Weka, Derby, and Camel, respectively. On average
82% of the recommended renaming opportunities
were accepted (answering research question RQ1).

• The proposed approach was accurate in recom-
mending new names for entities to be renamed. The
precision (Pname) was 87%, 96%, 82%, and 100%
on Hiberate, Weka, Derby, and Camel, respectively.
On average 93% of the new names generated by

the proposed approach were accepted (answering
research question RQ2).

• A substantial number of rename refactorings could
be expanded to discover more renaming opportuni-
ties. On the subject applications, the proposed ap-
proach has tried to expand 207 rename refactorings
whereas 43 of them have been expanded success-
fully (resulting in 86 true renaming opportunities).
In other words, on average 21% of the renaming
refactorings could be used to discover more re-
naming opportunities. On average, an expandable
renaming would lead to 2(=86/43) true renaming
opportunities. In other words, if you identify (and
apply) ten renaming opportunities, the proposed
approach would identify 4.2(= 10 × 21% × 2) true
renaming opportunities on average (answering re-
search question RQ3).

• In most cases (86%=1-Ridentical) the identifier name
of the recommended entity is similar but not iden-
tical to that of the originally renamed entity. An
exceptional case is the renaming of fields with set
methods. It is likely that a field and the parameter
of its set method have the same name. Once the field
is renamed, the proposed approach would suggest
to rename the parameter (and the set method) ac-
cordingly. Another exceptional case is the renaming
of overloaded methods that have the same name
but different parameters. Whenever an overloaded
method is renamed, the proposed approach would
suggest to rename other overloaded methods with
the same name. The third exceptional case is that
some methods are named with noun phrases and
share the same name with fields accessed by such
methods. In the evaluation, among the cases where
the identifier name of the recommended entity is
identical to that of the originally renamed entity,
these three exceptional cases accounted for 42%,
25%, and 33%, respectively.

• Around 13% of the accepted renaming opportunities
appeared out of the file where their corresponding
expanded renaming refactorings were conducted. In
other words, in most cases (87%) such opportunities
were recommended based on renamings within the
same file. The results suggest that it could be effi-
cient and effective to search renaming opportunities
within the document where the conducted renaming
occurs before extending the search scope to the
whole application.

We also manually checked the rejected renaming rec-
ommendations, and our analysis results suggest that
around a quarter (4/17) of the rejected recommendations
are valuable because they identify some entities that
should have been renamed. As stated in Section 4.3, in
the evaluation if the approach recommended a software
entity to be renamed but its name did not change in
the following versions, the recommended renaming op-
portunity was taken as a rejected one. However, the fact

11

1 /∗ vers ion 2 . 2 . 0 ∗/
2 publ ic c l a s s Redel iveryPol i cy implements Cloneable , S e r i a l i z a b l e {
3 / / . . .
4 protec ted long rede l iverDelay = 1000L ;
5 / / . . .
6 publ ic void setRedel iverDelay (long rede l iverDelay) {
7 t h i s . rede l iverDelay = rede l iverDelay ;
8 // i f max enabled then a l s o s e t max to t h i s value in case max was too low
9 i f (maximumRedeliveryDelay > 0 && redel iverDelay > maximumRedeliveryDelay) {

10 t h i s . maximumRedeliveryDelay = rede l iverDelay ;
11 }
12 }
13
14 / / . . .
15 }
16
17 /∗ vers ion 2 . 3 . 0 ∗/
18 publ ic c l a s s Redel iveryPol i cy implements Cloneable , S e r i a l i z a b l e {
19 / / . . .
20 protec ted long redel iveryDelay = 1000L ;
21 / / . . .
22 publ ic void setRedel iveryDelay (long rede l iverDelay) {
23 t h i s . redel iveryDelay = rede l iverDelay ;
24 // i f max enabled then a l s o s e t max to t h i s value in case max was too low
25 i f (maximumRedeliveryDelay > 0 && redel iverDelay > maximumRedeliveryDelay) {
26 t h i s . maximumRedeliveryDelay = rede l iverDelay ;
27 }
28 }
29
30 / / . . .
31 }

Fig. 4. Incomplete Renaming in Camel

that an entity has not been renamed does not necessarily
suggest that it should not be renamed.

An example is presented in Fig.4. At
first, the field redeliverDelay (Line 4) of class
org.apache.camel.processor.RedeliveryPolicy was renamed
to redeliveryDelay (Line 20), i.e., the verb ’redeliver’
was replaced with a noun ’redelivery’ to modify the
noun ’Delay’. Based on this rename refactoring, the
proposed approach suggested to rename its set method
setRedeliverDelay (Line 6) in the same way, i.e., to
replace ’redeliver’ with ’redelivery’. The renaming
recommendation was accepted because the method was
renamed as expected in version 2.3.0 (Line 22). After
that, the proposed approach suggested to rename the
parameter redeliverDelay (Line 6) of this set method.
Since this parameter is assigned directly to the field
redeliverDelay and they have the exact same name in
the original version (Line 7), they should be renamed
consistently. However, the parameter has not been
renamed accordingly (Line 22), and thus the renaming
of the field and its set method is incomplete.

Another example is presented in Fig. 5. This example
is similar to the one that is introduced in the preceding
paragraph. The field m NumFolds and its set method
setNumFolds in version dev-3-1-9 have been renamed to
m NumXValFolds and setNumXValFolds in version dev-3-
3 (Line 4 and Line 6), respectively. However, the param-
eter newNumFolds (Line 6) of the set method has not been

renamed accordingly, which results in an incomplete
renaming.

The third example is presented in Fig.6. The get
method getMaxProcessingTime in vertion 1.3.0 was re-
named to getMaxProcessingTimeMillis (’Millis’ suggests
that the processing time is counted in milliseconds) in
version 1.4.0 (Line 7). However, the field maxProcessing-
Time (Line 5) that this method accesses was not renamed
accordingly. The same is true for the field minProcessing-
Time (Line 4) and its get method (Line 10). These fields
had better be renamed to make them consistent with
their get methods.

4.6 Threats to Validity

A threat to external validity is that the evaluation was
conducted on four applications only. Special characteris-
tics of the applications may have biased the evaluation
results. The reason why these applications were selected
is discussed in Section 4.2. To make the conclusions more
reliable, however, further evaluation on more applica-
tions should be conducted in the future.

A threat to construct validity is that the identification
of rename refactorings might be inaccurate, and thus
the measurements in Section 4.4 might be incorrectly
calculated. The refactoring detectors used in the eval-
uation, i.e., RefactoringCrawler and REF-FINDER, might
result in false positives and false negatives. To reduce the

12

1 /∗ vers ion dev−3−3 ∗/
2 publ ic c l a s s ThresholdSe lec tor extends D i s t r i b u t i o n C l a s s i f i e r implements OptionHandler {
3 / / . . .
4 protec ted i n t m NumXValFolds = 3 ;
5 / / . . .
6 publ ic void setNumXValFolds (i n t newNumFolds) {
7 i f (newNumFolds < 2) {
8 throw new Il legalArgumentException (”Number of f o l d s must be g r e a t e r than 1 ”) ;
9 }

10 m NumXValFolds = newNumFolds ;
11 }
12 / / . . .
13 }

Fig. 5. Incomplete Renaming in Weka

1 /∗ vers ion 1 . 4 . 0 ∗/
2 publ ic c l a s s PerformanceCounter extends Counter {
3 / / . . .
4 p r i v a t e double minProcessingTime = −1.0;
5 p r i v a t e double maxProcessingTime ;
6 / / . . .
7 publ ic synchronized double getMaxProcessingTimeMill is () throws Exception {
8 return maxProcessingTime ;
9 }

10 publ ic synchronized double getMinProcessingTimeMil l is () throws Exception {
11 return minProcessingTime ;
12 }
13 / / . . .
14 }

Fig. 6. Another Incomplete Renaming in Camel

threat, participants manually checked files that Refactor-
ingCrawler or REF-FINDER reported to contain potential
rename refactorings. However, manual checking might
miss refactorings as well. Files where RefactoringCrawler
and REF-FINDER failed to identify any rename refac-
torings might contain real rename refactorings. These
refactorings have been missed because participants had
not manually checked such files (more than two hun-
dred thousand files). Manually checking all such files
is difficult, if not impossible. In the future, it would be
interesting to evaluate the proposed approach on appli-
cations where renamings have been exactly recorded. On
such applications, we do not have to identify rename
refactorings anymore.

Another threat to construct validity is that the rename
refactorings identified by RefactoringCrawler and REF-
FINDER were rechecked by outsiders (three students)
instead of the original developers of the subject appli-
cations. The check might be inaccurate because of lack
of system knowledge and subjectiveness. To reduce the
threat, three participants checked all of the potential
renamings together. In case of diverging decisions, they
discussed and voted if needed before the finial decision
was made.

5 RELATED WORK

5.1 Identification of renaming opportunities

Abebe et al. [25] introduce the notion of lexicon bad smells.
Lexicon bad smells indicate potential lexicon construc-
tion problems, and such lexicon problems often can be
fixed by rename refactorings. Lexicon bad smells intro-
duced by Abebe et al. [25] include odd grammatical struc-
ture (e.g., class identifiers without nouns), term used to
name both the whole and its parts, inconsistent identifier use,
useless type indication, and identifer construction rules (i.e.,
entity names that do not follow a standard naming con-
vention). They also develop a tool, called LBSDetectors to
identify such lexicon bad smells. Caprile and Tonella [26]
propose an approach to standardize program identifier
names. This approach involves two main steps. First,
the lexicon (terms in identifier names) is standardized.
For example, ’std’ should be standardized as ’standard’.
In the second step, the arrangement of standard terms
is standardized. For example, a method named ’Prop-
agateDownHeap’ had better be renamed to ’HeapPropa-
gateDown’ because the common syntactical pattern for
method names is < noun >< verb >< adverb > instead
of < verb >< adverb >< noun >. Similar work to stan-
dardize identifier names has been conducted by Lawrie
et al. [27], [28] and Butler et al. [29] as well.

Deissenboeck and Pizka [13] propose a model-based
approach to identifying inconsistent naming. By building

13

maps between concepts and names, the tool-supported
Identifier Dictionary (IDD) developed by Deissenboeck
and Pizka [13] can identify two categories of basic warn-
ings. The first category of such warnings is given when
two identifiers have identical name but different types.
The second category of such warnings is given when an
identifier is declared but never referenced. The first cate-
gory of such warnings might suggest renaming opportu-
nities. However, unique names of software entities might
need renaming as well, and such renaming opportunities
cannot be identified by Identifier Dictionary. Lawrie et
al. [16] propose an approach to identify inconsistent
naming as well. It differs from Identifier Dictionary [13]
in that the latter requires an expert-constructed mapping
from identifiers to concepts whereas the former does not.
Thies and Roth [30] propose another way to identify
inconsistent naming. They analyze variable assignments
and identify variables that refer to the same object and
are used in the same way. They suggest such variables
to share the same name.

Høst and Østvold [31] propose an approach to identify
naming bugs. They analyze the relationship between
special terms, e.g., ’contain’, in method names and spe-
cial attributes of such methods, e.g. ’return boolean’.
With such relationship, they infer some rules, e.g., method
like ’contain*’ should return a boolean. Methods that break
these rules are reported as naming bugs.

De Lucia et. al. [32] suggest candidate identifier names
by extracting terms from the text contained in require-
ments associated with the source code. The rationale is
that terms in source code identifiers should be consistent
with those in associated requirement documents.

As a conclusion, researchers have proposed a number
of useful approaches to identifying badly named soft-
ware entities, which suggests that people have recog-
nized the necessity of facilitating identification of renam-
ing opportunities. Our approach differs from existing
approaches in that we identify renaming opportunities
by expanding recently conducted rename refactoring
whereas existing approaches identify badly named en-
tities by analyzing lexicon or grammatical structure of
their names [25], [26], [27], [28] or by checking inconsis-
tency associated with identifiers [13], [16],[32].

Our approach is not meant to replace existing ones.
Developers might get an initial set of renaming oppor-
tunities manually or semi-automatically by using one or
more approaches introduced above. After that, she might
find more renaming opportunities with our approach by
expanding the initial ones.

5.2 Machine Learning in Refactoring Opportunity
Identification

Maiga et al. [33] propose a support vector machine
(SVM) based approach to identify anti-patterns that
should be restructured. From given training data, their
approach can learn how to identify similar anti-patterns.
An advantage of their approach is that it does not

depend on extensive knowledge of anti-patterns. They
also use participants’ feedback to improve accuracy by
adopting an incremental SVM.

Khomh et al. [34] propose BDTEX (Bayesian Detec-
tion Expert) to detect anti-patterns. They build Bayesian
Belief Networks based on Goal Question Metric [35],
and calibrate the Bayesian Belief Networks with exam-
ples. Evaluation results on three anti-patterns, i.e., Blob,
Functional Decomposition and Spaghetti Code, suggest that
BDTEX is effective.

The approaches introduced in the preceding para-
graph are useful in learning what kind of source code
deserves refactorings. They learn from examples (e.g.,
conducted refactorings) and generate rules (or classifiers)
for anti-pattern detection. As a result, they may work
even if a formal definition of anti-patterns is not avail-
able. Similar to these approaches, our approach learns
from conducted refactorings and works without a formal
definition of bad names. Our approach differs from these
approaches in that it learns from a single conducted
refactoring, and applies what it has learned from this
example to a small number of entities that are closely
related to the refactoring. Our approach does not result
in generic rules because it assumes that new refactor-
ings should share the same context with the conducted
refactoring. In contrast, the approaches introduced in
this section require a large amount of related examples
to learn universal rules or classifiers that can be used
in different applications or different parts of the same
application.

5.3 Detection of Rename Refactorings
Xing and Stroulia [19] propose UMLDiff to detect refac-
toring (including rename refactoring) history by compar-
ing class diagrams of two successive versions of the same
application. Dig et al. [20] propose RefactoringCrawler
to detect refactoring history by comparing Java source
code of two successive versions of the same applica-
tion. Weissgerber and Diehl [21] detect refactorings by
comparing signatures of software entities, and thus they
can identify rename method and rename class refactorings.
Prete et al. [23] propose a template-based approach,
called REF-FINDER, to detect refactorings. Kawrykow
et al. [36] propose DIFFCAT to identify non-essential
changes (including rename refactorings) in version his-
tories. These approaches can be used to identify rename
refactorings although they are designed to detect refac-
torings in general.

Approaches specially designed to detect rename refac-
torings are also available. Malpohl et al. [18] pro-
pose renaming detector to detect rename refactorings.
Arnaoudova et al. [11] propose an approach, called RE-
naming Program ENTitles (REPENT), to identify rename
refactorings across different versions of a program and
to automatically classify such refactorings. They also
implement the approach as a series of scripts.

These algorithms and tools differ from our approach
in that they identify conducted rename refactorings

14

whereas we identify software entities that should be
renamed. IDEs might use these algorithms and tools to
discover recently conducted rename refactorings (espe-
cially manually conducted refactorings), and then use
our approach to identify more renaming opportunities
by expanding the discovered rename refactorings.

6 CONCLUSIONS AND FUTURE WORK

In this paper we propose an approach to identify re-
naming opportunities by expanding conducted rename
refactorings. It avoids difficult natural language under-
standing and difficult semantic analysis. It also avoids
subjective factors, e.g., preference of software engineers.
To the best of our knowledge, it is the first one that
identifies new refactoring opportunities by expanding
conducted ones. The proposed approach has been eval-
uated on four open-source applications. Our evaluation
results show that it is accurate in recommending renam-
ing opportunities and in recommending new names for
badly named entities. Our evaluation results also show
that a substantial percentage of rename refactorings can
be expanded by the proposed approach.

Basically, this work applies the principle: if a software
entity is renamed, other entities that look similar should
be consistently renamed. However, there might be many
exceptions to this principle. Suppose two methods in dif-
ferent classes were given the same method name, but af-
ter that they evolved in completely different ways. In this
case, if one of them is renamed, it is likely that the other
should not be renamed in the same way. Consequently,
it should be interesting to investigate in the future to
what extent the evolution histories of different entities
can help to avoid such kind of false positives. It should
be interesting as well to investigate how to compute the
strength of recommendation. For example, if the past
history highlights that the developer has done several
of such renaming refactorings and many more could be
done, we can reward the renaming recommendation by
assigning a greater strength indication to it.

In Section 4 the proposed approach has been evalu-
ated on the history of open-source applications, and the
objective and quantitative evaluation results (metrics)
are promising. However, there is no evaluation of how
actual developers perceive the approach. In the future,
it would be interesting to get some feedback of real
software developers of how they perceive the approach
(and the tool). To facilitate subjective evaluation by other
developers or researchers, we make the prototype imple-
mentation (an Eclipse plug-in called Rename Expander) of
the approach publicly available10 (including the source
code).

In the future, it would be interesting to apply the
key ideal of this paper, i.e., identifying new refactoring
opportunities by expanding conducted ones, to other
refactorings, e.g., extract method and move method. Accord-
ing to our software development experience, it is likely

10. http://www.sei.pku.edu.cn/∼liuhui04/tools/rename/

that more than one method should be moved when
system functionality is redistributed (restructuring). By
investigating the relationship among such methods that
are moved together, we might design approaches to
identify which methods should be moved and where
they should be moved whenever a move method refactor-
ing is conducted. These approaches might help to avoid
incomplete restructuring.

ACKNOWLEDGMENTS

The authors would like to say thanks to the associate
editor and the anonymous reviewers for their valuable
suggestions.

The work is funded by the National Natural Science
Foundation of China (No. 61272169, 61472034), Program
for New Century Excellent Talents in University (No.
NCET-13-0041), and Beijing Higher Education Young
Elite Teacher Project (No. YETP1183).

REFERENCES
[1] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE

Transactions on Software Engineering, vol. 30, no. 2, pp. 126–139,
2004.

[2] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, 1992.

[3] W. G. Griswold and D. Notkin, “Automated assistance for pro-
gram restructuring,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 2, no. 3, pp. 228–269, July 1993.

[4] F. Tip, A. Kiezun, and D. Baeumer, “Refactoring for generalization
using type constraints,” in Proceedings of the Eighteenth Annual
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’03), Anaheim, CA, October 2003, pp. 13–26.

[5] T. Mens, N. V. Eetvelde, and S. Demeyer, “Formalizing refactor-
ings with graph transformations,” Journal of Software Maintenance
and Evolution: Research and Practice, vol. 17, no. 4, pp. 247–276,
2005.

[6] H. Liu, X. Guo, and W. Shao, “Monitor-based instant software
refactoring,” IEEE Transactions on Software Engineering, vol. 39,
no. 8, pp. 1112–1126, 2013.

[7] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: a review of
current knowledge,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 23, no. 3, pp. 179–202, 2011. [Online].
Available: http://dx.doi.org/10.1002/smr.521

[8] E. Mealy and P. Strooper, “Evaluating software refactoring
tool support,” in Australian Software Engineering Conference
(ASWEC’06), April 2006.

[9] G. Bavota, S. Panichella, N. Tsantalis, M. D. Penta, R. Oliveto,
and G. Canfora, “Recommending refactorings based on team co-
maintenance patterns,” in the 29th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2014),
September 15-19 2014. [Online]. Available: http://users.encs.
concordia.ca/∼nikolaos/publications/ASE 2014.pdf

[10] G. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the elipse IDE?” Software, IEEE, vol. 23, no. 4,
pp. 76–83, July 2006.

[11] V. Arnaoudova, L. Eshkevari, M. Penta, R. Oliveto, G. Antoniol,
and Y.-G. Gueheneuc, “Repent: Analyzing the nature of identifier
renamings,” Software Engineering, IEEE Transactions on, vol. 40,
no. 5, pp. 502–532, May 2014.

[12] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a
name? a study of identifiers,” in 14th IEEE International Conference
on Program Comprehension (ICPC 2006), June 2006, pp. 3–12.

[13] F. Deissenboeck and M. Pizka, “Concise and consistent naming,”
Software Quality Journal, vol. 14, no. 3, pp. 261–282, 2006. [Online].
Available: http://dx.doi.org/10.1007/s11219-006-9219-1

[14] A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility:
an experiential study,” Journal of Program Languages, vol. 4, no. 3,
pp. 143–167, 1996.

http://www.sei.pku.edu.cn/~liuhui04/tools/rename/
http://dx.doi.org/10.1002/smr.521
http://users.encs.concordia.ca/~nikolaos/publications/ASE_2014.pdf
http://users.encs.concordia.ca/~nikolaos/publications/ASE_2014.pdf
http://dx.doi.org/10.1007/s11219-006-9219-1

15

[15] D. Lawrie, C. Morrell, H. Feild, and D. Binkley,
“Effective identifier names for comprehension and mem-
ory,” Innovations in Systems and Software Engineering,
vol. 3, no. 4, pp. 303–318, 2007. [Online]. Available:
http://dx.doi.org/10.1007/s11334-007-0031-2

[16] D. Lawrie, H. Feild, and D. Binkley, “Syntactic identifier concise-
ness and consistency,” in Source Code Analysis and Manipulation,
Sixth IEEE International Workshop on, Sept 2006, pp. 139–148.

[17] X. Ge, Q. DuBose, and E. Murphy-Hill, “Reconciling manual
and automatic refactoring,” in Software Engineering (ICSE), 34th
International Conference on, June 2012, pp. 211–221.

[18] G. Malpohl, J. Hunt, and W. Tichy, “Renaming detection,” in
Automated Software Engineering, The Fifteenth IEEE International
Conference on, 2000, pp. 73–80.

[19] Z. Xing and E. Stroulia, “Refactoring detection based on umldiff
change-facts queries,” in Reverse Engineering, 13th Working Confer-
ence on, Oct 2006, pp. 263–274.

[20] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
detection of refactorings in evolving components,” in Proceedings
of the 20th European Conference on Object-Oriented Programming, ser.
ECOOP’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 404–
428. [Online]. Available: http://dx.doi.org/10.1007/11785477 24

[21] P. Weissgerber and S. Diehl, “Identifying refactorings from source-
code changes,” in Automated Software Engineering, 21st IEEE/ACM
International Conference on, Sept 2006, pp. 231–240.

[22] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving
the tokenisation of identifier names,” in European Conference
on Object-Oriented Programming (ECOOP 2011), ser. Lecture
Notes in Computer Science, M. Mezini, Ed. Springer Berlin
Heidelberg, 2011, vol. 6813, pp. 130–154. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22655-7 7

[23] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-
based reconstruction of complex refactorings,” in Software Main-
tenance (ICSM), IEEE International Conference on, Sept 2010, pp.
1–10.

[24] M. Godfrey and L. Zou, “Using origin analysis to detect merging
and splitting of source code entities,” Software Engineering, IEEE
Transactions on, vol. 31, no. 2, pp. 166–181, Feb 2005.

[25] S. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “Lexicon bad
smells in software,” in 16th Working Conference on Reverse Engi-
neering (WCRE ’09), Oct 2009, pp. 95–99.

[26] B. Caprile and P. Tonella, “Restructuring program identifier
names,” in Software Maintenance, Proceedings. International Confer-
ence on, 2000, pp. 97–107.

[27] D. Lawrie and D. Binkley, “Expanding identifiers to normalize
source code vocabulary,” in Software Maintenance (ICSM), 27th
IEEE International Conference on, Sept 2011, pp. 113–122.

[28] D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source
code vocabulary,” in Reverse Engineering (WCRE), 17th Working
Conference on, Oct 2010, pp. 3–12.

[29] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Mining java class
naming conventions,” in Software Maintenance (ICSM), 27th IEEE
International Conference on, Sept 2011, pp. 93–102.

[30] A. Thies and C. Roth, “Recommending rename refactorings,” in
Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering, ser. RSSE ’10. New York,
NY, USA: ACM, 2010, pp. 1–5. [Online]. Available: http:
//doi.acm.org/10.1145/1808920.1808921

[31] E. W.Høst. and B. M.Østvold, “Debugging method names,”
in 23rd European Conference on Object-Oriented Programming
(ECOOP 2009), ser. Lecture Notes in Computer Science,
S. Drossopoulou, Ed. Springer Berlin Heidelberg, 2009, vol.
5653, pp. 294–317. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-03013-0 14

[32] A. De Lucia, M. Di Penta, and R. Oliveto, “Improving source
code lexicon via traceability and information retrieval,” Software
Engineering, IEEE Transactions on, vol. 37, no. 2, pp. 205–227, March
2011.

[33] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y. Gueheneuc,
and E. Aimeur, “Smurf: A svm-based incremental anti-pattern
detection approach,” in Reverse Engineering (WCRE), 19th Working
Conference on, Oct 2012, pp. 466–475.

[34] F. Khomh, S. Vaucher, Y.-G. Guhneuc, and H. Sahraoui,
“Bdtex: A gqm-based bayesian approach for the detection of
antipatterns,” Journal of Systems and Software, vol. 84, no. 4,
pp. 559 – 572, 2011, the Ninth International Conference on

Quality Software. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0164121210003225

[35] V. Basili and D. Weiss, “A methodology for collecting valid soft-
ware engineering data,” Software Engineering, IEEE Transactions on,
vol. SE-10, no. 6, pp. 728–738, Nov 1984.

[36] D. Kawrykow and M. P. Robillard, “Non-essential changes
in version histories,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New York,
NY, USA: ACM, 2011, pp. 351–360. [Online]. Available: http:
//doi.acm.org/10.1145/1985793.1985842

Hui Liu received the BS degree in control sci-
ence from Shandong University in 2001, the MS
degree in computer science from Shanghai Uni-
versity in 2004, and the PhD degree in computer
science from Peking University in 2008. He is an
associate professor in the School of Computer
Science and Technology at the Beijing Institute
of Technology. He is particularly interested in
software refactoring, design pattern, and soft-
ware evolution. He is currently doing research
to make software refactoring easier and safer.

He is also interested in developing practical refactoring tools to assist
software engineers

Qiurong Liu received the BS degree in informa-
tion and computing science from Beijing Jiao-
tong University in 2011, then worked two years
as a software engineer. He is currently working
toward the master’s degree in the School of
Computer Science and Technology at the Bei-
jing Institute of Technology. He is interested in
software refactoring and software evolution.

Yang Liu received the BS degree in com-
puter science from Beijing University of Chem-
ical Technology in 2012, and the MS degree
in software engineering from Beijing Institute of
Technology in 2015. She is interested in soft-
ware refactoring, software testing, and software
evolution.

Zhouding Wang received the BS degree in
software engineering from Chongqing University
in 2012, and the MS degree in computer science
from Beijing Institute of Technology in 2014. He
is particularly interested in software refactoring
and software evolution.

http://dx.doi.org/10.1007/s11334-007-0031-2
http://dx.doi.org/10.1007/11785477_24
http://dx.doi.org/10.1007/978-3-642-22655-7_7
http://doi.acm.org/10.1145/1808920.1808921
http://doi.acm.org/10.1145/1808920.1808921
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://www.sciencedirect.com/science/article/pii/S0164121210003225
http://www.sciencedirect.com/science/article/pii/S0164121210003225
http://doi.acm.org/10.1145/1985793.1985842
http://doi.acm.org/10.1145/1985793.1985842

	Introduction
	Software Refactoring
	Rename Refactoring and Tool Support

	Motivating Example
	Approach
	Overview
	Analysis of Rename Refactorings
	Searching for Related Entities
	Recommendation
	Preconditions
	Segmentation
	Similarity and Recommendation
	Generation of New Names

	Further Recommendation
	Limitations
	Decomposition of Identifier Names
	Synonym Database

	Evaluation
	Research Questions
	Subject Applications
	Process
	Measurements
	Results and Analysis
	Threats to Validity

	Related Work
	Identification of renaming opportunities
	Machine Learning in Refactoring Opportunity Identification
	Detection of Rename Refactorings

	Conclusions and Future Work
	References
	Biographies
	Hui Liu
	Qiurong Liu
	Yang Liu
	Zhouding Wang

