10

CS427 - Fall

Removal of Obsolete Language Features

Photran Refactoring

AvocadoChestnut Development Team

AvocadoChestnut CS427 - Fall 2010

Table of Contents

DAY ¢ 13 1 - o Rt 3
OVEIVIEW ..vuiiiuiiienniiennieniernesinnesiensiesssrssssrssssrssserssssssestensstssssrssssssssssssssssssssssssessssesssssssssnssssnssss 3
Supported RefactoriNgscccciiiiireiiiiiiniiiiiniiiiiiiiiieiiiieniiiesesieniiesisissssisssssssssssssanssssss 4
RemMOVE-BranCh-ToO-ENd-If ... ssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssassssnss 4

Example 1-1 (EXIStNG CONTINUE) eeevvvvveveveviisssmmssssssssssssssssssssssssss 4

Example 1-2 (INSrted CONTINUE) ..eeveeveeeeeviissmmnssssssssssssssssssssssses 4

Example 1-3 (Mixed Inner/Quter GOTO SEALEMENLS) cowwrevvvvvvvvvrsssmmsssssssssssssssssssssssses 5
Remove-Real-And-Double-Precision-Do-Lo0P-COUNTETS ...cremmerminmesssississssssssssesssssssssssssssssssssssssssssassssees 7

Example 2-1 (Explicit Step Size = DO LOOP).......ccmmmmsssmmmssssssssssssssssssssssssss 7

Example 2-2 (Implicit Step Size = DO WHILE LOOD) ..cueeererrvrerssmmmssssssssssssssssssssssssss 8
REMOVE-PaUSE-StatEIMENT. ...t a s b s s s 10

EXAMPIE 3-1 (PAUSE REPIACEIMENT) ...eeeeeevvvvvvvvvvvsissses 10
LT LT o - T TN 12
Personal Project REflECTIONS ...t s st s sasssss s sassssssensns 12
AN oo =T o e | G 13
INSTAIlATION GUIAE....iuierirriesrissiseesse st s s s s b s e 13
REfACEOTING TEST SUILES .uuurerirreurerrersseseiseisssse st s s s s b b s 14
TECHNICAL REEIEIICES .ueuevirreieritsriisse st sssssss s ssssss s bbb s st s 15
HOW TO RUIN TESES...cuiiirirreeiersrsisssessssesssssssssssssssssssssssssssssssesssssesssssssssesssssssssesssssssssessssssssssssasesssssssssssnsssssasssnesssssssnsssssaneas 15
DEVEIOPIMENT TEAIM .uuvvirueerererssesseesesssessesssssssssessssssssssssessesssssses s sss et s sssesse s s s uss s s s s s s sse s ssnssssssnsas 16
L0 oT=d o B 63D =TT 16
RELEASE HISTOTY wuvieueurererusesssessssessssssssssssssssssss s st st s st s s s s s e b s 16

List of Figures

Figure 1 - Example: Remove-Branch-To-End-If (Existing CONTINUE)......ccuemmrnmmmmmnmseesssssssesssssessesnees 4
Figure 2 - Example: Remove-Branch-To-End-If (Inserted CONTINUE)cccuormrnmmmmemmnsmsmessrnsesssesssssssseenees 5
Figure 3 - Example: Remove-Branch-To-End-If (Mixed Inner/Outer GOTO Statement)ccvueruereenns 5
Figure 4 - Remove-Branch-To-End-If (Photran GUI) ... sssssssssssssssssses 6
Figure 6 - Example: Remove-Do-Loop (Explicit Step Size — DO LOOP) .cvvnrnrereemenseseessssessessssssesssssssssssessees 8
Figure 7 - Example: Remove-Do-Loop (Implicit Step Size — DO WHILE LOOD)..ccueonrnereensrnseseessesseseenees 8
Figure 8 - Remove-Do-Loop Refactoring (Photran GUI).......sses 8
Figure 8 - Remove-Do-Loop (DO / DO WHILE SeleCtion)ccunrnensinisessssssssssssssssssssessssssssssssssssssessees 9
Figure 9 - Example: Remove-Pause-Statement (PAUSE Replacement)nnenenssnsenenesnsenseesssnnens 10
Figure 10 - Remove-Pause-Statement Refactoring (Photran GUI) ... 11
Figure 11 - Refactoring Test Suite RUn Configuration ... ssssssssssssssssssssens 15
Figure 12 - Remove-Branch Configuration ... ssssssssssssssssssssssssssssssns 16
List of Tables

Table 1 - Remove-Branch-To-End-If Method DeSCriptionnmnesnesnssssesssssssssssssssssssssssssssssssssssens 7
Table 2 - Remove-DO-Loop Method DeSCription ... sssssssssssssssssssssssssssssssssans 10
Table 3 - Remove-Pause-Statement Method DeSCription ... sssssssssssssssssssssss 12

Abstract

Photran is a Fortran Integrated Development Environment (IDE) that provides Fortran developer’s
tools to write, build, run, and debug their programs. An important feature of the Photran tool is the
ability to refactor code. Refactoring is the process of changing a programs structure without
modifying its behavior. Photran already supports a number of refactorings that allow the user to
quickly modify Fortran programs in an automated way.

The Removal of Obsolete Language Features (ROLF) project is an extension to the Photran
refactoring library providing a GUI component from which to execute the refactoring and an
automated test suite for each refactoring implemented with JUnit.

Overview
The purpose of this document is to communicate to Photran users about the ROLF refactoring
options added to Photran as part of this project. This set of options allows the user to replace
Fortran obsolete language features in the code with newer ones that are more accepted as proper
coding constructs in later versions of the Fortran language. The refactoring features supported are:

* Removing Branches to END IF Statements

* Removing Real and Double Precision DO Loop Counters

* Removing PAUSE Statements

Each refactoring feature was implemented as an Editor-Based Refactoring, which means the user
must specifically select specific parts of the Fortran code in the GUI in order to indicate which
section should be refactored. The following is a general sequence of events for the user to perform
arefactoring:
1. Select any part of the statement to be refactored (rules specified for each refactoring).
2. Right click the selection.
3. Select Refactoring-><ROLF of choice>.
4. The code selection is used to verify it contains part of the code needed to perform the
refactoring.
5. Ifthe selection is valid, the user can preview the new code, cancel the refactoring, or
perform the refactoring, else a warning/error is given.

Photran represents elements of a Fortran program via an Abstract Syntax Tree (AST). The ROLF
refactorings make use of this program representation to search, add, and remove items of that AST,
thus changing the source code of that program. Through Photran’s use of the Visitor Pattern it is
easy for refactorings such as ROLF to search the program tree in a structured way for a specific AST
node. The reader is referred to the Photran User Guides linked to in the Technical References
section of this report, which provides greater detail about the architecture and implementation of
Photran.

For each of the refactoring options the document will go over a brief description of what the
refactoring does, how to perform the refactoring, and how it was implemented. For more details on
the implementation, see the documentation provided within the code. Then the future plans for the
refactorings will be discussed. Finally, there will be an Appendix, which list the of files changed for
each refactoring option, gives details on how to get started with installing the ROLF options, gives
details on how to run the automated tests using JUnit and what is tested, list references used, and
lists the development team.

AvocadoChestnut CS427 - Fall 2010

Note: It is assumed that the reader/user has some familiarity with Photran for Fortran program
development. Therefore details such as how to launch Photran are not described and the reader is
referred to the Photran User’s Guides in the Technical reference section below which already provide a
good explanation of how to run Photran. Our descriptions refer strictly to how to run our install and
run our refactorings in Photran.

Supported Refactorings

The following is a detailed discussion of each of the three refactorings that are implemented as part
of the Removal of Obsolete Language Features project.

Remove-Branch-To-End-If

The Remove-Branch-To-End-If refactoring option removes the branch to END IF statements. The
GOTO statements carry out branching. Branching to END IF is replaced with branching to CONTINUE
statement that immediately follows the END IF statement. Example 1-1 below shows the result of the
refactoring for this scenario.

Example 1-1 (Existing CONTINUE)

PROGRAM RemoveBranchEX1_1 PROGRAM RemoveBranchEX1_1
INTEGER :: sum, i INTEGER :: sum, i
sum = @ sum = @
DO 20, i = 1, 10 DO 20, i = 1, 10
IF (MOD(i,2).eq.0) THEN IF (MOD(i,2).eq.0) THEN
GOTO 10 GOTO 20
END IF END IF
sum = sum + i sum = sum + i
IF (sum.ge.100) THEN IF (sum.ge.100) THEN
sum = sum + sum sum = sum + sum
10 END IF END IF
20 CONTINUE 20 CONTINUE
PRINT *, 'sum:', sum PRINT *, 'sum:', sum
END PROGRAM RemoveBranchEX1_1 END PROGRAM RemoveBranchEX1_1
Before After

Figure 1 - Example: Remove-Branch-To-End-If (Existing CONTINUE)

If there is no CONTINUE statement following an END IF statement thatis a target of a branch, the
refactoring inserts a CONTINUE statement immediately after this END IF statement. The label for the
continue statement can be one of two scenarios:
1. Ifthere is a GOTO statement within the selected IF block, the END IF label is
removed, used for the new CONTINUE statement.
2. Else the END IF label remains and a unique label is generated for the new CONTINUE
statement. Then for all the labels of the GOTO statements outside of the selected if
block are renamed to the new label.

Example 1-2 below shows the result of a reused label for the newly inserted CONTINUE statement.

Example 1-2 (Inserted CONTINUE)

PROGRAM RemoveBranchEX1_2 PROGRAM RemoveBranchEX1_2
INTEGER :: k, i INTEGER :: k, i
READ(*,*) k READ(*,*) k

IF (k.1t.10) THEN
GOTO 20
END IF
i=k-10
IF (i.gt.100) THEN
i=1- 100
20 END IF
PRINT *, i
END PROGRAM RemoveBranchEX1_2

Before

IF (k.1t.10) THEN
GOTO 20
END IF
i=k-10
IF (i.gt.100) THEN
i=1- 100
END IF
20 CONTINUE
PRINT *, i
END PROGRAM RemoveBranchEX1_2

After

Figure 2 - Example: Remove-Branch-To-End-If (Inserted CONTINUE)

Example 1-3 below shows the result of refactoring when there are GOTO statements from inside and

outside of the selected IF block.

Example 1-3 (Mixed Inner/Outer GOTO Statements)

PROGRAM RemoveBranchEX1_3
INTEGER :: k, i
READ(*,*) k
IF (k.1t.10) THEN

GOTO 20
END IF
i=k-10
IF (i.gt.100) THEN
i=1- 100
IF (i.1t.10) THEN
GOTO 20
END IF
i=1-10

20 END IF
PRINT *, i

END PROGRAM RemoveBranchEX1_3

Before

PROGRAM RemoveBranchEX1_3
INTEGER :: k, i
READ(*,*) k
IF (k.1t.10) THEN

GOTO 30
END IF
i=k-10
IF (i.gt.100) THEN
i=1- 100
IF (i.1t.10) THEN
GOTO 20
END IF
i=1-10

20 END IF

30 CONTINUE
PRINT *, i

END PROGRAM RemoveBranchEX1_3

After

Figure 3 - Example: Remove-Branch-To-End-If (Mixed Inner/Outer GOTO Statement)

User Action

To initiate the refactoring, the user must select a labeled END IF statement in the Photran editor.
Then right click the selection and select Refactor->RemoveBranch To End If option as shown in

Figure 4.

AvocadoChestnut CS427 - Fall 2010

[] RemoveBranch.f90 &3 _ Extract Procedure... XOM
PROGRAM MyProgram Undo z Extract Local Variable... oL
INTEGER :: sum, i Revert File
sum = @ Save S Introduce Implicit None...
00 20, i -1, 10 Data To Parameter...
IFGS%JD%,Z).eq.O) THEN Open Declaration F3 Remove Unused Local Variables...
END IF Show In X#W > Standardize Statements...
sum = sum + i
IF (sum.ge.10@) THEN Cut #¥X Safe-Delete Non-Generic Internal Subprogram...
sum = sum + sum Copy C Permute Subroutine Arguments...
flo eno 1F Paste ®v
20 gg’I‘ENEE Make Private Entity Public...
, 'sum:', sum 3 .
END PROGRAM MyProgram Correct Indentation a8l Encapsulate Variable...
Comment/Uncomment
Shift Right AQd' ONLY Clausg to USE Statement...
Shift Left Minimize ONLY List...
Make COMMON Variable Names Consistent...
References » Move Saved Variables to COMMON Block...
Search Text > Replace Old-Style Do Loops...
Make Targets » Remove Arithmetic If Statements...
Remove Computed Goto...
Run As 4 Remove Branch To End If...
— = Debug As > Remove Real and Double Precision Loop Counters...
¥ Tasks 8 _ Profile As > Remove Pause Statement...
0 items . Coverage As 4
v oAl Description Validate Interchange Loops (Unchecked)...

Rowvarca | nnn flincharkad)

’ Flgm—'e 4 - Remove-Branch-To-End-If (Photran GUI)

Checked Error Conditions

There are conditions that are checked to verify that the refactoring can be applied to the user
selection. Failure to meet any of these conditions will halt the refactoring and the user will be
notified via appropriate GUI messages. (This is equivalent to a fail-initial in Photran refactoring test
environment.)

For the Remove-Branch-To-End-If refactoring those conditions are:
* User must select a portion of an END IF statement with a labeled.
* Selected END IF statement must be part of an IF block.
* There must be at least one GOTO statement outside of the selected IF block.

Class/Method Description

The RemoveBranchToEndIfRefactoring class, which extends the
FortranEditorRefactoring class, is the main code that implements the Remove-Branch-To-
End-If refactorings. It can be found in the org.eclipse.photran.core.vpg package in the
src/org.eclipse.photran.internal.core.refactoring directory. The following is a brief description of the
methods and functions in the class.

Method Name | Description
General Photran Refactoring Methods (Overridden)
getName () Provides the refactoring name in the Photran refactoring GUI menu.
doCheckInitialCond | Verifies that refactoring is enabled
itions() (ensureProjectHasRefactoringEnabled()) and that the

selection to be refactored is valid as described in the Checked Error
Conditions section above.

doCheckFinalCondit | No final conditions (no user input).
ions()

doCreateChange() Called after the conditions pass. Refactoring is delegated to
changeGotoLabelToContinueLabel () or
changeNoContinueAfterEndIf () depending if a CONTINUE
statement exists after the selected END IF block.

Main Refactoring Methods

changeGotoLabelToC | For the GOTO statements targeting the selected END IF that are found

ontinueLabel

()

outside of the selected IF block, change the labels to the label of the
CONTINUE immediately after the selected END IF. If there are no GOTO
statements inside the selected IF block, the label of the selected END
IF would be removed.

changeNoContinueAf
terEndIf

()

Adds a CONTINUE statement after the selected END IF statement. If
there are no GOTO statements within the selected IF block, move the
label of the selected END IF to the new CONTINUE statement, else create
a new unique label.

Support Methods

getGotoNodes ()

Build a list of GOTO nodes within a desired node.

getGotoStmtsInAllP
roperLoopConstruct

s()

Build a list of GOTO nodes within all proper-loop-construct nodes
within a desired node.

findGotoForLabel ()

Build a list of GOTO nodes with a specified label within a desired node.

continueAfterIfStm

t0

Find the CONTINUE statement immediately after an if construct node.

getUniqueLabel ()

Generate a unique label based on the labels of action statements
passed in by finding the largest integer label and then adding 10.

getActionStmts ()

Build a list of Action statement nodes within a desired node.

getActionStmtsInAl
1ProperLoopConstru
ct()

Build a list of Action statement nodes within all proper-loop-construct
nodes within a desired node.

getProperLoopConst
ructs ()

Build a list of proper loop construct nodes within a desired node.

Support Methods Shared By Other Refactorings

findEnclosingNodeO
fType ()

Find a node of specified type that encloses a given node.

Table 1 - Remove-Branch-To-End-If Method Description

Remove-Real-And-Double-Precision-Do-Loop-Counters

The Remove-Real-And-Double-Precision-Loop-Counters targets to transform a DO loop with
control to a DO loop without control or DO WHILE loop base on user selection. A qualified control DO
loop for this refactoring is when the counter is a real or double precision type

The refactoring supports both cases where the step-size is explicit or implicit. When the step size is
implicit, a value of +1 or -1 is used (based on comparison of lower and upper loop bounds).
Example 2-1 shows the result of a refactoring performed on an explicit DO loop with real precision
counter and example 2-1 shows the result of a refactoring performed on implicit DO loop with real

precision counter.

Example 2-1 (Explicit Step Size — DO Loop)

PROGRAM RemoveDolLoopEX2_1

REAL :: counter, sum
sum = 0.0

DO counter = 1.2, 1.8, 0.1

sum = sum + counter
END DO
PRINT *, sum

END PROGRAM RemoveDolLoopEX2_1

PROGRAM RemoveDolLoopEX2_1
REAL :: counter, sum
sum = 0.0
counter = 1.2
DO
sum = sum + counter
counter = counter + 0.1
IF(counter > 1.8) THEN
EXIT
END IF

AvocadoChestnut CS427 - Fall 2010

END DO
PRINT *, sum
END PROGRAM RemoveDolLoopEX2_1

Before After
Figure 5 - Example: Remove-Do-Loop (Explicit Step Size - DO Loop)

Example 2-2 (Implicit Step Size — DO WHILE Loop)

PROGRAM RemoveDolLoopEX2_2 PROGRAM RemoveDolLoopEX2_2
REAL :: counter, sum REAL :: counter, sum
sum = 0.0 sum = 0.0
DO counter = 1.8, 1.2 counter = 1.8
sum = sum + counter DO WHILE (counter >= 1.2)
END DO sum = sum + counter
PRINT *, sum counter = counter - 1
END PROGRAM RemoveDolLoopEX2 END DO

PRINT *, sum
END PROGRAM RemoveDolLoopEX2_2

Before After
Figure 6 - Example: Remove-Do-Loop (Implicit Step Size - DO WHILE Loop)

User Action

To initiate the refactoring the user must select a qualified DO loop statement in the Photran editor.
Then right click the selection and select Refactor->Remove Real and Double Precision Loop Counters
option as shown in

Figure 7.
. Extract Procedure... XoM
= PROGRAM MyProgram <7 Undo Typing ®Z Extract Local Variable... oL
REAL :: counter, sum Revert File
sum - 0.9 Save %S Introduce Implicit None...
DO ERE R T Data To Parameter...
EN;ugo- sum + counter Open Declaration F3 Remove Unused Local Variables...
PRINT %, sum Show In X#W > Standardize Statements...
END PROGRAM MyProgram
Cut #¥X Safe-Delete Non-Generic Internal Subprogram...
Copy #C Permute Subroutine Arguments...
Paste EAY
Make Private Entity Public...
Correct Indentation 38l Encapsulate Variable...
Comment/Uncomment ®/
Shift Right Add ONLY Clause to USE Statement...
Shift Left Minimize ONLY List...
Make COMMON Variable Names Consistent...
References » Move Saved Variables to COMMON Block...
Search Text >

Replace Old-Style Do Loops...
Make Targets » Remove Arithmetic If Statements...
Remove Computed Goto...

Run As 4 Remove Branch To End If...
— Debug As >
¥ Tasks 83 Profile As > Remove Pause Statement...
0 items. Coverage As >
P Description Validate Interchange Loops (Unchecked)...
Clean Selected File(s) Reverse Loop (Unchecked)...

Figure 7 - Remove-Do-Loop Refactoring (Photran GUI)

After selecting the refactoring, the user will be prompted to select if the DO loop should be
converted to a DO or DO WHILE loop as shown in Figure 8 below.

® O Remove Real and Double Precision Loop Counters

Replace real/double precision loop counter with:
® DO Loop
() DO WHILE Loop

Click OK to replace the real/double precision loop counter.
To see what the changes will be made, click Preview.

Preview>) ([Cancel) (OK)

Figure 8 - Remove-Do-Loop (DO /DO WHI LE Selection)

Checked Error Conditions

There are conditions that are checked to verify that the refactoring can be applied to the user
selection. Failure to meet any of these conditions will halt the refactoring and the user will be
notified via appropriate GUI messages. (This is equivalent to a fail-final in Photran refactoring test
environment.)

For the Remove-Real-And-Double-Precision-Loop-Counters refactoring those conditions are:
* User mustselecta portion of a controlled DO loop statement.
* Both loop control variables (loop sum and loop index counter) must only be declared as
REAL or DOUBLE PRECISION types.

Class/Method Description

The RemoveRealAndDoublePrecisionLoopCountersRefactoring class that extends the
FortranEditorRefactoring class is the main code that implements the refactorings. It can be
found in the org.eclipse.photran.core.vpg package in the
src/org.eclipse.photran.internal.core.refactoring directory. The following is a list and brief
description of the different methods in the class.

Method Name | Description

General Photran Refactoring Methods (Overridden)
getName () Provides the refactoring name in the Photran refactoring GUI menu.
doCheckInitialCond | Verifies that refactoring is enabled
itions() (ensureProjectHasRefactoringEnabled())
doCheckFinalCondit | Verifies that the selection to be refactored is valid as described in the
ions() Checked Error Conditions section above - after user input.
doCreateChange() Performs the refactoring by building a number of AST node elements

and inserting them in to the program to do the work that the
controlled DO loop would have done. This includes: 1) Initial loop
control variable assignment (starting value). 2) Increment/Decrement
control variable by specified amount (implicit or explicit step size) 3)
Check inside DO loop to see if loop variable limit specified is exceeded.
Most of the work is delegated to the support methods.

Support Methods

setShouldReplaceWi | Set method for DO or DO WHILE refactoring selection variable.
thDoWhileLoop ()

insertNewDoLoop () With provided strings this method builds the new AST nodes for the

AvocadoChestnut CS427 - Fall 2010

initial variable assignment, increment/decrement statement, and IF DO
loop break statement. They are then inserted in to the proper
hierarchy of the program AST structure.

insertNewDoWhileLo | With provided strings this method builds the new AST nodes for the

op() initial variable assignment, increment/decrement statement, and DO
WHILE loop check statement. They are then inserted in to the proper
hierarchy of the program AST structure.

insertInitialCount | Creates an assignment statement node for the initial loop counter

erAssignment () value assignment and inserts it before the selected DO loop of the
refactoring.

insertCounterAssig | Creates an assignment statement node for the loop counter variable

nment () assignment and inserts it as the last statement in the selected DO loop
body.

getTypeDeclaration | Getall variable type declarations in the program.

s()

Support Methods Shared By Other Refactorings

findEnclosingNodeO | Find a node of specified type that encloses a given node.
fType ()

Table 2 - Remove-DO-Loop Method Description

Remove-Pause-Statement

The Remove-Pause-Statement refactoring addresses the replacement of the PAUSE statement with
a PRINT and READ statement. Execution of a PAUSE statement may be different on different platforms.
The refactoring assumes the most basic functionality: it replaces the PAUSE statement with a PRINT
statement that displays the message of the PAUSE statement, immediately followed by a READ
statement that waits for any input from the user. Example 3-1 below shows an example of this
refactoring.

Example 3-1 (PAUSE Replacement)

PROGRAM RemovePauseEX3_1 PROGRAM RemovePauseEX3_1
INTEGER :: i INTEGER :: i
DO i =1, 100 DO i =1, 100
IF (i == 50) THEN IF (i == 50) THEN
PAUSE 'mid job' PRINT *, 'mid job'
END IF READ (*, *)
END DO END IF
PRINT *, "i=", i END DO
END PROGRAM RemovePauseEX3_1 PRINT *, "i=", i

END PROGRAM RemovePauseEX3_1

Before After
Figure 9 - Example: Remove-Pause-Statement (PAUSE Replacement)

User Action

To initiate the refactoring the user must select a PAUSE statement the Photran editor. Figure 10
below shows in the Photran editor an example of what should be selected in a Fortran program
after right clicking on the selection in Photran (Refactor->Remove Pause Statement).

10

[F) RemovePauseStatement.f90 §3 Extract Procedure... XOM

- PROGRAM MyProgram ¢/ Undo Typing ®Z Extract Local Variable... X oL
INTEGER :: i Revert File
D0 i - 1, 100 Save 32 Introduce Implicit None...
IFPS "ls?z T_“E"‘ Data To Parameter...
END ';:E — Open Declaration F3 Remove Unused Local Variables...
END DO Show In X#EW > Standardize Statements...
PRINT *, 'i=', i
END PROGRAM MyProgram Cut #8X Safe-Delete Non-Generic Internal Subprogram...
Copy #C Permute Subroutine Arguments...
Paste 8V
Make Private Entity Public...
Correct Indentation £ Encapsulate Variable...
Comment/Uncomment #®/
Shift Right Add ONLY Clause to USE Statement...
Shift Left Minimize ONLY List...
Make COMMON Variable Names Consistent...
References > Move Saved Variables to COMMON Block...
Search Text > Replace Old-Style Do Loops...
Make Targets > Remove Arithmetic If Statements...
Remove Computed Goto...
Run As > Remove Branch To End If...
= : = Debug As > Remove Real and Double Precision Loop Counters...
Tasks 52 _ Profile As >
0 items . Coverage As >
oA Description Validate Interchange Loops (Unchecked)...
Flanm Calartad Cilafe\ Reverse Loop (Unchecked)...

Figure 10 - Remove-Pause-Statement Refactoring (Photran GUI)

Checked Error Conditions

There is one condition that is checked to verify that the refactoring can be applied to the user
selection. Failure to meet any of this condition will halt the refactoring and the user will be notified
via appropriate GUI messages. (This is equivalent to a fail-initial in Photran refactoring test
environment.)

For the Remove-Pause-Statement refactoring the condition is:
* User must select a PAUSE statement in the program.

Class/Method Description

Our RemovePauseStmtRefactoring class that extends the FortranEditorRefactoring
class is the main code that implements the refactoring. It can be found in the
org.eclipse.photran.core.vpg package in the src/org.eclipse.photran.internal.core.refactoring
directory. The following is a list and brief description of the different methods in the
RemovePauseStmtRefactoring class.

Method Name | Description
General Photran Refactoring Methods (Overridden)
getName () Provides the refactoring name in the Photran refactoring GUI menu.
doCheckInitialCon | Verifies that refactoring is enabled
ditions() (ensureProjectHasRefactoringEnabled()) and that the

selection to be refactored is valid as described in the Checked Error
Conditions section above.

doCheckFinalCondi | No final conditions (no user input).
tions ()

doCreateChange() Called after initial /final conditions are checked and passed. Refactoring
is delegated to changePauseStmt () .

Main Refactoring Methods

changePauseStmt () | Performs the refactoring making modifications to the transient AST.

Support Methods Shared By Other Refactorings

findEnclosingNode | Find a node of specified type that encloses a given node.

11

AvocadoChestnut CS427 - Fall 2010

OfType () |

Table 3 - Remove-Pause-Statement Method Description

Future Plans

Our refactorings are implemented as an Editor-Based refactorings. A potentially more useful
version of this refactoring would be a Resource-Based refactoring that could operate on whole files
or sets of files. (See Specialized Photran Developers guide for further details about each refactoring
type.) Both refactoring types are useful so rather than converting the refactoring we could leverage
these refactorings to a Resource-Based refactoring so it could be used either way. We will need to
consult with our customer and Photran representatives if such a refactoring would be more useful
in a real Photran release. We are in the process of contacting Jeff Overbey (jeffrey.l@over.bz) and
we submitting our code as part of a Bugzilla enhancement request for Photran. Hopefully this
project will be accepted as new refactoring features in the next release of Photran.

Personal Project Reflections

Chamil: Working on the Fortran framework which is build on top of Eclipse CDT framework made
life a lot easier and helped us move very fast. Most of the time, we studied couple of examples that
are already there to accomplish what we needed to do. Even though there was not much room for
creative Object Oriented design, | was able to see some applications of design patterns in the
Fortran framework. It was good to experience and follow the XP development process. I got to
experience the benefits of writing the tests before the code for the first time. Getting use to the XP
development process and how to prioritize tasks are the most important lessons I learnt from the
project. It was great to work with a team where everyone brought an important set of skills to the
table.

Jerry: Working in pairs on code implementation proved helpful in the mid to late stages of

coding. During the initial ramp up, I found it beneficial to first look at the code as an individual then
gather notes, and then perform a second review of the existing code with my partners. Initially,
writing test also proved useful in understanding the goals of the customer. Having constant short
deadlines, although pressure filled even though the task were broken up correctly into manageable
chunks, made the completion of all the tasks feel surmountable much like walking up stairs versus
climbing a vertical high wall. Through the project, I can clearly see the pros and cons to pair
programming and XP practices.

Mark: The ROLF Photran project for our group was a good application of our studies in the CS427
course. Working with such a large program was a bit overwhelming at first, but applying the
reverse engineering principles we learned made it a manageable project. After understanding what
was needed to implement a new refactoring in to the system (and associated test suite) it is clear
that the Photran source code is well architected to allow for the easy addition of new refactoring.
For our development the Photran user’s guide were very useful but ultimately it was the ability to
study other refactorings in the system and their tests that made our implementation easier.
Working with a large group remotely and following the XP processes was also an interesting
experience. In my opinion releasing our code in structured iterations rather than one final release
also led to higher quality code useful functionality to demonstrate to our customer sooner. With
additional time it may be useful to convert our refactoring to a Resource-Based refactoring and that
seems to be the next logical extension of this project.

12

Nicola: The Photran project provided a good learning experience. I had many challenges with the
project including issues with setting up the environment and as a result | had a late start at trying to
get everything sorted out. For me, the class was overly challenging since I do not have a solid
background in Computer Science, and we were dealing with ASTs and concepts that are taught in
advanced computer science courses. The project did however provide me with a solid general
understanding of how Java is used to insert nodes in the AST tree for the Fortran code, and it is a
great foundation on my path to increase and improve my abilities. I was backed my team members
who are very skilled and proficient and that enhanced my overall experience with the project and
the course.

Rita: The ROLF refactorings project was a good learning experience and rewarding one. It was
intimidating at first given a system that we weren’t familiar with, but the following was helpful in
finishing our project with quality on time: 1) the learning spikes by reading the documentation and
code, and stepping through the code of an existing refactoring, 2) many standup (Skype) meetings
with the team by sharing our new found knowledge, problems, and ideas, 3) pair programming to
work on the code with someone and exchange ideas, 4) having test cases ready to test
new/refactored code for confidence before checking in, and 5) lots of trial and error. Working
through challenges together and successfully getting the code to work properly were probably the
most rewarding for me. Since we were given this system we thought should work almost perfectly,
we were surprised several times when we discovered features of the system or trying to follow a
refactoring’s solution actually didn’t work as expected. Some of these areas were using the
Reindenter method and searching through DO loops using the Visitor pattern. We were able to find
ways to work around these problems by developing understanding of what the AST consists of and
how we can manipulate them to perform the refactorings we need. I also find that breaking up the
tasks to be completed and reviewed in small iterations is beneficial to building a more reliable and
well-tested system. The more features that get into the code at one time, the more likely something
will not be tested. Other than Photran installation not being too reliable and the extra time needed
to plan for extra documentation and demos, the project was a good learning experience about the
XP process and patterns.

Appendix

Installation Guide

First, the user should download the latest version of the Photran source code on to their Eclipse
system and insure that there are no errors and that the included automated tests pass. The General
Photran User’s Guide linked below in the Technical References section contains detailed
instructions of how download the Photran source code from CVS and run the automated tests in its
Appendix A.

Afterwards the user can replace the following 3 core Photran packages with our version of these
packages as found on our Subversion site for the final tagged version of our code. The direct link to
this tagged version on the AvocadoChestnut SVN site is:
(https://subversion.ews.illinois.edu/svn/fal0-
cs427/AvocadoChestnut/RemovalOfObsoleteLanguageFeatures/tags/Final Release 1.0)

The following is a list of the three packages that our SVN release contains. Replacing all three
packages, however, could override changes to the Photran source code that occurred since the

13

AvocadoChestnut CS427 - Fall 2010

ROLF project was started with Photran and CDT 7.0. Therefore, the list below also contains a
specific list of the files and directories we added/modified. The user may elect to selectively import
these files to receive just the ROLF functionality provided by this project.
* Org.eclipse.photran.core.vpg Package - Core refactoring code.
o src/org/eclipse/phoran/internal/core/refactoring Directory
= RemoveBranchToEndIfRefactoring.java
= RemovePauseStmtRefactoring.java
= RemoveRealAndDoublePrecisionLoopCountersRefactoring.java
o src/org/eclipse/phoran/internal/core/refactoring/infrastructure Directory
= FortranResourceRefactoring.java
* org.eclipse.photran.core.vpg.tests Package - Refactoring test suite and test cases. (test cases
in directories now shown.)
o src/org/eclipse/phoran/internal/tests/refactoring Directory
= RemoveBranchToEndIfTestSuite.java
= RemovePauseStmtTestSuite.java
= RemoveRealandDoublePrecisionLoopCountersTestSuite.java
o refactoring-test-code Directory
= remove-branch-to-end-if Directory
= remove-pause-stmt Directory
= remove-real-and-double-precision-loop-counters Directory
* org.eclipse.photran.ui.vpg Package - Contains GUI messages and menu extensions for
refactorings.
o src/org.eclipse.photran.internal.ui.refactoring Directory
= plugin.xml
= RemoveRealAndDoublePrecisionLoopCounterinputPage.java
= Messages.java
= Message.properties
= RemoveRealAndDoublePrecisionLoopCountersAction.java

Refactoring Test Suites
A fully automated JUnit test suite for each refactoring was developed using the Photran refactoring
test framework. All refactorings follow the convention of a test directory linked to the refactoring’s
JUnit test suite. The JUnit test suite for each refactoring can be found in the
org.eclipse.photran.core.vpg.tests package under the src/org.eclipse.photran.internal.tests.refactoring
directory. The file name and class name for each JUnit test suite for each of our three ROLF
refactorings in that directory are:

* RemoveBranchToEndIfTestSuite - RemoveBranchToEndIfTestSuite.java

* RemoveRealAndDoublePrecisionLoopCountersTestSuite -

RemoveRealAndDoublePrecisionLoopCountersTestSuite.java
* RemovePauseStmtTestSuite - RemovePauseStmtTestSuite.java

Under that directory a source file with a .f90 extension is placed and a expected results file with a
f90.result extension is also provided. Through the !<<<< pragma in the source code the Photran
test framework is instructed as to what the user selection would be for that refactoring. (See
Photran Specialized User’s Guide in the Technical Reference section for more details).

All refactoring test suites for each refactoring can be found in the org.eclipse.photran.core.vpg.tests
package refactoring-test-code directory. For each of the three ROLF refactorings there is a
corresponding directory from which test folder and files are placed:

* remove-branch-to-end-if/

14

* remove-real-and-double-precision-loop-counters/
* remove-branch-to-end-if/

Note: Due limitations in the length of this report we are unable to include a test list/description
table for each test we wrote. However, each test has a brief description in the header in Fortran
comments of what the test is checking and the expected behavior of the refactoring.

Technical References
The following is a list of technical references related to Photran and refactoring that the reader may
find useful to further understand our refactorings as they relate to the Photran program

- General Photran Developer’s Guide (http://bit.ly/eGfGwP)

o Introduction to Photran architecture, instructions for downloading Photran and
building/launching Photran in Eclipse, and how to run Photran’s included
automated refactoring test suites.

- Specialized Photran Developer’s Guide (http://bitly/fyZiqj)

o More detailed description of Photran architecture and implementation (ASTs, VPG)
and how Photran implements Fortran refactorings, how to implement a new
Fortran refactorings and associated refactoring test suite, and details about the
Fortran editor that Photran provides access to.

How To Run Tests

With the appropriate Photran and ROLF files installed as instructed in the Installation Guide in the
previous section the user must setup a run configuration in Eclipse for each refactoring test suite.
The description below describes how to setup a run configuration for the Remove-Branch-To-
End-If refactoring but following the same steps and referencing the test suites listed in the
Refactoring Test Suites section above will provide a configuration for each refactoring.

In the Project Explorer navigate to the JUnit test suite directory for all the refactorings, i.e. the
src/org.eclipse.photran.internal.tests.refactoring directory the org.eclipse.photran.core.vpg.tests
package. Select the RemoveBranchToEndIfTestSuite.java file, right click, select Run As->Run
Configurations as show in Figure 11below.

» [J} RemoveArithmeticlfTestSuite.java 6044 Source T ES » Ir RealAndDoublePrecisi c
- I} RemoveBranchToEndifTestSuite.java 7983 Refactor 8T p | RemoveRealAndDoublePrecisionLoopCol

> Dj RemoveComputedGoToTestSuite.java 6044 iper(Activator. getDefaul t()
. s

» [J} RemovePauseStmtTestSuite.java 7397 2 Import... e
> @ RemoveRealAndDoublePrecisionLoopCounter

- & Export... | e ’ = JUnit 52 ©
» [J} RemoveUnreferencedLabelsTestSuite.java 60+ tvadoc Type Hierar | U JUnit ©B
» ite.java 60 5
— AﬁLRTTeEnuAseETeAstiunf.Jiv; 6044 2 Refresh 5 38 seconds
E Console £ & Progress ® % |k BB References > 8 Errors: 0 B Failures:
i i itPlug-in Declarations > - -
S‘?’,’Y‘!",a,‘?q.’,R,e."??‘,’e.s.',af‘?’!T,‘?‘.”.",'fTF.s,‘S,”.'?e, F'FJ.”!‘,?".‘Q L | love Branch To End If Refactoring in remo =
test < . . -
LY. 76 1)Unit Plug-in Test (32X P
>335
>>> Pass checkInitialConditions!!! Debug As > Ju 2 JUnit Test X#8XT
Compiling and running Fortran program Coverage As > 543 RAP JUnit Test ONXX U
>>> before: Validate

P i f if =
lease select a portion of an end if statement Team > Run Conﬁguratlons...
N

Fmnnnvn Wish

Figure 11 - Refactoring Test Suite Run Configuration

Under the JUnit Plug-in Test listing click “New Launch Configuration” as signified by the + icon in
the upper right. A new run configuration will be provided based on the refactoring name selected.
Figure 12 below shows the Remove-Branch-To-End-If run configuration created by following
this process. Under the arguments tab change the “VM Arguments” field to “-ea -Xms40m -
Xmx512m” to enable assertions, etc. Afterwards you must save your configuration. The user can

15

AvocadoChestnut CS427 - Fall 2010

select the Run button to execute the test. The created test configuration will also be listed by name

under the normal Eclipse test configuration drop box ©~. The user should create run
configurations for each of the 3 ROLF refactorings.

8006 Run Confi
Create, manage, and run configurations
Create a configuration that will launch a JUnit plug-in test. @
¢ 2 x 2,
1 & B 5P Name: RemoveBranchToEndIfTestSuite
type filter text Test kD Main | (9= Arguments | <L Plug-ins Configuration | £ Tracing | B§ Environment | =] Common
v @ Eclipse Application ® Run asingle test
@ Eclipse Application
@' Iron Python Run Project: [org.eclipse,pho(ran.:cre,vpg.tests] (" Browse...
@ Iron Python unittest
[¥5] Java Applet Test class: org.eclipse.photran.internal.tests.refactoring.RemoveBranchToEndIfTestSuite Search...
[31Java Application
JuJUnit Test method: | (all methods) Search...

¥ 3 JUnit Plug-in Test
J“{T RemoveBranchToEndIfTestSuite
Ji RemovePauseStmtTestSuite O Run all tests in the selected project, package or source folder:
Ju RemoveRealAndDoublePrecisionLos
@7 Jython run
& Jython unittest
4 0SGi Framework

Search...

B Pvcev Diango Test runner: | Junit 4 ﬂ
23 Pydev Google App Run

P° Python Coverage [C) Keep JUnit running after a test run when debugging

@ Python Run

PU Python unittest

[RAP Application

3 RAP JUnit Test

JiiTask Context Plug-in Test
JuyTask Context Test

Filter matched 23 of 23 items

@ C e) o)
Vi

Figure 12 - Remove-Branch Configuration

™ Run in Ul thread

Development Team

The AvocadoChestnut programming team is made up of the following developers:
* Rita Chow (chow15@®illinois.edu)
* Nicola Hall (nfhall2@illinois.edu)
* Jerry Hsiao (jhsiao2@illinois.edu)

¢ Mark Mozolewski (mozolews@illinois.edu)
* Chamil Wijenayaka (wijenay2@illinois.edu)

Open Issues
There are currently no known open issues with our code.

Release History

Release Date | Version | Description

12-7-10 1.0 Initial release. (Editor-Based Refactoring.)

16

