
Project Migration CDT Enhancement
1 Introduction ...1

1.1 What is Project Migration?...1
1.2 What is a Trusted Project Migration? ...2
1.3 Primary Obstacles ..2

2 Case Study Results ..3
3 Implementation..3

3.1 Project Migration ...3
3.1.1 Project Migration Preparation...3
3.1.2 Project Migration ...4

3.2 Command Line Utilities ...4
3.3 Callable APIs...4

4 Changes...4
4.1 Plugins...4

4.1.1 New CDT Plugins ..4
4.1.2 Modified CDT Plugins ...5
4.1.3 Eclipse Platform Changes...5

4.2 Files...6

1 Introduction

1.1 What is Project Migration?
A Project Migration is a variation of a project import. The primary inputs to a Project
Migration are an initial project directory (source and project specific files like .project
and .cproject) and a destination project directory (source but no project-specific files like
.project or .cproject files) The migration consists of copying the .project and other
project-specific files from the initial directory into the destination directory and then
importing the destination directory into the user’s workspace.

The primary use case scenario for a Project Migration could involve an administrator that
sets up a reference C/C++ project directory and stores the exported Team Shared Index.
One or more developers can then create their own destination directories and “migrate”
the reference project into their own destination directory. They only have read access to
the reference directory and the project source is too large to efficiently copy from the
reference directory into their own. Instead, a source code control system like ClearCase
can be used to efficiently produce another copy of the source code for the developers.

In addition to just copying the project-specific .project and .cproject files, there is some
facility in this implementation for making changes to path names used for Eclipse linked
folders. If there are path names in the reference project which are “outside” of the project
directory and need to be different in the developer’s copy of the project, then these
transformations can be taken care of.

To allow for the case where a single developer may want to migrate the same reference
project multiple times, the facility for renaming the project is also provided. A developer

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

http://www.docudesk.com

may need to migrate the same project more than once if they have multiple defects they
are working on and each needs to be submitted separately.

1.2 What is a Trusted Project Migration?
One of the main goals of a Project Migration is to reduce the time it takes to get a
developer up and running with a copy of the reference project. For a C/C++ project this
includes having an Index available so the developer can browse the code and start
working on the desired changes.

While there is a facility for reusing a Team Shared Index, for large projects, there is still a
considerable amount of time spent on doing a Project Refresh at the time of doing an
import. In the primary use scenario, where the developer project directory is assured of
being the same as the reference project directory (through the magic of ClearCase), the
time spent on checking the time-stamps of thousands of source files is wasted time. A
trusted migration enhances the notion of the Team Shared Index to include the resource
time-stamp information. When the developer does the Project Migration, this saved
information is used to greatly reduce the Project Refresh time (since the actual file system
does not need to be traversed). In addition, since the developer source files are assumed
to be the same as the reference source files, the checksums stored with the Team Shared
Index do not need to be checked.

The Trusted Project Migration saves a considerable amount of time.

1.3 Primary Obstacles
The primary obstacles that needed to be overcome in order to have an efficient Trusted
Project Migration include the following:

1. Symbolic links need to be properly handled. This in not a CDT issue but is
more of core eclipse issue. (see http://bugs.eclipse.org/233939) For the case that
motivated this work, this was extremely important. Most of the resources in
the project were reached through symbolic links. Without a fix for this
problem, all of these files were represented in the CDT Index as External files.
The Index took more than 2 hours to generate. As External files, they have
absolute path names in the index. It doesn’t really hurt the developer to have
absolute path names to the reference project. But this doesn’t actually happen
since the absolute path names are removed from the index when the Team
Shared Index is exported. This means that when the project is imported into
the developer’s project, the index needed to be regenerated since most of the
files were “missing”. Fixing this problem is critical to getting greater reuse of
the shared index.

2. Workspace relative names were being stored in the index. This means the

project names were being stored in the index and this effectively prevents the
project from being easily renamed at the time of the project migration. This
problem has been addressed by (http://bugs.eclipse.org/239472)

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

3. The Project Refresh times for the case that motivated this work was greater
than 10 minutes. This is a considerable amount of time for a developer to sit
and wait before they can start working.

4. When a Team Shared Index is exported, a set of file checksums are also

exported. These are used at the time of the import to verify that the source
files are the same as when the export was done. For very large files, the time
needed to verify the checksums can be several minutes.

2 Case Study Results
For the case that motivated this work, the initial conditions were that they had very large
projects consisting of more than 50,000 files. These were in ClearCase and most of the
project tree consisted of symbolic links to several ClearCase directories. The time it took
to recalculate the CDT Index was greater than 2 hours. The time to refresh a project was
greater than 10 minutes. In short, they had no effective way for a developer to get a copy
of a reference project and become productive. If a developer wanted to create a new
project and use the CDT browsing capabilities, they were looking at nearly 2-3 hours
before all could be ready.

The changes described above were put in place. These changes addressed all the
obstacles and provided a Project Migration capability. The developers are now able to
create a new project and are able to use the CDT browsing capabilities in less than a
minute. This is a dramatic improvement.

3 Implementation

3.1 Project Migration
The Project Migration consists of a new operation that copies the project files from the
reference project to the developer’s destination project and then does a Project Import of
the destination project into the current workspace. The project files can be modified
based on a simple path transformation that allows something like eclipse linked folders to
be remapped. The transformation implemented is very simple and may not be sufficient
in some cases.

3.1.1 Project Migration Preparation
To prepare for a Project Migration, a new Export Wizard has been added. This wizard
creates a .projmig.zip file in the project directory. This files contains the snapshot of the
project refresh information and a list of files that should be copied to the new project
directory when the migration is done. (e.g. .project and .cproject). The list of files to copy
is made by an extension point which particular projects like CDT can make use of. The
extension point also allows additional files to be stored in the zip file. CDT uses this
capability to store the Team Shared Index for the project.

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

3.1.2 Project Migration
A new Import Wizard has been added to perform a Project Migration. This operation
copies the .projmig.zip file to the destination directory and copies the list of files
specified in the zip file (like .project and .cproject) and then the destination project
directory is imported into the current workspace. Note that when the files like .project
and .cproject are copied, the extension point is used to allow the files to be changed. This
is used to implement the project name change.

The CDT project import has been changed so that it can look in the .projmig.zip file in
addition to .settings/cdt-index.zip for an exported pdom.

3.2 Command Line Utilities
For the case that motivated this work, it was also requested that a number of operations
be available as commands. Primarily, these were intended to be used in nightly jobs for
the creation of the reference projects. They have about 4000 reference projects that need
to be automatically set up. The commands that have been supplied include the following:

1. Migration Preparation. This command can prepare the migration information for a
specific project.

2. Project import. This command can import a project or a set of preferences into a
workspace. This command has been most useful for importing the set of
preferences.

3. Index Project. This command can cause the CDT Index to be rebuilt for a project.

3.3 Callable APIs
Two capabilities were needed to be callable from other Eclipse plug-ins. The capabilities
included:

1. Project Migration Preparation (Export) for a project.
2. Project Migration

4 Changes

4.1 Plugins
From a plugin perspective, the following changes were made:

4.1.1 New CDT Plugins
Plugin name Purpose
org.eclipse.cdt.cli This plugin contains utility functions needed by

the command line capabilities. This plugin is not
dependent on anything in CDT. It isn’t clear that
being in CDT is the best place for this plugin.

org.eclipse.cdt.cli.commands This plugin contains the code needed to
implement the specific commands. This plugin

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

depends on org.eclipse.cdt.cli and other cdt
plugins.

4.1.2 Modified CDT Plugins
Plugin name Changes
org.eclipse.cdt.core The biggest change is the addition of the

Project Migration Helper extension. This
helper assists with the Migration
Preparation and the actual migration. A
change to the import was also done to get
the exported pdom from either the
.projmig.zip or from .settings/cdt-index.zip.
Changes were also made to display things
in more detail in the ProgressMonitors for
some of the lengthy operations.

4.1.3 Eclipse Platform Changes
There were two Eclipse Platform changes needed for this work. See
http://bugs.eclipse.org/233939 and https://bugs.eclipse.org/254492. The first deals with a
better handling of symbolic links. An initial implementation is attached to the bug and
here. The discussion in the bug is looking for a more complete solution. The second deals
with access to an internal API that was not made public. This is only needed in the
Project Import command and is not critical to the Project Migration capability. It is not
quite clear why the API’s that support zip files are public but the API’s that support tar
files are not but that is a discussion and/or debate that does not need to happen here.

Plugin Description
org.eclipse.core.resources Definition of the ProjectMigrationHelpers

extension point. Addition of a
ProjectMigrationPreparation API to do the
export of needed information. An API to
do the actual Project Migration is also
added. Change in 233939 is needed for this
capability.

org.eclipse.ui.ide Two wizards were added. One is an Export
for the Project Migration Preparation. The
other is an Import for the actual Project
Migration. Both use public API functions
that were added to
org.eclipse.core.resources.

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

4.2 Files
This is a slightly more detail look at the new and changed files and the primary reasons
for the changes.
Plugin File Purpose
org.eclipse.core.resources META-INF/MANIFEST.MF Additional packages
 plugin.properties Strings for extension

definition
 plugin.xml New extension
 src/org/eclipse/core/resources/Resource

sPlugin.java
New extension support

 src/org/eclipse/core/internal/resources
/projectmigration

New snap filestore support,
extension support

 src/org/eclipse/core/resource/projectmi
gration

New package containing
Public API for migration
preparation, migration
operation, and migration
helper extension

org.eclipse.ui.ide src/org/eclipse/ui/internal/wizards/pro
jectmigration

New package containing 2
wizards for migration
preparation (export) and
actual migration (import)

Plugin File Purpose
org.eclipse.cdt.c
ore

parser/org/eclipse/cdt/internal/core/
pdom/indexer/Messages.java

New messages for progress monitors
org.eclipse.cdt.c
ore

parser/org/eclipse/cdt/internal/core/
pdom/indexer/messages.properties

New messages for progress monitors
org.eclipse.cdt.c
ore

parser/org/eclipse/cdt/internal/core/
pdom/Messages.java

New messages for progress monitors
org.eclipse.cdt.c
ore

parser/org/eclipse/cdt/internal/core/
pdom/messages.properties

New messages for progress monitors
org.eclipse.cdt.c
ore

parser/org/eclipse/cdt/internal/core/
pdom/PDOMManager.java

Progress monitor changes. Changed a job from
System to User for better visibility in progress
view.

org.eclipse.cdt.c
ore

parser/org/eclipse/cdt/internal/core/
pdom/TeamPDOMImportOperation.java

Added ability to use the pdom in a .projmig.zip
information on import and avoid the checksum
verification for a trusted project migration

org.eclipse.cdt.c
ore

src/org/eclipse/cdt/internal/projectm
igration

Project Migration Helper extension that helps
with migration preparation and with the actual
migration. Takes care of CDT specific details.

org.eclipse.cdt.p
latform-feature

feature.xml Added the new plugins. org.eclipse.cdt.cli,
org.eclipse.cdt.cli.commands.

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

