

Page 1

 University of Illinois at Urbana-Champaign

Department Of Computer Science

Uchuva Managed Build Project
CS 427 - Fall 2012

Professor Ralph Johnson

Teaching Assistant Caius Brindescu

Prepared By:

Morrow, Lorentz Arthur

O'Sullivan, Michael

Kolavenu, Ramesh

Lozano Hinojosa, Jose Alberto

Biglari, Mehrdad

Page 2

Table of Contents
Title Page

Managed Build System Overview... 3

Project Description ... 3

Architecture and Design ... 4

Managed Build & Module Name ... 4

New Project Wizard .. 6

Future Plans .. 8

User manual .. 8

Appendix ...11

Installation Procedures ..11

Prerequisites ...11

Running the System ..12

Running the Unit Tests ..13

Page 3

Managed Build System Overview

The Managed Build System in Photran is responsible for creating the makefile which is

used to compile the executable. Managed Build has a few shortcomings which prevent Photran

users from doing things they could normally do with FORTRAN. There are also some usability

issues with the new project wizard which we consider to be a part of Managed Build.

Uchuva’s Managed Build Project addresses the dependency between a module name

and its file name and the ability to have multiple modules in a single source file. Additionally, the

confusion around the new project wizard has been addressed by correctly filtering the project

types by the OS and toolchains available on the system Photran is running on.

Project Description

This section summarizes the changes of managed build related to file name and module

name. The following items were fixed:

● Managed Build compiles and links pure FORTRAN file that contains module with any

valid name. Before, Managed Build requires having file and module have the same

name.

● Managed Build compiles and links pure FORTRAN file that contains more than one

module. Before, managed build only references the first module in the file if its name

matches the file name. In the current version, Managed Build references all modules of a

FORTRAN file

Page 4

Figure 1

Architecture and Design

Managed Build & Module Name

The MBS relies on a Dependency Calculator in order to resolve the dependencies for

each target that will be listed in the makefile. We enhanced the existing FORTRAN

Dependency Calculator to use the Photran VPG instead of brute force text parsing. Figure 2

shows the before and after behavior of the part of the system we modified.

Page 5

Figure 2

Page 6

New Project Wizard

When determining the set of supported project types, CDT delegates to the project’s

associated configurations, which delegate to their associated tool chains, and so on. If the tool

chains in all configurations report that they are unsupported, then that project type is considered

unsupported. By default everything reports that it is supported. The toolChain schema, part of

the Build Definitions Model, includes a property (isToolChainSupported) where the tool

developer can specify a class that implements the IManagedIsToolChainSupported

interface to override the response of the tool chain.

We created a set of classes, one for each project type, which determine their state on

the current machine. We specified these classes in the plugin.xml files for the relevant Photran

packages. These new classes also check the current operating system and filter based on that

information as well as the compilers installed on the machine. Figure 3 shows the class diagram

of the new classes and the existing classes that are also involved. Figure 4 shows the old

behavior of the system and the behavior with the addition of our classes. The After diagram only

shows the new behavior starting with the AbstractCWizard.

Figure 3

Page 7

Figure 4

Page 8

Future Plans

There is a potential performance issue with how our implementation uses the VPG within

the Managed Build System. The VPG is updated for every dependency, which is unnecessary.

While no impact to the user experience was noticed, it would be advisable to measure the

difference and try to reduce the number of calls to update the VPG.

We discovered a bug in which the Managed Build System does not perform a make

clean on the Windows platform because it tries to use a UNIX command to do so. This was not

directly related to our project and therefore was not addressed at this time, but this bug should

be fixed.

We have developed a good solution to the deficiencies presented to us and are interested in

submitting them for inclusion in the next Photran release.

User manual

The purpose of this manual is to provide technical information for FORTRAN developers

how create complex project and use Managed Build System of Photran.

As it is depicted in figure 5, developers could not build FORTRAN files containing more

than one module or if its name does not match the module name before completion of this

project, however figure 6 shows this problem is resolved. This behavior is added to the Photran

by default and there is no specific action required for the developers to use this feature.

Page 9

Figure 5

New project wizard that makes a user-friendly wizard for developers and only shows

supported compilers in the project type as it is shown in figure 6.

Page 10

Figure 6

Page 11

Appendix

Installation Procedures

Following installation steps assume you have Eclipse 4.2 Juno for RCP/Plug-in

development installed already installed, if that’s not the case we strongly recommend to install

the right version for your platform using the following link. Similarly install the appropriate JRE

for your platform.

Prerequisites

Subversion Control

After you have installed the right flavor of eclipse on your machine, make sure you have

a Subversion control plugin installed too. The staff of CS 427 recommends Subversive along

with the appropriate Subversive connector, at the time this document is being written the

recommendation is ‘Subversive - SVN Team Provider’ and the ‘SVN Kit 1.7.5’ as connector.

CDT SDK

Photran reuses parts of CDT so you will need to install the C/C++ Development Tools Software

Development Kit (CDT SDK).

Photran 8.0

Uchuva Managed Build Project was designed, developed and tested and using Photran 8.0. We

recommend installing the latest stable version of Photran 8.0.

General installation instructions for Photran 8.0 and CDT can be found here. After you

successfully installed Photran and CDT and before proceeding to the next section make sure

you are able to create Photran project.

Photran baseline API.

Uchuva Managed build modified Photran 8.0 API baseline and due to the strict

requirements of Eclipse when modifying API it’s recommended to define an API baseline so

changes can be compared. CS 427 staff was kindly enough to provide detailed instructions of

how to do that, please follow the instructions for Step 1 part 2 described here.

Check out Uchuva Managed build source code

To check out Uchuva Managed build source code please follow the instructions

described here for Step 1 part 3, except that on item 5 replace

‘https://subversion.ews.illinois.edu/svn/fa12-cs427/_shared/photran/trunk’

with ‘https://subversion.ews.illinois.edu/svn/fa12-cs427/_projects/G13/trunk’.

Once you reach this point proceed with instructions for Step 1 part 4 and Step 2 described here

to ensure Uchuva Managed build compiles successfully.

http://eclipse.org/downloads/packages/eclipse-rcp-and-rap-developers/junor
http://eclipse.org/downloads/packages/eclipse-rcp-and-rap-developers/junor
http://www.eclipse.org/subversive/
http://www.eclipse.org/subversive/
http://www.eclipse.org/projects/project.php?id=tools.cdt
http://wiki.eclipse.org/PTP/photran/documentation/photran8installation
http://wiki.eclipse.org/PTP/photran/documentation/photran8installation
https://wiki.engr.illinois.edu/display/cs427fa12/MP4
https://wiki.engr.illinois.edu/display/cs427fa12/MP4
https://wiki.engr.illinois.edu/display/cs427fa12/MP4
https://wiki.engr.illinois.edu/display/cs427fa12/MP4
https://subversion.ews.illinois.edu/svn/fa12-cs427/_projects/G13
https://wiki.engr.illinois.edu/display/cs427fa12/MP4
https://wiki.engr.illinois.edu/display/cs427fa12/MP4

Page 12

If you reach this point please refer to Running the System section to run Managed build.

Running the System

To run the system, follow below steps:

● With Eclipse running in the Java perspective, go to the package explorer and right-click one

of the Photran plugin packages, e.g., org.eclipse.photran.core.

● Select Run As > Eclipse Application. Selection should look like below figure.

Figure 7

● In the Photran instance, select the Fortran Perspective from Window > Open Perspective >

Other. See below figure for reference.

Page 13

Figure 8

Running the Unit Tests

All tests for managed build & new project wizard are automated. No prior tests were

found either on managed build or project wizard, hence all tests under package

org.eclipse.photran.internal.tests.managed.build are new. To run tests for this

manage build project follow below steps:

1. Get latest tests with source code located in repository at

https://subversion.ews.illinois.edu/svn/fa12-cs427/_projects/G13/trunk/

2. Go to project org.eclipse.photran.core.vpg.tests

https://subversion.ews.illinois.edu/svn/fa12-cs427/_projects/G13/trunk/

Page 14

3. Right click package org.eclipse.photran.internal.tests.managed.build >

Select “Run As” > Select “JUnit Plug-In Test”. Below snapshot shows required selection

(highlighted in green) to run all tests.

 Figure 9

4. After running tests, all tests should pass as shown below in Junit.

Page 15

 Figure 10

Test suite was designed based on test cases located here.

https://wiki.engr.illinois.edu/display/cs427fa12/G13+Test+Cases
https://wiki.engr.illinois.edu/display/cs427fa12/G13+Test+Cases

